Abstract

Parametric spectro-temporal analyzer (PASTA) has been demonstrated as a powerful tool for ultrafast spectrum measurement with superior frame rate and resolution. Compared with other time-stretch-based counterparts, the temporal focusing mechanism enlarges the initial condition and enables the observation of arbitrary waveform, especially the emission spectrum. However, due to the limited conversion bandwidth of the parametric mixing–based time-lens, the observation bandwidth of PASTA is constrained within the C (conventional) band, which hinders its practical applications. To overcome this constraint, both stokes and anti-stokes conversions of the parametric mixing process are leveraged, and the concept of time division multiplexing (TDM) is introduced to ensure their separability. Therefore, the TDM-based PASTA system successfully demultiplexes the C band and L (long) band spectra in two adjacent temporal frames. It is capable of reconstructing the wavelength-to-time sequence for arbitrary waveform over a record 58-nm observation bandwidth, which can be further improved by optimizing the filters and amplifiers. Meanwhile, both of these two bands achieve 20-pm resolution, 10-MHz frame rate, and –30-dBm sensitivity. Moreover, this TDM concept can also be applied to other parametric mixing–based temporal imaging systems to enlarge the working wavelength band, such as temporal magnification.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Performance of parametric spectro-temporal analyzer (PASTA)

Chi Zhang, Xiaoming Wei, and Kenneth K. Y. Wong
Opt. Express 21(26) 32111-32122 (2013)

Real-time broadband radio frequency spectrum analyzer based on parametric spectro-temporal analyzer (PASTA)

Liao Chen, Yuhua Duan, Haidong Zhou, Xi Zhou, Chi Zhang, and Xinliang Zhang
Opt. Express 25(8) 9416-9425 (2017)

Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification

Yuhua Duan, Liao Chen, Haidong Zhou, Xi Zhou, Chi Zhang, and Xinliang Zhang
Opt. Express 25(7) 7520-7529 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Pu, W. Wang, R. B. Dorshow, B. B. Das, and R. R. Alfano, “Review of ultrafast fluorescence polarization spectroscopy [invited],” Appl. Opt. 52(5), 917–929 (2013).
    [Crossref] [PubMed]
  2. M. Liu, A. P. Luo, Y. R. Yan, S. Hu, Y. C. Liu, H. Cui, Z. C. Luo, and W. C. Xu, “Successive soliton explosions in an ultrafast fiber laser,” Opt. Lett. 41(6), 1181–1184 (2016).
    [Crossref] [PubMed]
  3. H. Hou, B. Yang, X. Mao, V. Zorba, P. Ran, and R. E. Russo, “Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel,” Opt. Express 26(10), 13425–13435 (2018).
    [Crossref] [PubMed]
  4. Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
    [Crossref] [PubMed]
  5. A. B. Shafer, L. R. Megill, and L. A. Droppleman, “Optimization of the Czerny–Turner spectrometer,” J. Opt. Soc. Am. 54(7), 879–887 (1964).
    [Crossref]
  6. O. Svelto, Principles of Lasers, 4th ed. (Plenum University 1998).
  7. T. G. Etoh, C. V. Le, Y. Hashishin, N. Otsuka, K. Takehara, H. Ohtake, T. Hayashida, and H. Maruya, “Evolution of Ultra-High-Speed CCD Imagers,” Plasma Fusion Res. 2, S1021 (2007).
    [Crossref]
  8. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
    [Crossref]
  9. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
    [Crossref]
  10. J. Azana and M. A. Muriel, “Real-Time Optical Spectrum Analysis Based on the Time–Space Duality in Chirped Fiber Gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
    [Crossref]
  11. G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
    [Crossref]
  12. M. Liu, A. P. Luo, Y. R. Yan, S. Hu, Y. C. Liu, H. Cui, Z. C. Luo, and W. C. Xu, “Successive soliton explosions in an ultrafast fiber laser,” Opt. Lett. 41(6), 1181–1184 (2016).
    [Crossref] [PubMed]
  13. G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
    [Crossref] [PubMed]
  14. J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
    [Crossref]
  15. C. Zhang, X. Wei, and K. K. Y. Wong, “Performance of parametric spectro-temporal analyzer (PASTA),” Opt. Express 21(26), 32111–32122 (2013).
    [Crossref] [PubMed]
  16. C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3(1), 2064 (2013).
    [Crossref] [PubMed]
  17. H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
    [Crossref]
  18. H. Zhou, N. Yang, G. Liu, L. Chen, Y. Wang, C. Zhang, K. K. Y. Wong, and X. Zhang, “Large-Temporal-Numerical-Aperture Parametric Spectro-Temporal Analyzer Based on Silicon Waveguide,” IEEE Photonics J. 11(5), 7102710 (2019).
    [Crossref]
  19. A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using heterodyne time-lens and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
    [Crossref]
  20. B. Li, Y. Wei, J. Kang, C. Zhang, and K. K. Y. Wong, “Parametric spectrotemporal analyzer based on four-wave mixing Bragg scattering,” Opt. Lett. 43(8), 1922–1925 (2018).
    [Crossref] [PubMed]
  21. M. S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
    [Crossref]
  22. A. Muhammad, G. Zervas, and R. Forchheimer, “Resource allocation for space-division multiplexing: Optical white box versus optical black box networking,” J. Lightwave Technol. 33(23), 4928–4941 (2015).
    [Crossref]
  23. Z. Ghaseemlooy, W. O. Popoola, and S. Rajbhandri, Optical Wireless Communications, System and Channel Modelling With Matlab (CRC University, 2012).
  24. P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012).
    [Crossref]
  25. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
    [Crossref]
  26. S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch Network 15, 53–66 (2015).
    [Crossref]
  27. E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
    [Crossref]
  28. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
    [Crossref] [PubMed]
  29. A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224 × 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” in Proceedings of Optical Fiber Communication Conference (OFC/NFOEC, 2012), paper PDP5C.3.
    [Crossref]
  30. B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
    [Crossref] [PubMed]
  31. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [Crossref] [PubMed]
  32. K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
    [Crossref] [PubMed]
  33. A. Klein, G. Masri, H. Duadi, K. Sulimany, O. Lib, H. Steinberg, S. A. Kolpakov, and M. Fridman, “Ultrafast rogue wave patterns in fiber lasers,” Optica 5(7), 774–778 (2018).
    [Crossref]
  34. P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
    [Crossref]

2019 (1)

H. Zhou, N. Yang, G. Liu, L. Chen, Y. Wang, C. Zhang, K. K. Y. Wong, and X. Zhang, “Large-Temporal-Numerical-Aperture Parametric Spectro-Temporal Analyzer Based on Silicon Waveguide,” IEEE Photonics J. 11(5), 7102710 (2019).
[Crossref]

2018 (7)

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using heterodyne time-lens and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
[Crossref]

B. Li, Y. Wei, J. Kang, C. Zhang, and K. K. Y. Wong, “Parametric spectrotemporal analyzer based on four-wave mixing Bragg scattering,” Opt. Lett. 43(8), 1922–1925 (2018).
[Crossref] [PubMed]

H. Hou, B. Yang, X. Mao, V. Zorba, P. Ran, and R. E. Russo, “Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel,” Opt. Express 26(10), 13425–13435 (2018).
[Crossref] [PubMed]

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref] [PubMed]

A. Klein, G. Masri, H. Duadi, K. Sulimany, O. Lib, H. Steinberg, S. A. Kolpakov, and M. Fridman, “Ultrafast rogue wave patterns in fiber lasers,” Optica 5(7), 774–778 (2018).
[Crossref]

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

2017 (5)

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
[Crossref]

M. S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
[Crossref]

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

2016 (4)

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

M. Liu, A. P. Luo, Y. R. Yan, S. Hu, Y. C. Liu, H. Cui, Z. C. Luo, and W. C. Xu, “Successive soliton explosions in an ultrafast fiber laser,” Opt. Lett. 41(6), 1181–1184 (2016).
[Crossref] [PubMed]

M. Liu, A. P. Luo, Y. R. Yan, S. Hu, Y. C. Liu, H. Cui, Z. C. Luo, and W. C. Xu, “Successive soliton explosions in an ultrafast fiber laser,” Opt. Lett. 41(6), 1181–1184 (2016).
[Crossref] [PubMed]

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

2015 (2)

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch Network 15, 53–66 (2015).
[Crossref]

A. Muhammad, G. Zervas, and R. Forchheimer, “Resource allocation for space-division multiplexing: Optical white box versus optical black box networking,” J. Lightwave Technol. 33(23), 4928–4941 (2015).
[Crossref]

2013 (4)

Y. Pu, W. Wang, R. B. Dorshow, B. B. Das, and R. R. Alfano, “Review of ultrafast fluorescence polarization spectroscopy [invited],” Appl. Opt. 52(5), 917–929 (2013).
[Crossref] [PubMed]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

C. Zhang, X. Wei, and K. K. Y. Wong, “Performance of parametric spectro-temporal analyzer (PASTA),” Opt. Express 21(26), 32111–32122 (2013).
[Crossref] [PubMed]

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3(1), 2064 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (1)

2008 (1)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

2007 (1)

T. G. Etoh, C. V. Le, Y. Hashishin, N. Otsuka, K. Takehara, H. Ohtake, T. Hayashida, and H. Maruya, “Evolution of Ultra-High-Speed CCD Imagers,” Plasma Fusion Res. 2, S1021 (2007).
[Crossref]

2006 (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

2004 (1)

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

2000 (1)

J. Azana and M. A. Muriel, “Real-Time Optical Spectrum Analysis Based on the Time–Space Duality in Chirped Fiber Gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

1964 (1)

Agarwal, A. M.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Agrell, E.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Alfano, R. R.

Anderson, M. H.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Ang, L. K.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Azana, J.

J. Azana and M. A. Muriel, “Real-Time Optical Spectrum Analysis Based on the Time–Space Duality in Chirped Fiber Gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

Bielawski, S.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using heterodyne time-lens and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
[Crossref]

Billet, C.

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Bindhaiq, S.

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch Network 15, 53–66 (2015).
[Crossref]

Bowers, J. E.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Brasch, V.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Chee, A. K. L.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Chen, L.

H. Zhou, N. Yang, G. Liu, L. Chen, Y. Wang, C. Zhang, K. K. Y. Wong, and X. Zhang, “Large-Temporal-Numerical-Aperture Parametric Spectro-Temporal Analyzer Based on Silicon Waveguide,” IEEE Photonics J. 11(5), 7102710 (2019).
[Crossref]

H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
[Crossref]

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

Chraplyvy, A. R.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Chui, P. C.

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3(1), 2064 (2013).
[Crossref] [PubMed]

Cotter, D.

Cui, H.

Das, B. B.

Deng, B.

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

Dorshow, R. B.

Droppleman, L. A.

Duadi, H.

Dudley, J. M.

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Eggleton, B. J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Ellis, A. D.

Elmagzoub, M. A.

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch Network 15, 53–66 (2015).
[Crossref]

Etoh, T. G.

T. G. Etoh, C. V. Le, Y. Hashishin, N. Otsuka, K. Takehara, H. Ohtake, T. Hayashida, and H. Maruya, “Evolution of Ultra-High-Speed CCD Imagers,” Plasma Fusion Res. 2, S1021 (2007).
[Crossref]

Faisal, A.

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch Network 15, 53–66 (2015).
[Crossref]

Faruk, M. S.

Fisher, J. K.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Forchheimer, R.

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Freude, W.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Fridman, M.

Gaeta, A. L.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

García de Abajo, F. J.

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

Genty, G.

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Gisin, N.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

Guo, Q.

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

Hashishin, Y.

T. G. Etoh, C. V. Le, Y. Hashishin, N. Otsuka, K. Takehara, H. Ohtake, T. Hayashida, and H. Maruya, “Evolution of Ultra-High-Speed CCD Imagers,” Plasma Fusion Res. 2, S1021 (2007).
[Crossref]

Hayashida, T.

T. G. Etoh, C. V. Le, Y. Hashishin, N. Otsuka, K. Takehara, H. Ohtake, T. Hayashida, and H. Maruya, “Evolution of Ultra-High-Speed CCD Imagers,” Plasma Fusion Res. 2, S1021 (2007).
[Crossref]

Herink, G.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Hou, H.

Hu, S.

Jalali, B.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

Ji, X.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref] [PubMed]

Kang, J.

Karlsson, M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Karpov, M.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Kemal, J. N.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Kimerling, L. C.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Kippenberg, T. J.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Klein, A.

Kolpakov, S. A.

Koos, C.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Kordts, A.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Krummrich, P. M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Kschischang, F. R.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Kurtz, F.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

Le, C. V.

T. G. Etoh, C. V. Le, Y. Hashishin, N. Otsuka, K. Takehara, H. Ohtake, T. Hayashida, and H. Maruya, “Evolution of Ultra-High-Speed CCD Imagers,” Plasma Fusion Res. 2, S1021 (2007).
[Crossref]

Li, B.

Li, C.

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

Lib, O.

Lipson, M.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Liu, G.

H. Zhou, N. Yang, G. Liu, L. Chen, Y. Wang, C. Zhang, K. K. Y. Wong, and X. Zhang, “Large-Temporal-Numerical-Aperture Parametric Spectro-Temporal Analyzer Based on Silicon Waveguide,” IEEE Photonics J. 11(5), 7102710 (2019).
[Crossref]

Liu, M.

Liu, Y. C.

Lord, A.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Luo, A. P.

Luo, Z. C.

Mao, X.

Marin-Palomo, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Maruya, H.

T. G. Etoh, C. V. Le, Y. Hashishin, N. Otsuka, K. Takehara, H. Ohtake, T. Hayashida, and H. Maruya, “Evolution of Ultra-High-Speed CCD Imagers,” Plasma Fusion Res. 2, S1021 (2007).
[Crossref]

Masri, G.

Megill, L. R.

Merolla, J.-M.

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Mohammad, A. B.

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch Network 15, 53–66 (2015).
[Crossref]

Muhammad, A.

Muriel, M. A.

J. Azana and M. A. Muriel, “Real-Time Optical Spectrum Analysis Based on the Time–Space Duality in Chirped Fiber Gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

Närhi, M.

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Ng, D. K. T.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Ng, S. K.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Ohtake, H.

T. G. Etoh, C. V. Le, Y. Hashishin, N. Otsuka, K. Takehara, H. Ohtake, T. Hayashida, and H. Maruya, “Evolution of Ultra-High-Speed CCD Imagers,” Plasma Fusion Res. 2, S1021 (2007).
[Crossref]

Okawachi, Y.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref] [PubMed]

Ooi, K. J. A.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Otsuka, N.

T. G. Etoh, C. V. Le, Y. Hashishin, N. Otsuka, K. Takehara, H. Ohtake, T. Hayashida, and H. Maruya, “Evolution of Ultra-High-Speed CCD Imagers,” Plasma Fusion Res. 2, S1021 (2007).
[Crossref]

Pearce, M. B.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Pfeiffer, M. H. P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Pfeifle, J.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Prat, J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Pu, Y.

Ran, P.

Randoux, S.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using heterodyne time-lens and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
[Crossref]

Richardson, D. J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Roberts, K.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Ropers, C.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Rosenberger, R.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Russo, R. E.

Ryczkowski, P.

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Savory, S. J.

M. S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
[Crossref]

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Secondini, M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Shaddad, R. Q.

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch Network 15, 53–66 (2015).
[Crossref]

Shafer, A. B.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Solli, D. R.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Srinivasan, S.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Steinberg, H.

Stern, B.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref] [PubMed]

Sulimany, K.

Supa’at, A. S. M.

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch Network 15, 53–66 (2015).
[Crossref]

Suret, P.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using heterodyne time-lens and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
[Crossref]

Szwaj, C.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using heterodyne time-lens and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
[Crossref]

Takehara, K.

T. G. Etoh, C. V. Le, Y. Hashishin, N. Otsuka, K. Takehara, H. Ohtake, T. Hayashida, and H. Maruya, “Evolution of Ultra-High-Speed CCD Imagers,” Plasma Fusion Res. 2, S1021 (2007).
[Crossref]

Tan, D. T. H.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Tikan, A.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using heterodyne time-lens and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
[Crossref]

Tomkos, I.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Trocha, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Vijayan, K.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Wang, Q.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Wang, T.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Wang, W.

Wang, Y.

H. Zhou, N. Yang, G. Liu, L. Chen, Y. Wang, C. Zhang, K. K. Y. Wong, and X. Zhang, “Large-Temporal-Numerical-Aperture Parametric Spectro-Temporal Analyzer Based on Silicon Waveguide,” IEEE Photonics J. 11(5), 7102710 (2019).
[Crossref]

Wei, X.

Wei, Y.

Winzer, P.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Winzer, P. J.

Wolf, S.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Wong, K. K. Y.

H. Zhou, N. Yang, G. Liu, L. Chen, Y. Wang, C. Zhang, K. K. Y. Wong, and X. Zhang, “Large-Temporal-Numerical-Aperture Parametric Spectro-Temporal Analyzer Based on Silicon Waveguide,” IEEE Photonics J. 11(5), 7102710 (2019).
[Crossref]

B. Li, Y. Wei, J. Kang, C. Zhang, and K. K. Y. Wong, “Parametric spectrotemporal analyzer based on four-wave mixing Bragg scattering,” Opt. Lett. 43(8), 1922–1925 (2018).
[Crossref] [PubMed]

H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
[Crossref]

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3(1), 2064 (2013).
[Crossref] [PubMed]

C. Zhang, X. Wei, and K. K. Y. Wong, “Performance of parametric spectro-temporal analyzer (PASTA),” Opt. Express 21(26), 32111–32122 (2013).
[Crossref] [PubMed]

Xia, F.

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

Xu, J.

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3(1), 2064 (2013).
[Crossref] [PubMed]

Xu, W. C.

Yan, Y. R.

Yang, B.

Yang, N.

H. Zhou, N. Yang, G. Liu, L. Chen, Y. Wang, C. Zhang, K. K. Y. Wong, and X. Zhang, “Large-Temporal-Numerical-Aperture Parametric Spectro-Temporal Analyzer Based on Silicon Waveguide,” IEEE Photonics J. 11(5), 7102710 (2019).
[Crossref]

Yu, R.

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

Yuan, S.

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

Zervas, G.

Zhang, C.

H. Zhou, N. Yang, G. Liu, L. Chen, Y. Wang, C. Zhang, K. K. Y. Wong, and X. Zhang, “Large-Temporal-Numerical-Aperture Parametric Spectro-Temporal Analyzer Based on Silicon Waveguide,” IEEE Photonics J. 11(5), 7102710 (2019).
[Crossref]

B. Li, Y. Wei, J. Kang, C. Zhang, and K. K. Y. Wong, “Parametric spectrotemporal analyzer based on four-wave mixing Bragg scattering,” Opt. Lett. 43(8), 1922–1925 (2018).
[Crossref] [PubMed]

H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
[Crossref]

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3(1), 2064 (2013).
[Crossref] [PubMed]

C. Zhang, X. Wei, and K. K. Y. Wong, “Performance of parametric spectro-temporal analyzer (PASTA),” Opt. Express 21(26), 32111–32122 (2013).
[Crossref] [PubMed]

Zhang, X.

H. Zhou, N. Yang, G. Liu, L. Chen, Y. Wang, C. Zhang, K. K. Y. Wong, and X. Zhang, “Large-Temporal-Numerical-Aperture Parametric Spectro-Temporal Analyzer Based on Silicon Waveguide,” IEEE Photonics J. 11(5), 7102710 (2019).
[Crossref]

H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
[Crossref]

Zhao, J.

Zhou, H.

H. Zhou, N. Yang, G. Liu, L. Chen, Y. Wang, C. Zhang, K. K. Y. Wong, and X. Zhang, “Large-Temporal-Numerical-Aperture Parametric Spectro-Temporal Analyzer Based on Silicon Waveguide,” IEEE Photonics J. 11(5), 7102710 (2019).
[Crossref]

H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
[Crossref]

Zhou, X.

H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
[Crossref]

Zorba, V.

Zulkifli, N.

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch Network 15, 53–66 (2015).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

J. Azana and M. A. Muriel, “Real-Time Optical Spectrum Analysis Based on the Time–Space Duality in Chirped Fiber Gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

IEEE Photonics J. (1)

H. Zhou, N. Yang, G. Liu, L. Chen, Y. Wang, C. Zhang, K. K. Y. Wong, and X. Zhang, “Large-Temporal-Numerical-Aperture Parametric Spectro-Temporal Analyzer Based on Silicon Waveguide,” IEEE Photonics J. 11(5), 7102710 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. (1)

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Switch Network (1)

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch Network 15, 53–66 (2015).
[Crossref]

Nat. Commun. (1)

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

Nat. Photonics (5)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using heterodyne time-lens and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
[Crossref]

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Nature (3)

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Optica (1)

Plasma Fusion Res. (1)

T. G. Etoh, C. V. Le, Y. Hashishin, N. Otsuka, K. Takehara, H. Ohtake, T. Hayashida, and H. Maruya, “Evolution of Ultra-High-Speed CCD Imagers,” Plasma Fusion Res. 2, S1021 (2007).
[Crossref]

Sci. Rep. (1)

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3(1), 2064 (2013).
[Crossref] [PubMed]

Science (1)

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

Other (3)

A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224 × 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” in Proceedings of Optical Fiber Communication Conference (OFC/NFOEC, 2012), paper PDP5C.3.
[Crossref]

O. Svelto, Principles of Lasers, 4th ed. (Plenum University 1998).

Z. Ghaseemlooy, W. O. Popoola, and S. Rajbhandri, Optical Wireless Communications, System and Channel Modelling With Matlab (CRC University, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the TDM based PASTA system. (a) Parametric mixing based time-lens in two temporal adjacent frames, with interleaved wavelength relation. (b) Temporal ray diagram of the TDM based PASTA system [16]. The vertical axis refers to time, the horizontal axis refers to dispersion, and the axial angle refers to different frequencies. (c) Time-division-multiplexed spectra of two wavelength bands.
Fig. 2
Fig. 2 Detailed signal flow graph of the TDM based PASTA with extended observation bandwidth. WDMC: wavelength division multiplexing coupler; EOM: electro-optic modulator; HNLF: highly nonlinear fiber; DCF: dispersion compensation fiber; PD: Photodetector; OSC: Oscilloscope.
Fig. 3
Fig. 3 Temporal waveforms and spectra of the intermediate processes of the TDM based PASTA, with two CW signals at 1540 nm (C-band) and 1580 nm (L-Band). (a) & (b) After parametric mixing, corresponds to Fig. 2(e); (c) & (d) before the second pulse picking, corresponds to Fig. 2(f); (e) & (f) before the temporal focusing, corresponds to Fig. 2(h), where the temporal profile (e) is amplified to enhance the signal-to-noise ratio.
Fig. 4
Fig. 4 Characterization of the PASTA system with extended observation bandwidth. (a) Observation bandwidth performance in four frame periods. (b) Resolution performance of two CW components separated by 20 pm. (c) Resolving power versus different wavelength spacing. (d) Dynamic range response over different wavelengths.
Fig. 5
Fig. 5 Wideband spectrum analysis performance the TDM based PASTA, compared with a conventional OSA. (a) & (d) Spectra obtained by the TDM based PASTA without average; (b) & (e) averaged by 8 times; (c) & (f) Spectra obtained by OSA with a 10-pm resolution.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( t )= 1 2πi Φ f exp( i t 2 2 Φ f ) E ¯ 0 ( t Φ f ),
Δt= 2πc Φ f λ 0 2 Δλ.

Metrics