Abstract

Lead ions (Pb2+) are one of the major environmental pollutants that are dangerous for human health, thus the detection methods of Pb2+ become very important as well. However, most reported techniques suffer from drawbacks such as long time, expensive equipment and complicated testing process, which prevent the use of real-time application. Herein, we demonstrate a novel liquid crystal optical sensor for detection of Pb2+ based on DNAzyme and its combined strand. The ordered and disordered configuration of liquid crystals, induced by complementary DNA strand and catalytically cleaved DNA in presence of lead ion separately, leads to dark and bright optical image under POM. The proposed naked-eye optical sensor possesses an extremely broad detection range of Pb2+ from 50 nM to 500 µM, with a low detection limit about 36.8 nM. The sensor also demonstrates high selectivity of Pb2+ from many other metal ions. The proposal LC sensor is highly sensitive and selective for Pb2+ detection, which provides a novel platform for other heavy metal, DNAs or antigen in biological and chemical fields by modifying sensing molecules.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive and selective liquid crystal optical sensor for detection of ammonia

Xiaofang Niu, Yuanbo Zhong, Rui Chen, Fei Wang, and Dan Luo
Opt. Express 25(12) 13549-13556 (2017)

Detection of heavy metal ions using whispering gallery mode lasing in functionalized liquid crystal microdroplets

Rui Duan, Yanzeng Li, Hanyang Li, and Jun Yang
Biomed. Opt. Express 10(12) 6073-6083 (2019)

Colorimetric and SERS dual-mode detection of lead Ions based on Au-Ag core-shell nanospheres: featuring quick screening with ultra-high sensitivity

Zheng Zhang, Pei Ma, Junying Li, Yu Sun, Hao Shi, Nan Chen, Xuedian Zhang, and Hui Chen
Opt. Express 27(20) 29248-29260 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Larcher and J. M. Tarascon, “Towards greener and more sustainable batteries for electrical energy storage,” Nat. Chem. 7(1), 19–29 (2015).
    [Crossref]
  2. Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, and C. Zhong, “A versatile MOF-based trap for heavy metal ion capture and dispersion,” Nat. Commun. 9(1), 187–196 (2018).
    [Crossref]
  3. S. Bolisetty and R. Mezzenga, “Amyloid–carbon hybrid membranes for universal water purification,” Nat. Nanotechnol. 11(4), 365–371 (2016).
    [Crossref]
  4. H. Y. Lee, D. R. Bae, J. C. Park, H. Song, W. S. Han, and J. H. Jung, “A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood,” Angew. Chem., Int. Ed. 48(7), 1239–1243 (2009).
    [Crossref]
  5. M. Sebastian and B. Mathew, “Ion imprinting approach for the fabrication of an electrochemical sensor and sorbent for lead ions in real samples using modified multiwalled carbon nanotubes,” J. Mater. Sci. 53(5), 3557–3572 (2018).
    [Crossref]
  6. C. Zheng, L. Hu, X. Hou, B. He, and G. Jiang, “Headspace solid-phase microextraction coupled to miniaturized microplasma optical emission spectrometry for detection of mercury and lead,” Anal. Chem. 90(6), 3683–3691 (2018).
    [Crossref]
  7. Y. Wang, S. Gao, X. Zang, J. Li, and J. Ma, “Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples,” Anal. Chim. Acta 716, 112–118 (2012).
    [Crossref]
  8. R. A. Zounr, M. Tuzen, and M. Y. Khuhawar, “A simple and green deep eutectic solvent based air assisted liquid phase microextraction for separation, preconcentration and determination of lead in water and food samples by graphite furnace atomic absorption spectrometry,” J. Mol. Liq. 259, 220–226 (2018).
    [Crossref]
  9. G. Pelossof, R. Tel-Vered, and I. Willner, “Amplified surface plasmon resonance and electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and hemin/G-quadruplex as a label,” Anal. Chem. 84(8), 3703–3709 (2012).
    [Crossref]
  10. W. Yun, D. Cai, J. Jiang, P. Zhao, Y. Huang, and G. Sang, “Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb2+ using molecular beacon and DNAzyme based amplification strategy,” Biosens. Bioelectron. 80, 187–193 (2016).
    [Crossref]
  11. Z. Huang, J. Chen, Z. Luo, X. Wang, and Y. Duan, “Label-free and Enzyme-free Colorimetric Detection of Pb2+ Based on RNA-Cleavage and Annealing-Accelerated Hybridization Chain Reaction,” Anal. Chem. 91(7), 4806–4813 (2019).
    [Crossref]
  12. T. Li, S. Dong, and E. Wang, “A lead (II)-driven DNA molecular device for turn-on fluorescence detection of lead (II) ion with high selectivity and sensitivity,” J. Am. Chem. Soc. 132(38), 13156–13157 (2010).
    [Crossref]
  13. M. Baghayeri, A. Amiri, B. Maleki, Z. Alizadeh, and O. Reiser, “A simple approach for simultaneous detection of cadmium (II) and lead (II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe,” Sens. Actuators, B 273, 1442–1450 (2018).
    [Crossref]
  14. Y. Wang, G. Zhao, Q. Zhang, H. Wang, Y. Zhang, W. Cao, N. Zhang, B. Du, and Q. Wei, “Electrochemical aptasensor based on gold modified graphene nanocomposite with different morphologies for ultrasensitive detection of Pb2+,” Sens. Actuators, B 288, 325–331 (2019).
    [Crossref]
  15. R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
    [Crossref]
  16. K. Goossens, K. Lava, C. W. Bielawski, and K. Binnemans, “Ionic liquid crystals: versatile materials,” Chem. Rev. 116(8), 4643–4807 (2016).
    [Crossref]
  17. P. K. Mukherjee, “Influence of carbon nanotubes in antiferroelectric liquid crystals,” Soft Mater. 17(4), 321–327 (2019).
    [Crossref]
  18. H. Iino, T. Usui, and J. i. Hanna, “Liquid crystals for organic thin-film transistors,” Nat. Commun. 6(1), 6828 (2015).
    [Crossref]
  19. X. Wang, D. S. Miller, E. Bukusoglu, J. J. De Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
    [Crossref]
  20. I. Pani, D. Sharma, and S. K. Pal, “Liquid Crystals as Sensitive Reporters of Lipid-Protein Interactions,” Gen. Chem. 4(2), 20180012 (2018).
    [Crossref]
  21. A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
    [Crossref]
  22. S. Sridharamurthy, K. Cadwell, N. Abbott, and H. Jiang, “A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals,” Smart Mater. Struct. 17(1), 012001 (2008).
    [Crossref]
  23. K. D. Cadwell, M. E. Alf, and N. L. Abbott, “Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces,” J. Phys. Chem. B 110(51), 26081–26088 (2006).
    [Crossref]
  24. S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses,” Adv. Funct. Mater. 19(14), 2260–2265 (2009).
    [Crossref]
  25. G. R. Han, Y. J. Song, and C. H. Jang, “Label-free detection of viruses on a polymeric surface using liquid crystals,” Colloids Surf., B 116, 147–152 (2014).
    [Crossref]
  26. S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
    [Crossref]
  27. R. Manda, V. Dasari, P. Sathyanarayana, M. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(14), 141910 (2013).
    [Crossref]
  28. C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
    [Crossref]
  29. X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
    [Crossref]
  30. A. K. Brown, J. Li, C. M. B. Pavot, and Y. Lu, “A lead-dependent DNAzyme with a two-step mechanism,” Biochemistry 42(23), 7152–7161 (2003).
    [Crossref]
  31. T. Li, E. Wang, and S. Dong, “Lead (II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection,” Anal. Chem. 82(4), 1515–1520 (2010).
    [Crossref]
  32. B. Zhang, L. Lu, Q. Hu, F. Huang, and Z. Lin, “ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+,” Biosens. Bioelectron. 56, 243–249 (2014).
    [Crossref]
  33. X. Niu, Y. Zhong, R. Chen, F. Wang, Y. Liu, and D. Luo, “A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles,” Sens. Actuators, B 255, 1577–1581 (2018).
    [Crossref]
  34. J. Chen, X. Zhou, and L. Zeng, “Enzyme-free strip biosensor for amplified detection of Pb2+ based on a catalytic DNA circuit,” Chem. Commun. 49(10), 984–986 (2013).
    [Crossref]
  35. H. Wei, B. Li, J. Li, S. Dong, and E. Wang, “DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes,” Nanotechnology 19(9), 095501 (2008).
    [Crossref]
  36. D. Mazumdar, J. Liu, G. Lu, J. Zhou, and Y. Lu, “Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle–DNAzyme conjugates,” Chem. Commun. 46(9), 1416–1418 (2010).
    [Crossref]
  37. Y. Xiang, A. Tong, and Y. Lu, “Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range,” J. Am. Chem. Soc. 131(42), 15352–15357 (2009).
    [Crossref]
  38. M. Wang, F. Wang, Y. Wang, W. Zhang, and X. Chen, “Polydiacetylene-based sensor for highly sensitive and selective Pb2+ detection,” Dyes Pigm. 120, 307–313 (2015).
    [Crossref]

2019 (3)

Z. Huang, J. Chen, Z. Luo, X. Wang, and Y. Duan, “Label-free and Enzyme-free Colorimetric Detection of Pb2+ Based on RNA-Cleavage and Annealing-Accelerated Hybridization Chain Reaction,” Anal. Chem. 91(7), 4806–4813 (2019).
[Crossref]

Y. Wang, G. Zhao, Q. Zhang, H. Wang, Y. Zhang, W. Cao, N. Zhang, B. Du, and Q. Wei, “Electrochemical aptasensor based on gold modified graphene nanocomposite with different morphologies for ultrasensitive detection of Pb2+,” Sens. Actuators, B 288, 325–331 (2019).
[Crossref]

P. K. Mukherjee, “Influence of carbon nanotubes in antiferroelectric liquid crystals,” Soft Mater. 17(4), 321–327 (2019).
[Crossref]

2018 (7)

M. Baghayeri, A. Amiri, B. Maleki, Z. Alizadeh, and O. Reiser, “A simple approach for simultaneous detection of cadmium (II) and lead (II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe,” Sens. Actuators, B 273, 1442–1450 (2018).
[Crossref]

Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, and C. Zhong, “A versatile MOF-based trap for heavy metal ion capture and dispersion,” Nat. Commun. 9(1), 187–196 (2018).
[Crossref]

M. Sebastian and B. Mathew, “Ion imprinting approach for the fabrication of an electrochemical sensor and sorbent for lead ions in real samples using modified multiwalled carbon nanotubes,” J. Mater. Sci. 53(5), 3557–3572 (2018).
[Crossref]

C. Zheng, L. Hu, X. Hou, B. He, and G. Jiang, “Headspace solid-phase microextraction coupled to miniaturized microplasma optical emission spectrometry for detection of mercury and lead,” Anal. Chem. 90(6), 3683–3691 (2018).
[Crossref]

R. A. Zounr, M. Tuzen, and M. Y. Khuhawar, “A simple and green deep eutectic solvent based air assisted liquid phase microextraction for separation, preconcentration and determination of lead in water and food samples by graphite furnace atomic absorption spectrometry,” J. Mol. Liq. 259, 220–226 (2018).
[Crossref]

I. Pani, D. Sharma, and S. K. Pal, “Liquid Crystals as Sensitive Reporters of Lipid-Protein Interactions,” Gen. Chem. 4(2), 20180012 (2018).
[Crossref]

X. Niu, Y. Zhong, R. Chen, F. Wang, Y. Liu, and D. Luo, “A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles,” Sens. Actuators, B 255, 1577–1581 (2018).
[Crossref]

2016 (4)

X. Wang, D. S. Miller, E. Bukusoglu, J. J. De Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
[Crossref]

W. Yun, D. Cai, J. Jiang, P. Zhao, Y. Huang, and G. Sang, “Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb2+ using molecular beacon and DNAzyme based amplification strategy,” Biosens. Bioelectron. 80, 187–193 (2016).
[Crossref]

S. Bolisetty and R. Mezzenga, “Amyloid–carbon hybrid membranes for universal water purification,” Nat. Nanotechnol. 11(4), 365–371 (2016).
[Crossref]

K. Goossens, K. Lava, C. W. Bielawski, and K. Binnemans, “Ionic liquid crystals: versatile materials,” Chem. Rev. 116(8), 4643–4807 (2016).
[Crossref]

2015 (4)

H. Iino, T. Usui, and J. i. Hanna, “Liquid crystals for organic thin-film transistors,” Nat. Commun. 6(1), 6828 (2015).
[Crossref]

D. Larcher and J. M. Tarascon, “Towards greener and more sustainable batteries for electrical energy storage,” Nat. Chem. 7(1), 19–29 (2015).
[Crossref]

C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref]

M. Wang, F. Wang, Y. Wang, W. Zhang, and X. Chen, “Polydiacetylene-based sensor for highly sensitive and selective Pb2+ detection,” Dyes Pigm. 120, 307–313 (2015).
[Crossref]

2014 (3)

B. Zhang, L. Lu, Q. Hu, F. Huang, and Z. Lin, “ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+,” Biosens. Bioelectron. 56, 243–249 (2014).
[Crossref]

G. R. Han, Y. J. Song, and C. H. Jang, “Label-free detection of viruses on a polymeric surface using liquid crystals,” Colloids Surf., B 116, 147–152 (2014).
[Crossref]

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref]

2013 (2)

R. Manda, V. Dasari, P. Sathyanarayana, M. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(14), 141910 (2013).
[Crossref]

J. Chen, X. Zhou, and L. Zeng, “Enzyme-free strip biosensor for amplified detection of Pb2+ based on a catalytic DNA circuit,” Chem. Commun. 49(10), 984–986 (2013).
[Crossref]

2012 (2)

G. Pelossof, R. Tel-Vered, and I. Willner, “Amplified surface plasmon resonance and electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and hemin/G-quadruplex as a label,” Anal. Chem. 84(8), 3703–3709 (2012).
[Crossref]

Y. Wang, S. Gao, X. Zang, J. Li, and J. Ma, “Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples,” Anal. Chim. Acta 716, 112–118 (2012).
[Crossref]

2011 (1)

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

2010 (3)

T. Li, E. Wang, and S. Dong, “Lead (II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection,” Anal. Chem. 82(4), 1515–1520 (2010).
[Crossref]

D. Mazumdar, J. Liu, G. Lu, J. Zhou, and Y. Lu, “Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle–DNAzyme conjugates,” Chem. Commun. 46(9), 1416–1418 (2010).
[Crossref]

T. Li, S. Dong, and E. Wang, “A lead (II)-driven DNA molecular device for turn-on fluorescence detection of lead (II) ion with high selectivity and sensitivity,” J. Am. Chem. Soc. 132(38), 13156–13157 (2010).
[Crossref]

2009 (3)

H. Y. Lee, D. R. Bae, J. C. Park, H. Song, W. S. Han, and J. H. Jung, “A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood,” Angew. Chem., Int. Ed. 48(7), 1239–1243 (2009).
[Crossref]

Y. Xiang, A. Tong, and Y. Lu, “Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range,” J. Am. Chem. Soc. 131(42), 15352–15357 (2009).
[Crossref]

S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses,” Adv. Funct. Mater. 19(14), 2260–2265 (2009).
[Crossref]

2008 (3)

A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
[Crossref]

S. Sridharamurthy, K. Cadwell, N. Abbott, and H. Jiang, “A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals,” Smart Mater. Struct. 17(1), 012001 (2008).
[Crossref]

H. Wei, B. Li, J. Li, S. Dong, and E. Wang, “DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes,” Nanotechnology 19(9), 095501 (2008).
[Crossref]

2006 (1)

K. D. Cadwell, M. E. Alf, and N. L. Abbott, “Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces,” J. Phys. Chem. B 110(51), 26081–26088 (2006).
[Crossref]

2003 (1)

A. K. Brown, J. Li, C. M. B. Pavot, and Y. Lu, “A lead-dependent DNAzyme with a two-step mechanism,” Biochemistry 42(23), 7152–7161 (2003).
[Crossref]

2001 (1)

R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
[Crossref]

Abbott, N.

S. Sridharamurthy, K. Cadwell, N. Abbott, and H. Jiang, “A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals,” Smart Mater. Struct. 17(1), 012001 (2008).
[Crossref]

Abbott, N. L.

X. Wang, D. S. Miller, E. Bukusoglu, J. J. De Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
[Crossref]

S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses,” Adv. Funct. Mater. 19(14), 2260–2265 (2009).
[Crossref]

K. D. Cadwell, M. E. Alf, and N. L. Abbott, “Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces,” J. Phys. Chem. B 110(51), 26081–26088 (2006).
[Crossref]

R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
[Crossref]

Alf, M. E.

K. D. Cadwell, M. E. Alf, and N. L. Abbott, “Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces,” J. Phys. Chem. B 110(51), 26081–26088 (2006).
[Crossref]

Alizadeh, Z.

M. Baghayeri, A. Amiri, B. Maleki, Z. Alizadeh, and O. Reiser, “A simple approach for simultaneous detection of cadmium (II) and lead (II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe,” Sens. Actuators, B 273, 1442–1450 (2018).
[Crossref]

Amiri, A.

M. Baghayeri, A. Amiri, B. Maleki, Z. Alizadeh, and O. Reiser, “A simple approach for simultaneous detection of cadmium (II) and lead (II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe,” Sens. Actuators, B 273, 1442–1450 (2018).
[Crossref]

Bae, D. R.

H. Y. Lee, D. R. Bae, J. C. Park, H. Song, W. S. Han, and J. H. Jung, “A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood,” Angew. Chem., Int. Ed. 48(7), 1239–1243 (2009).
[Crossref]

Baghayeri, M.

M. Baghayeri, A. Amiri, B. Maleki, Z. Alizadeh, and O. Reiser, “A simple approach for simultaneous detection of cadmium (II) and lead (II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe,” Sens. Actuators, B 273, 1442–1450 (2018).
[Crossref]

Bielawski, C. W.

K. Goossens, K. Lava, C. W. Bielawski, and K. Binnemans, “Ionic liquid crystals: versatile materials,” Chem. Rev. 116(8), 4643–4807 (2016).
[Crossref]

Binnemans, K.

K. Goossens, K. Lava, C. W. Bielawski, and K. Binnemans, “Ionic liquid crystals: versatile materials,” Chem. Rev. 116(8), 4643–4807 (2016).
[Crossref]

Bolisetty, S.

S. Bolisetty and R. Mezzenga, “Amyloid–carbon hybrid membranes for universal water purification,” Nat. Nanotechnol. 11(4), 365–371 (2016).
[Crossref]

Borah, J. S.

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref]

Brown, A. K.

A. K. Brown, J. Li, C. M. B. Pavot, and Y. Lu, “A lead-dependent DNAzyme with a two-step mechanism,” Biochemistry 42(23), 7152–7161 (2003).
[Crossref]

Bukusoglu, E.

X. Wang, D. S. Miller, E. Bukusoglu, J. J. De Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
[Crossref]

Cadwell, K.

S. Sridharamurthy, K. Cadwell, N. Abbott, and H. Jiang, “A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals,” Smart Mater. Struct. 17(1), 012001 (2008).
[Crossref]

Cadwell, K. D.

K. D. Cadwell, M. E. Alf, and N. L. Abbott, “Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces,” J. Phys. Chem. B 110(51), 26081–26088 (2006).
[Crossref]

Cai, D.

W. Yun, D. Cai, J. Jiang, P. Zhao, Y. Huang, and G. Sang, “Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb2+ using molecular beacon and DNAzyme based amplification strategy,” Biosens. Bioelectron. 80, 187–193 (2016).
[Crossref]

Cao, W.

Y. Wang, G. Zhao, Q. Zhang, H. Wang, Y. Zhang, W. Cao, N. Zhang, B. Du, and Q. Wei, “Electrochemical aptasensor based on gold modified graphene nanocomposite with different morphologies for ultrasensitive detection of Pb2+,” Sens. Actuators, B 288, 325–331 (2019).
[Crossref]

Caruso, F.

S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses,” Adv. Funct. Mater. 19(14), 2260–2265 (2009).
[Crossref]

Chang, H. H.

C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref]

Chen, C. H.

C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref]

Chen, J.

Z. Huang, J. Chen, Z. Luo, X. Wang, and Y. Duan, “Label-free and Enzyme-free Colorimetric Detection of Pb2+ Based on RNA-Cleavage and Annealing-Accelerated Hybridization Chain Reaction,” Anal. Chem. 91(7), 4806–4813 (2019).
[Crossref]

J. Chen, X. Zhou, and L. Zeng, “Enzyme-free strip biosensor for amplified detection of Pb2+ based on a catalytic DNA circuit,” Chem. Commun. 49(10), 984–986 (2013).
[Crossref]

Chen, R.

X. Niu, Y. Zhong, R. Chen, F. Wang, Y. Liu, and D. Luo, “A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles,” Sens. Actuators, B 255, 1577–1581 (2018).
[Crossref]

Chen, S.

Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, and C. Zhong, “A versatile MOF-based trap for heavy metal ion capture and dispersion,” Nat. Commun. 9(1), 187–196 (2018).
[Crossref]

Chen, X.

M. Wang, F. Wang, Y. Wang, W. Zhang, and X. Chen, “Polydiacetylene-based sensor for highly sensitive and selective Pb2+ detection,” Dyes Pigm. 120, 307–313 (2015).
[Crossref]

Dasari, V.

R. Manda, V. Dasari, P. Sathyanarayana, M. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(14), 141910 (2013).
[Crossref]

De Pablo, J. J.

X. Wang, D. S. Miller, E. Bukusoglu, J. J. De Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
[Crossref]

Dhara, S.

R. Manda, V. Dasari, P. Sathyanarayana, M. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(14), 141910 (2013).
[Crossref]

Dong, S.

T. Li, E. Wang, and S. Dong, “Lead (II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection,” Anal. Chem. 82(4), 1515–1520 (2010).
[Crossref]

T. Li, S. Dong, and E. Wang, “A lead (II)-driven DNA molecular device for turn-on fluorescence detection of lead (II) ion with high selectivity and sensitivity,” J. Am. Chem. Soc. 132(38), 13156–13157 (2010).
[Crossref]

H. Wei, B. Li, J. Li, S. Dong, and E. Wang, “DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes,” Nanotechnology 19(9), 095501 (2008).
[Crossref]

Du, B.

Y. Wang, G. Zhao, Q. Zhang, H. Wang, Y. Zhang, W. Cao, N. Zhang, B. Du, and Q. Wei, “Electrochemical aptasensor based on gold modified graphene nanocomposite with different morphologies for ultrasensitive detection of Pb2+,” Sens. Actuators, B 288, 325–331 (2019).
[Crossref]

Duan, Y.

Z. Huang, J. Chen, Z. Luo, X. Wang, and Y. Duan, “Label-free and Enzyme-free Colorimetric Detection of Pb2+ Based on RNA-Cleavage and Annealing-Accelerated Hybridization Chain Reaction,” Anal. Chem. 91(7), 4806–4813 (2019).
[Crossref]

Gao, S.

Y. Wang, S. Gao, X. Zang, J. Li, and J. Ma, “Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples,” Anal. Chim. Acta 716, 112–118 (2012).
[Crossref]

Goossens, K.

K. Goossens, K. Lava, C. W. Bielawski, and K. Binnemans, “Ionic liquid crystals: versatile materials,” Chem. Rev. 116(8), 4643–4807 (2016).
[Crossref]

Gupta, J. K.

S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses,” Adv. Funct. Mater. 19(14), 2260–2265 (2009).
[Crossref]

Gupta, K. C.

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref]

Han, G. R.

G. R. Han, Y. J. Song, and C. H. Jang, “Label-free detection of viruses on a polymeric surface using liquid crystals,” Colloids Surf., B 116, 147–152 (2014).
[Crossref]

Han, W. S.

H. Y. Lee, D. R. Bae, J. C. Park, H. Song, W. S. Han, and J. H. Jung, “A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood,” Angew. Chem., Int. Ed. 48(7), 1239–1243 (2009).
[Crossref]

Hanna, J. i.

H. Iino, T. Usui, and J. i. Hanna, “Liquid crystals for organic thin-film transistors,” Nat. Commun. 6(1), 6828 (2015).
[Crossref]

He, B.

C. Zheng, L. Hu, X. Hou, B. He, and G. Jiang, “Headspace solid-phase microextraction coupled to miniaturized microplasma optical emission spectrometry for detection of mercury and lead,” Anal. Chem. 90(6), 3683–3691 (2018).
[Crossref]

Hou, X.

C. Zheng, L. Hu, X. Hou, B. He, and G. Jiang, “Headspace solid-phase microextraction coupled to miniaturized microplasma optical emission spectrometry for detection of mercury and lead,” Anal. Chem. 90(6), 3683–3691 (2018).
[Crossref]

Hu, L.

C. Zheng, L. Hu, X. Hou, B. He, and G. Jiang, “Headspace solid-phase microextraction coupled to miniaturized microplasma optical emission spectrometry for detection of mercury and lead,” Anal. Chem. 90(6), 3683–3691 (2018).
[Crossref]

Hu, Q.

B. Zhang, L. Lu, Q. Hu, F. Huang, and Z. Lin, “ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+,” Biosens. Bioelectron. 56, 243–249 (2014).
[Crossref]

Huang, F.

B. Zhang, L. Lu, Q. Hu, F. Huang, and Z. Lin, “ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+,” Biosens. Bioelectron. 56, 243–249 (2014).
[Crossref]

Huang, H.

Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, and C. Zhong, “A versatile MOF-based trap for heavy metal ion capture and dispersion,” Nat. Commun. 9(1), 187–196 (2018).
[Crossref]

Huang, Y.

W. Yun, D. Cai, J. Jiang, P. Zhao, Y. Huang, and G. Sang, “Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb2+ using molecular beacon and DNAzyme based amplification strategy,” Biosens. Bioelectron. 80, 187–193 (2016).
[Crossref]

Huang, Z.

Z. Huang, J. Chen, Z. Luo, X. Wang, and Y. Duan, “Label-free and Enzyme-free Colorimetric Detection of Pb2+ Based on RNA-Cleavage and Annealing-Accelerated Hybridization Chain Reaction,” Anal. Chem. 91(7), 4806–4813 (2019).
[Crossref]

Iino, H.

H. Iino, T. Usui, and J. i. Hanna, “Liquid crystals for organic thin-film transistors,” Nat. Commun. 6(1), 6828 (2015).
[Crossref]

Jang, C. H.

G. R. Han, Y. J. Song, and C. H. Jang, “Label-free detection of viruses on a polymeric surface using liquid crystals,” Colloids Surf., B 116, 147–152 (2014).
[Crossref]

Jiang, G.

C. Zheng, L. Hu, X. Hou, B. He, and G. Jiang, “Headspace solid-phase microextraction coupled to miniaturized microplasma optical emission spectrometry for detection of mercury and lead,” Anal. Chem. 90(6), 3683–3691 (2018).
[Crossref]

Jiang, H.

S. Sridharamurthy, K. Cadwell, N. Abbott, and H. Jiang, “A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals,” Smart Mater. Struct. 17(1), 012001 (2008).
[Crossref]

Jiang, J.

W. Yun, D. Cai, J. Jiang, P. Zhao, Y. Huang, and G. Sang, “Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb2+ using molecular beacon and DNAzyme based amplification strategy,” Biosens. Bioelectron. 80, 187–193 (2016).
[Crossref]

Jung, J. H.

H. Y. Lee, D. R. Bae, J. C. Park, H. Song, W. S. Han, and J. H. Jung, “A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood,” Angew. Chem., Int. Ed. 48(7), 1239–1243 (2009).
[Crossref]

Kang, C.

Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, and C. Zhong, “A versatile MOF-based trap for heavy metal ion capture and dispersion,” Nat. Commun. 9(1), 187–196 (2018).
[Crossref]

Kang, I. K.

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref]

Khuhawar, M. Y.

R. A. Zounr, M. Tuzen, and M. Y. Khuhawar, “A simple and green deep eutectic solvent based air assisted liquid phase microextraction for separation, preconcentration and determination of lead in water and food samples by graphite furnace atomic absorption spectrometry,” J. Mol. Liq. 259, 220–226 (2018).
[Crossref]

Kim, Y. K.

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref]

Kong, R. M.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Larcher, D.

D. Larcher and J. M. Tarascon, “Towards greener and more sustainable batteries for electrical energy storage,” Nat. Chem. 7(1), 19–29 (2015).
[Crossref]

Lava, K.

K. Goossens, K. Lava, C. W. Bielawski, and K. Binnemans, “Ionic liquid crystals: versatile materials,” Chem. Rev. 116(8), 4643–4807 (2016).
[Crossref]

Lee, A. S. Y.

C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref]

Lee, H. Y.

H. Y. Lee, D. R. Bae, J. C. Park, H. Song, W. S. Han, and J. H. Jung, “A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood,” Angew. Chem., Int. Ed. 48(7), 1239–1243 (2009).
[Crossref]

Lee, J. H.

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref]

Li, B.

H. Wei, B. Li, J. Li, S. Dong, and E. Wang, “DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes,” Nanotechnology 19(9), 095501 (2008).
[Crossref]

Li, J.

Y. Wang, S. Gao, X. Zang, J. Li, and J. Ma, “Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples,” Anal. Chim. Acta 716, 112–118 (2012).
[Crossref]

H. Wei, B. Li, J. Li, S. Dong, and E. Wang, “DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes,” Nanotechnology 19(9), 095501 (2008).
[Crossref]

A. K. Brown, J. Li, C. M. B. Pavot, and Y. Lu, “A lead-dependent DNAzyme with a two-step mechanism,” Biochemistry 42(23), 7152–7161 (2003).
[Crossref]

Li, T.

T. Li, E. Wang, and S. Dong, “Lead (II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection,” Anal. Chem. 82(4), 1515–1520 (2010).
[Crossref]

T. Li, S. Dong, and E. Wang, “A lead (II)-driven DNA molecular device for turn-on fluorescence detection of lead (II) ion with high selectivity and sensitivity,” J. Am. Chem. Soc. 132(38), 13156–13157 (2010).
[Crossref]

Lin, Y. C.

C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref]

Lin, Z.

B. Zhang, L. Lu, Q. Hu, F. Huang, and Z. Lin, “ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+,” Biosens. Bioelectron. 56, 243–249 (2014).
[Crossref]

Liu, D.

Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, and C. Zhong, “A versatile MOF-based trap for heavy metal ion capture and dispersion,” Nat. Commun. 9(1), 187–196 (2018).
[Crossref]

Liu, J.

D. Mazumdar, J. Liu, G. Lu, J. Zhou, and Y. Lu, “Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle–DNAzyme conjugates,” Chem. Commun. 46(9), 1416–1418 (2010).
[Crossref]

Liu, W. N.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Liu, Y.

X. Niu, Y. Zhong, R. Chen, F. Wang, Y. Liu, and D. Luo, “A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles,” Sens. Actuators, B 255, 1577–1581 (2018).
[Crossref]

Lu, G.

D. Mazumdar, J. Liu, G. Lu, J. Zhou, and Y. Lu, “Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle–DNAzyme conjugates,” Chem. Commun. 46(9), 1416–1418 (2010).
[Crossref]

Lu, L.

B. Zhang, L. Lu, Q. Hu, F. Huang, and Z. Lin, “ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+,” Biosens. Bioelectron. 56, 243–249 (2014).
[Crossref]

Lu, Y.

D. Mazumdar, J. Liu, G. Lu, J. Zhou, and Y. Lu, “Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle–DNAzyme conjugates,” Chem. Commun. 46(9), 1416–1418 (2010).
[Crossref]

Y. Xiang, A. Tong, and Y. Lu, “Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range,” J. Am. Chem. Soc. 131(42), 15352–15357 (2009).
[Crossref]

A. K. Brown, J. Li, C. M. B. Pavot, and Y. Lu, “A lead-dependent DNAzyme with a two-step mechanism,” Biochemistry 42(23), 7152–7161 (2003).
[Crossref]

Luo, D.

X. Niu, Y. Zhong, R. Chen, F. Wang, Y. Liu, and D. Luo, “A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles,” Sens. Actuators, B 255, 1577–1581 (2018).
[Crossref]

Luo, Z.

Z. Huang, J. Chen, Z. Luo, X. Wang, and Y. Duan, “Label-free and Enzyme-free Colorimetric Detection of Pb2+ Based on RNA-Cleavage and Annealing-Accelerated Hybridization Chain Reaction,” Anal. Chem. 91(7), 4806–4813 (2019).
[Crossref]

Ma, J.

Y. Wang, S. Gao, X. Zang, J. Li, and J. Ma, “Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples,” Anal. Chim. Acta 716, 112–118 (2012).
[Crossref]

Maleki, B.

M. Baghayeri, A. Amiri, B. Maleki, Z. Alizadeh, and O. Reiser, “A simple approach for simultaneous detection of cadmium (II) and lead (II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe,” Sens. Actuators, B 273, 1442–1450 (2018).
[Crossref]

Manda, R.

R. Manda, V. Dasari, P. Sathyanarayana, M. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(14), 141910 (2013).
[Crossref]

Mathew, B.

M. Sebastian and B. Mathew, “Ion imprinting approach for the fabrication of an electrochemical sensor and sorbent for lead ions in real samples using modified multiwalled carbon nanotubes,” J. Mater. Sci. 53(5), 3557–3572 (2018).
[Crossref]

Mazumdar, D.

D. Mazumdar, J. Liu, G. Lu, J. Zhou, and Y. Lu, “Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle–DNAzyme conjugates,” Chem. Commun. 46(9), 1416–1418 (2010).
[Crossref]

Meng, H. M.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Mezzenga, R.

S. Bolisetty and R. Mezzenga, “Amyloid–carbon hybrid membranes for universal water purification,” Nat. Nanotechnol. 11(4), 365–371 (2016).
[Crossref]

Miller, D. S.

X. Wang, D. S. Miller, E. Bukusoglu, J. J. De Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
[Crossref]

Mukherjee, P. K.

P. K. Mukherjee, “Influence of carbon nanotubes in antiferroelectric liquid crystals,” Soft Mater. 17(4), 321–327 (2019).
[Crossref]

Niu, X.

X. Niu, Y. Zhong, R. Chen, F. Wang, Y. Liu, and D. Luo, “A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles,” Sens. Actuators, B 255, 1577–1581 (2018).
[Crossref]

Paik, P.

R. Manda, V. Dasari, P. Sathyanarayana, M. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(14), 141910 (2013).
[Crossref]

Pal, S. K.

I. Pani, D. Sharma, and S. K. Pal, “Liquid Crystals as Sensitive Reporters of Lipid-Protein Interactions,” Gen. Chem. 4(2), 20180012 (2018).
[Crossref]

Pani, I.

I. Pani, D. Sharma, and S. K. Pal, “Liquid Crystals as Sensitive Reporters of Lipid-Protein Interactions,” Gen. Chem. 4(2), 20180012 (2018).
[Crossref]

Park, J. C.

H. Y. Lee, D. R. Bae, J. C. Park, H. Song, W. S. Han, and J. H. Jung, “A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood,” Angew. Chem., Int. Ed. 48(7), 1239–1243 (2009).
[Crossref]

Park, S. Y.

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref]

Pavot, C. M. B.

A. K. Brown, J. Li, C. M. B. Pavot, and Y. Lu, “A lead-dependent DNAzyme with a two-step mechanism,” Biochemistry 42(23), 7152–7161 (2003).
[Crossref]

Pelossof, G.

G. Pelossof, R. Tel-Vered, and I. Willner, “Amplified surface plasmon resonance and electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and hemin/G-quadruplex as a label,” Anal. Chem. 84(8), 3703–3709 (2012).
[Crossref]

Peng, Y.

Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, and C. Zhong, “A versatile MOF-based trap for heavy metal ion capture and dispersion,” Nat. Commun. 9(1), 187–196 (2018).
[Crossref]

Price, A. D.

A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
[Crossref]

Rasna, M.

R. Manda, V. Dasari, P. Sathyanarayana, M. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(14), 141910 (2013).
[Crossref]

Reiser, O.

M. Baghayeri, A. Amiri, B. Maleki, Z. Alizadeh, and O. Reiser, “A simple approach for simultaneous detection of cadmium (II) and lead (II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe,” Sens. Actuators, B 273, 1442–1450 (2018).
[Crossref]

Sang, G.

W. Yun, D. Cai, J. Jiang, P. Zhao, Y. Huang, and G. Sang, “Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb2+ using molecular beacon and DNAzyme based amplification strategy,” Biosens. Bioelectron. 80, 187–193 (2016).
[Crossref]

Sathyanarayana, P.

R. Manda, V. Dasari, P. Sathyanarayana, M. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(14), 141910 (2013).
[Crossref]

Schwartz, D. K.

A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
[Crossref]

Sebastian, M.

M. Sebastian and B. Mathew, “Ion imprinting approach for the fabrication of an electrochemical sensor and sorbent for lead ions in real samples using modified multiwalled carbon nanotubes,” J. Mater. Sci. 53(5), 3557–3572 (2018).
[Crossref]

Shah, R. R.

R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
[Crossref]

Sharma, D.

I. Pani, D. Sharma, and S. K. Pal, “Liquid Crystals as Sensitive Reporters of Lipid-Protein Interactions,” Gen. Chem. 4(2), 20180012 (2018).
[Crossref]

Shen, G. L.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Sivakumar, S.

S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses,” Adv. Funct. Mater. 19(14), 2260–2265 (2009).
[Crossref]

Song, H.

H. Y. Lee, D. R. Bae, J. C. Park, H. Song, W. S. Han, and J. H. Jung, “A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood,” Angew. Chem., Int. Ed. 48(7), 1239–1243 (2009).
[Crossref]

Song, L.

Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, and C. Zhong, “A versatile MOF-based trap for heavy metal ion capture and dispersion,” Nat. Commun. 9(1), 187–196 (2018).
[Crossref]

Song, Y. J.

G. R. Han, Y. J. Song, and C. H. Jang, “Label-free detection of viruses on a polymeric surface using liquid crystals,” Colloids Surf., B 116, 147–152 (2014).
[Crossref]

Sridharamurthy, S.

S. Sridharamurthy, K. Cadwell, N. Abbott, and H. Jiang, “A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals,” Smart Mater. Struct. 17(1), 012001 (2008).
[Crossref]

Tan, W.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Tarascon, J. M.

D. Larcher and J. M. Tarascon, “Towards greener and more sustainable batteries for electrical energy storage,” Nat. Chem. 7(1), 19–29 (2015).
[Crossref]

Tel-Vered, R.

G. Pelossof, R. Tel-Vered, and I. Willner, “Amplified surface plasmon resonance and electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and hemin/G-quadruplex as a label,” Anal. Chem. 84(8), 3703–3709 (2012).
[Crossref]

Tong, A.

Y. Xiang, A. Tong, and Y. Lu, “Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range,” J. Am. Chem. Soc. 131(42), 15352–15357 (2009).
[Crossref]

Tuzen, M.

R. A. Zounr, M. Tuzen, and M. Y. Khuhawar, “A simple and green deep eutectic solvent based air assisted liquid phase microextraction for separation, preconcentration and determination of lead in water and food samples by graphite furnace atomic absorption spectrometry,” J. Mol. Liq. 259, 220–226 (2018).
[Crossref]

Usui, T.

H. Iino, T. Usui, and J. i. Hanna, “Liquid crystals for organic thin-film transistors,” Nat. Commun. 6(1), 6828 (2015).
[Crossref]

Wang, E.

T. Li, S. Dong, and E. Wang, “A lead (II)-driven DNA molecular device for turn-on fluorescence detection of lead (II) ion with high selectivity and sensitivity,” J. Am. Chem. Soc. 132(38), 13156–13157 (2010).
[Crossref]

T. Li, E. Wang, and S. Dong, “Lead (II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection,” Anal. Chem. 82(4), 1515–1520 (2010).
[Crossref]

H. Wei, B. Li, J. Li, S. Dong, and E. Wang, “DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes,” Nanotechnology 19(9), 095501 (2008).
[Crossref]

Wang, F.

X. Niu, Y. Zhong, R. Chen, F. Wang, Y. Liu, and D. Luo, “A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles,” Sens. Actuators, B 255, 1577–1581 (2018).
[Crossref]

M. Wang, F. Wang, Y. Wang, W. Zhang, and X. Chen, “Polydiacetylene-based sensor for highly sensitive and selective Pb2+ detection,” Dyes Pigm. 120, 307–313 (2015).
[Crossref]

Wang, H.

Y. Wang, G. Zhao, Q. Zhang, H. Wang, Y. Zhang, W. Cao, N. Zhang, B. Du, and Q. Wei, “Electrochemical aptasensor based on gold modified graphene nanocomposite with different morphologies for ultrasensitive detection of Pb2+,” Sens. Actuators, B 288, 325–331 (2019).
[Crossref]

Wang, M.

M. Wang, F. Wang, Y. Wang, W. Zhang, and X. Chen, “Polydiacetylene-based sensor for highly sensitive and selective Pb2+ detection,” Dyes Pigm. 120, 307–313 (2015).
[Crossref]

Wang, X.

Z. Huang, J. Chen, Z. Luo, X. Wang, and Y. Duan, “Label-free and Enzyme-free Colorimetric Detection of Pb2+ Based on RNA-Cleavage and Annealing-Accelerated Hybridization Chain Reaction,” Anal. Chem. 91(7), 4806–4813 (2019).
[Crossref]

X. Wang, D. S. Miller, E. Bukusoglu, J. J. De Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
[Crossref]

Wang, Y.

Y. Wang, G. Zhao, Q. Zhang, H. Wang, Y. Zhang, W. Cao, N. Zhang, B. Du, and Q. Wei, “Electrochemical aptasensor based on gold modified graphene nanocomposite with different morphologies for ultrasensitive detection of Pb2+,” Sens. Actuators, B 288, 325–331 (2019).
[Crossref]

M. Wang, F. Wang, Y. Wang, W. Zhang, and X. Chen, “Polydiacetylene-based sensor for highly sensitive and selective Pb2+ detection,” Dyes Pigm. 120, 307–313 (2015).
[Crossref]

Y. Wang, S. Gao, X. Zang, J. Li, and J. Ma, “Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples,” Anal. Chim. Acta 716, 112–118 (2012).
[Crossref]

Wark, K. L.

S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses,” Adv. Funct. Mater. 19(14), 2260–2265 (2009).
[Crossref]

Wei, H.

H. Wei, B. Li, J. Li, S. Dong, and E. Wang, “DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes,” Nanotechnology 19(9), 095501 (2008).
[Crossref]

Wei, Q.

Y. Wang, G. Zhao, Q. Zhang, H. Wang, Y. Zhang, W. Cao, N. Zhang, B. Du, and Q. Wei, “Electrochemical aptasensor based on gold modified graphene nanocomposite with different morphologies for ultrasensitive detection of Pb2+,” Sens. Actuators, B 288, 325–331 (2019).
[Crossref]

Willner, I.

G. Pelossof, R. Tel-Vered, and I. Willner, “Amplified surface plasmon resonance and electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and hemin/G-quadruplex as a label,” Anal. Chem. 84(8), 3703–3709 (2012).
[Crossref]

Xiang, Y.

Y. Xiang, A. Tong, and Y. Lu, “Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range,” J. Am. Chem. Soc. 131(42), 15352–15357 (2009).
[Crossref]

Yoon, S. H.

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref]

Yu, R. Q.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Yun, W.

W. Yun, D. Cai, J. Jiang, P. Zhao, Y. Huang, and G. Sang, “Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb2+ using molecular beacon and DNAzyme based amplification strategy,” Biosens. Bioelectron. 80, 187–193 (2016).
[Crossref]

Zang, X.

Y. Wang, S. Gao, X. Zang, J. Li, and J. Ma, “Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples,” Anal. Chim. Acta 716, 112–118 (2012).
[Crossref]

Zeng, L.

J. Chen, X. Zhou, and L. Zeng, “Enzyme-free strip biosensor for amplified detection of Pb2+ based on a catalytic DNA circuit,” Chem. Commun. 49(10), 984–986 (2013).
[Crossref]

Zhang, B.

B. Zhang, L. Lu, Q. Hu, F. Huang, and Z. Lin, “ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+,” Biosens. Bioelectron. 56, 243–249 (2014).
[Crossref]

Zhang, N.

Y. Wang, G. Zhao, Q. Zhang, H. Wang, Y. Zhang, W. Cao, N. Zhang, B. Du, and Q. Wei, “Electrochemical aptasensor based on gold modified graphene nanocomposite with different morphologies for ultrasensitive detection of Pb2+,” Sens. Actuators, B 288, 325–331 (2019).
[Crossref]

Zhang, Q.

Y. Wang, G. Zhao, Q. Zhang, H. Wang, Y. Zhang, W. Cao, N. Zhang, B. Du, and Q. Wei, “Electrochemical aptasensor based on gold modified graphene nanocomposite with different morphologies for ultrasensitive detection of Pb2+,” Sens. Actuators, B 288, 325–331 (2019).
[Crossref]

Zhang, W.

M. Wang, F. Wang, Y. Wang, W. Zhang, and X. Chen, “Polydiacetylene-based sensor for highly sensitive and selective Pb2+ detection,” Dyes Pigm. 120, 307–313 (2015).
[Crossref]

Zhang, X. B.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Zhang, Y.

Y. Wang, G. Zhao, Q. Zhang, H. Wang, Y. Zhang, W. Cao, N. Zhang, B. Du, and Q. Wei, “Electrochemical aptasensor based on gold modified graphene nanocomposite with different morphologies for ultrasensitive detection of Pb2+,” Sens. Actuators, B 288, 325–331 (2019).
[Crossref]

Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, and C. Zhong, “A versatile MOF-based trap for heavy metal ion capture and dispersion,” Nat. Commun. 9(1), 187–196 (2018).
[Crossref]

Zhao, G.

Y. Wang, G. Zhao, Q. Zhang, H. Wang, Y. Zhang, W. Cao, N. Zhang, B. Du, and Q. Wei, “Electrochemical aptasensor based on gold modified graphene nanocomposite with different morphologies for ultrasensitive detection of Pb2+,” Sens. Actuators, B 288, 325–331 (2019).
[Crossref]

Zhao, P.

W. Yun, D. Cai, J. Jiang, P. Zhao, Y. Huang, and G. Sang, “Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb2+ using molecular beacon and DNAzyme based amplification strategy,” Biosens. Bioelectron. 80, 187–193 (2016).
[Crossref]

Zhao, X. H.

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

Zheng, C.

C. Zheng, L. Hu, X. Hou, B. He, and G. Jiang, “Headspace solid-phase microextraction coupled to miniaturized microplasma optical emission spectrometry for detection of mercury and lead,” Anal. Chem. 90(6), 3683–3691 (2018).
[Crossref]

Zhong, C.

Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, and C. Zhong, “A versatile MOF-based trap for heavy metal ion capture and dispersion,” Nat. Commun. 9(1), 187–196 (2018).
[Crossref]

Zhong, Y.

X. Niu, Y. Zhong, R. Chen, F. Wang, Y. Liu, and D. Luo, “A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles,” Sens. Actuators, B 255, 1577–1581 (2018).
[Crossref]

Zhou, J.

D. Mazumdar, J. Liu, G. Lu, J. Zhou, and Y. Lu, “Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle–DNAzyme conjugates,” Chem. Commun. 46(9), 1416–1418 (2010).
[Crossref]

Zhou, X.

J. Chen, X. Zhou, and L. Zeng, “Enzyme-free strip biosensor for amplified detection of Pb2+ based on a catalytic DNA circuit,” Chem. Commun. 49(10), 984–986 (2013).
[Crossref]

Zounr, R. A.

R. A. Zounr, M. Tuzen, and M. Y. Khuhawar, “A simple and green deep eutectic solvent based air assisted liquid phase microextraction for separation, preconcentration and determination of lead in water and food samples by graphite furnace atomic absorption spectrometry,” J. Mol. Liq. 259, 220–226 (2018).
[Crossref]

Adv. Funct. Mater. (1)

S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses,” Adv. Funct. Mater. 19(14), 2260–2265 (2009).
[Crossref]

Anal. Chem. (6)

C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref]

X. H. Zhao, R. M. Kong, X. B. Zhang, H. M. Meng, W. N. Liu, W. Tan, G. L. Shen, and R. Q. Yu, “Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 5062–5066 (2011).
[Crossref]

T. Li, E. Wang, and S. Dong, “Lead (II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection,” Anal. Chem. 82(4), 1515–1520 (2010).
[Crossref]

C. Zheng, L. Hu, X. Hou, B. He, and G. Jiang, “Headspace solid-phase microextraction coupled to miniaturized microplasma optical emission spectrometry for detection of mercury and lead,” Anal. Chem. 90(6), 3683–3691 (2018).
[Crossref]

G. Pelossof, R. Tel-Vered, and I. Willner, “Amplified surface plasmon resonance and electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and hemin/G-quadruplex as a label,” Anal. Chem. 84(8), 3703–3709 (2012).
[Crossref]

Z. Huang, J. Chen, Z. Luo, X. Wang, and Y. Duan, “Label-free and Enzyme-free Colorimetric Detection of Pb2+ Based on RNA-Cleavage and Annealing-Accelerated Hybridization Chain Reaction,” Anal. Chem. 91(7), 4806–4813 (2019).
[Crossref]

Anal. Chim. Acta (1)

Y. Wang, S. Gao, X. Zang, J. Li, and J. Ma, “Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples,” Anal. Chim. Acta 716, 112–118 (2012).
[Crossref]

Angew. Chem., Int. Ed. (1)

H. Y. Lee, D. R. Bae, J. C. Park, H. Song, W. S. Han, and J. H. Jung, “A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood,” Angew. Chem., Int. Ed. 48(7), 1239–1243 (2009).
[Crossref]

Appl. Phys. Lett. (1)

R. Manda, V. Dasari, P. Sathyanarayana, M. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(14), 141910 (2013).
[Crossref]

Biochemistry (1)

A. K. Brown, J. Li, C. M. B. Pavot, and Y. Lu, “A lead-dependent DNAzyme with a two-step mechanism,” Biochemistry 42(23), 7152–7161 (2003).
[Crossref]

Biosens. Bioelectron. (2)

B. Zhang, L. Lu, Q. Hu, F. Huang, and Z. Lin, “ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+,” Biosens. Bioelectron. 56, 243–249 (2014).
[Crossref]

W. Yun, D. Cai, J. Jiang, P. Zhao, Y. Huang, and G. Sang, “Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb2+ using molecular beacon and DNAzyme based amplification strategy,” Biosens. Bioelectron. 80, 187–193 (2016).
[Crossref]

Chem. Commun. (2)

J. Chen, X. Zhou, and L. Zeng, “Enzyme-free strip biosensor for amplified detection of Pb2+ based on a catalytic DNA circuit,” Chem. Commun. 49(10), 984–986 (2013).
[Crossref]

D. Mazumdar, J. Liu, G. Lu, J. Zhou, and Y. Lu, “Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle–DNAzyme conjugates,” Chem. Commun. 46(9), 1416–1418 (2010).
[Crossref]

Chem. Rev. (1)

K. Goossens, K. Lava, C. W. Bielawski, and K. Binnemans, “Ionic liquid crystals: versatile materials,” Chem. Rev. 116(8), 4643–4807 (2016).
[Crossref]

Colloids Surf., B (1)

G. R. Han, Y. J. Song, and C. H. Jang, “Label-free detection of viruses on a polymeric surface using liquid crystals,” Colloids Surf., B 116, 147–152 (2014).
[Crossref]

Dyes Pigm. (1)

M. Wang, F. Wang, Y. Wang, W. Zhang, and X. Chen, “Polydiacetylene-based sensor for highly sensitive and selective Pb2+ detection,” Dyes Pigm. 120, 307–313 (2015).
[Crossref]

Gen. Chem. (1)

I. Pani, D. Sharma, and S. K. Pal, “Liquid Crystals as Sensitive Reporters of Lipid-Protein Interactions,” Gen. Chem. 4(2), 20180012 (2018).
[Crossref]

J. Am. Chem. Soc. (3)

A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
[Crossref]

Y. Xiang, A. Tong, and Y. Lu, “Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range,” J. Am. Chem. Soc. 131(42), 15352–15357 (2009).
[Crossref]

T. Li, S. Dong, and E. Wang, “A lead (II)-driven DNA molecular device for turn-on fluorescence detection of lead (II) ion with high selectivity and sensitivity,” J. Am. Chem. Soc. 132(38), 13156–13157 (2010).
[Crossref]

J. Mater. Sci. (1)

M. Sebastian and B. Mathew, “Ion imprinting approach for the fabrication of an electrochemical sensor and sorbent for lead ions in real samples using modified multiwalled carbon nanotubes,” J. Mater. Sci. 53(5), 3557–3572 (2018).
[Crossref]

J. Mol. Liq. (1)

R. A. Zounr, M. Tuzen, and M. Y. Khuhawar, “A simple and green deep eutectic solvent based air assisted liquid phase microextraction for separation, preconcentration and determination of lead in water and food samples by graphite furnace atomic absorption spectrometry,” J. Mol. Liq. 259, 220–226 (2018).
[Crossref]

J. Phys. Chem. B (1)

K. D. Cadwell, M. E. Alf, and N. L. Abbott, “Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces,” J. Phys. Chem. B 110(51), 26081–26088 (2006).
[Crossref]

Langmuir (1)

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref]

Nanotechnology (1)

H. Wei, B. Li, J. Li, S. Dong, and E. Wang, “DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes,” Nanotechnology 19(9), 095501 (2008).
[Crossref]

Nat. Chem. (1)

D. Larcher and J. M. Tarascon, “Towards greener and more sustainable batteries for electrical energy storage,” Nat. Chem. 7(1), 19–29 (2015).
[Crossref]

Nat. Commun. (2)

Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, and C. Zhong, “A versatile MOF-based trap for heavy metal ion capture and dispersion,” Nat. Commun. 9(1), 187–196 (2018).
[Crossref]

H. Iino, T. Usui, and J. i. Hanna, “Liquid crystals for organic thin-film transistors,” Nat. Commun. 6(1), 6828 (2015).
[Crossref]

Nat. Mater. (1)

X. Wang, D. S. Miller, E. Bukusoglu, J. J. De Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
[Crossref]

Nat. Nanotechnol. (1)

S. Bolisetty and R. Mezzenga, “Amyloid–carbon hybrid membranes for universal water purification,” Nat. Nanotechnol. 11(4), 365–371 (2016).
[Crossref]

Science (1)

R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
[Crossref]

Sens. Actuators, B (3)

X. Niu, Y. Zhong, R. Chen, F. Wang, Y. Liu, and D. Luo, “A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles,” Sens. Actuators, B 255, 1577–1581 (2018).
[Crossref]

M. Baghayeri, A. Amiri, B. Maleki, Z. Alizadeh, and O. Reiser, “A simple approach for simultaneous detection of cadmium (II) and lead (II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe,” Sens. Actuators, B 273, 1442–1450 (2018).
[Crossref]

Y. Wang, G. Zhao, Q. Zhang, H. Wang, Y. Zhang, W. Cao, N. Zhang, B. Du, and Q. Wei, “Electrochemical aptasensor based on gold modified graphene nanocomposite with different morphologies for ultrasensitive detection of Pb2+,” Sens. Actuators, B 288, 325–331 (2019).
[Crossref]

Smart Mater. Struct. (1)

S. Sridharamurthy, K. Cadwell, N. Abbott, and H. Jiang, “A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals,” Smart Mater. Struct. 17(1), 012001 (2008).
[Crossref]

Soft Mater. (1)

P. K. Mukherjee, “Influence of carbon nanotubes in antiferroelectric liquid crystals,” Soft Mater. 17(4), 321–327 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic illustration of Pb2+ detection based on liquid crystals. (b) Structure formula of complementary DNA strands. (c) Schematic of catalytically cleave of the complementary DNA molecules.
Fig. 2.
Fig. 2. Optical appearances of Pb2+ sensor sample under polarizing optical microscope with (a) 0 M, (b)100 µM, (c)250 µM, (d)500 µM, (e)750 µM, (f)1 mM, (g) 10 mM, and (h) 50 mM concentration of DTAB.
Fig. 3.
Fig. 3. POM image of sensor in case of (a) without DMOAP and (b) with DMOAP.
Fig. 4.
Fig. 4. The optical image under POM for Pb2+ sensor when the concentration of Pb2+ is (a) 0 nM, (b) 50 nM, (c) 150 nM, (d) 500 nM, (e) 1 µM, (f) 50 µM, (g) 250 µM, and (h) 500 µM, respectively. (i) The relationship between optical image brightness (G0-G)/G0 versus a series of Pb2+ concentration of from 50 nM to 500 µM.
Fig. 5.
Fig. 5. Selectivity of the sensor in presence of Ca2+, Mg2+, Al3+, Cd2+, K+, Mn2+, Cu2+, Zn2+, Fe3+, Hg2+, Ag+ (100 µM) and Pb2+ (1 µM).

Metrics