Abstract

The Distributed Face Cooling (DFC) chip was fabricated from four pieces of 1 mm-length Nd:YAG plate sandwiched in four pieces of sapphire heat spreaders through advanced surface activated bonding (SAB) at room temperature. A sub-nanosecond (665.7ps) pulsed DFC-chip tiny integrated laser was achieved with output energy of 21.5 mJ and peak power of 32.3 MW with saturable absorber Cr4+:YAG. By finite element analysis, we confirmed the advantages of heat dissipation from DFC-chip compared with conventional bulk-chip. The SAB-DFC-chip based ubiquitous high peak power tiny integrated laser was experimentally within reach for laser-armed robot.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser

Lihe Zheng, Arvydas Kausas, and Takunori Taira
Opt. Mater. Express 7(9) 3214-3221 (2017)

High peak power Nd:YAG/Cr:YAG ceramic microchip laser with unstable resonator

Hwan Hong Lim and Takunori Taira
Opt. Express 27(22) 31307-31315 (2019)

High beam quality and high peak power Yb:YAG/Cr:YAG microchip laser

Xiaoyang Guo, Shigeki Tokita, and Junji Kawanaka
Opt. Express 27(1) 45-54 (2019)

References

  • View by:
  • |
  • |
  • |

  1. https://www.jst.go.jp/impact/program/03.html
  2. S. W. Jolly, N. H. Matlis, F. Ahr, V. Leroux, T. Eichner, A.-L. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, and A. R. Maier, “Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation,” Nat. Commun. 10(1), 2591 (2019).
    [Crossref]
  3. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser,” Opt. Express 16(24), 19891 (2008).
    [Crossref]
  4. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-Switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  5. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
    [Crossref]
  6. K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
    [Crossref]
  7. R. Bhandari, T. Taira, A. Miyamoto, Y. F. urukawa, and T. Tago, “> 3 MW peak power at 266 nm using Nd:YAG/ Cr4+:YAG microchip laser and fluxless-BBO,” Opt. Mater. Express 2(7), 907 (2012).
    [Crossref]
  8. T. Taira, “Domain-controlled laser ceramics toward Giant Micro-photonics [Invited],” Opt. Mater. Express 1(5), 1040 (2011).
    [Crossref]
  9. V. Yahia and T. Taira, “High brightness energetic pulses delivered by compact microchip-MOPA system,” Opt. Express 26(7), 8609 (2018).
    [Crossref]
  10. T. Kawasaki, V. Yahia, and T. Taira, “100 Hz operation in 10 PW/sr·cm2 class Nd:YAG Micro-MOPA,” Opt. Express 27(14), 19555–19561 (2019).
    [Crossref]
  11. H. Furuse, Y. Koike, and R. Yasuhara, “Sapphire/Nd:YAG composite by pulsed electric current bonding for high-average-power lasers,” Opt. Lett. 43(13), 3065 (2018).
    [Crossref]
  12. T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1  kW, 200  mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381 (2017).
    [Crossref]
  13. R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
    [Crossref]
  14. M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, “High-power radially polarized Yb:YAG thin-disk laser with high efficiency,” Opt. Express 19(6), 5093 (2011).
    [Crossref]
  15. L. F. M. da Silva, A. Öchsner, and R. D. Adams, In: L. da Silva, A. Öchsner, and R. Adams, (eds.) Handbook of Adhesion Technology (Springer, 2018).
  16. C. Canalias, S. Mirov, T. Taira, and B. Boulanger, “Shaping and patterning crystals for optics,” Opt. Mater. Express 7(9), 3466 (2017).
    [Crossref]
  17. L. H. Zheng, A. Kausas, and T. Taira, “>MW peak power at 266 nm, low jitter kHz repetition rate from intense pumped microlaser,” Opt. Express 24(25), 28748 (2016).
    [Crossref]
  18. P. Mason, M. Divoký, K. Ertel, J. Pilař, T. Butcher, M. Hanuš, S. Banerjee, J. Phillips, J. Smith, M. De Vido, A. Lucianetti, C. Hernandez-Gomez, C. Edwards, T. Mocek, and J. Collier, “Kilowatt average power 100  J-level diode pumped solid state laser,” Optica 4(4), 438 (2017).
    [Crossref]
  19. H. Ichikawa, K. Yamaguchi, T. Katsumata, and I. Shoji, “High-power and highly efficient composite laser with an anti-reflection coated layer between a laser crystal and a diamond heat spreader fabricated by room-temperature bonding,” Opt. Express 25(19), 22797 (2017).
    [Crossref]
  20. J. B. Liang, S. Masuya, M. Kasu, and N. Shigekawa, “Realization of direct bonding of single crystal diamond and Si substrates,” Appl. Phys. Lett. 110(11), 111603 (2017).
    [Crossref]
  21. H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
    [Crossref]
  22. M. Sakata, T. Oyake, J. Maire, M. Nomura, E. Higurashi, and J. Shiomi, “Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation,” Appl. Phys. Lett. 106(8), 081603 (2015).
    [Crossref]
  23. L. H. Zheng, A. Kausas, and T. Taira, “Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser,” Opt. Mater. Express 7(9), 3214 (2017).
    [Crossref]
  24. https://www.jst.go.jp/impact/download/data/impact_newsletter_vol13.pdf
  25. T. Taira, “Concept for Measuring Laser Beam-Quality Parameters,” Reza Kenkyu 26(10), 723–729 (1998).
    [Crossref]
  26. T. Taira, T. Suzudo, and T. Kobayashi, “Design method of efficient, diode end-pumped solid-state lasers using M2 factor,” Reza Kenkyu 24(3), 360–366 (1996).
    [Crossref]
  27. T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-Pumped Tunable Yb:YAG Miniature Lasers at Room Temperature: Modeling and Experiment,” IEEE J. Selected Topics in Quantum Electronics. 3(1), 100–104 (1997).
    [Crossref]
  28. T. Taira, “High power, tunable microchip lasers,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper CA3_3.
  29. Y. Sato and T. Taira, “Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials,” Opt. Mater. Express 2(8), 1076–1087 (2012).
    [Crossref]
  30. V. Lupei, N. Pavel, and T. Taira, “Laser emission in highly doped Nd:YAG crystals under 4F5/2 and 4F3/2 pumping,” Opt. Lett. 26(21), 1678–1680 (2001).
    [Crossref]
  31. E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, “Properties of Sapphire,” in Sapphire Micro- and Opto-Electronic Materials, Structures, and Systems (Springer, 2009).
  32. Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
    [Crossref]
  33. D. G. Cahill and S.-M. Lee, “Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings,” J. Appl. Phys. 83, 5783 (1998).
    [Crossref]
  34. V. G. Lupei, A. Lupei, and N. Pavel, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590 (2001).
    [Crossref]

2019 (2)

S. W. Jolly, N. H. Matlis, F. Ahr, V. Leroux, T. Eichner, A.-L. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, and A. R. Maier, “Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation,” Nat. Commun. 10(1), 2591 (2019).
[Crossref]

T. Kawasaki, V. Yahia, and T. Taira, “100 Hz operation in 10 PW/sr·cm2 class Nd:YAG Micro-MOPA,” Opt. Express 27(14), 19555–19561 (2019).
[Crossref]

2018 (3)

H. Furuse, Y. Koike, and R. Yasuhara, “Sapphire/Nd:YAG composite by pulsed electric current bonding for high-average-power lasers,” Opt. Lett. 43(13), 3065 (2018).
[Crossref]

R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
[Crossref]

V. Yahia and T. Taira, “High brightness energetic pulses delivered by compact microchip-MOPA system,” Opt. Express 26(7), 8609 (2018).
[Crossref]

2017 (7)

L. H. Zheng, A. Kausas, and T. Taira, “Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser,” Opt. Mater. Express 7(9), 3214 (2017).
[Crossref]

C. Canalias, S. Mirov, T. Taira, and B. Boulanger, “Shaping and patterning crystals for optics,” Opt. Mater. Express 7(9), 3466 (2017).
[Crossref]

P. Mason, M. Divoký, K. Ertel, J. Pilař, T. Butcher, M. Hanuš, S. Banerjee, J. Phillips, J. Smith, M. De Vido, A. Lucianetti, C. Hernandez-Gomez, C. Edwards, T. Mocek, and J. Collier, “Kilowatt average power 100  J-level diode pumped solid state laser,” Optica 4(4), 438 (2017).
[Crossref]

H. Ichikawa, K. Yamaguchi, T. Katsumata, and I. Shoji, “High-power and highly efficient composite laser with an anti-reflection coated layer between a laser crystal and a diamond heat spreader fabricated by room-temperature bonding,” Opt. Express 25(19), 22797 (2017).
[Crossref]

J. B. Liang, S. Masuya, M. Kasu, and N. Shigekawa, “Realization of direct bonding of single crystal diamond and Si substrates,” Appl. Phys. Lett. 110(11), 111603 (2017).
[Crossref]

T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1  kW, 200  mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381 (2017).
[Crossref]

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

2016 (1)

2015 (2)

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

M. Sakata, T. Oyake, J. Maire, M. Nomura, E. Higurashi, and J. Shiomi, “Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation,” Appl. Phys. Lett. 106(8), 081603 (2015).
[Crossref]

2012 (2)

2011 (2)

2010 (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-Switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

2009 (1)

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
[Crossref]

2008 (1)

2001 (2)

V. Lupei, N. Pavel, and T. Taira, “Laser emission in highly doped Nd:YAG crystals under 4F5/2 and 4F3/2 pumping,” Opt. Lett. 26(21), 1678–1680 (2001).
[Crossref]

V. G. Lupei, A. Lupei, and N. Pavel, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590 (2001).
[Crossref]

1998 (2)

D. G. Cahill and S.-M. Lee, “Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings,” J. Appl. Phys. 83, 5783 (1998).
[Crossref]

T. Taira, “Concept for Measuring Laser Beam-Quality Parameters,” Reza Kenkyu 26(10), 723–729 (1998).
[Crossref]

1997 (1)

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-Pumped Tunable Yb:YAG Miniature Lasers at Room Temperature: Modeling and Experiment,” IEEE J. Selected Topics in Quantum Electronics. 3(1), 100–104 (1997).
[Crossref]

1996 (2)

T. Taira, T. Suzudo, and T. Kobayashi, “Design method of efficient, diode end-pumped solid-state lasers using M2 factor,” Reza Kenkyu 24(3), 360–366 (1996).
[Crossref]

H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
[Crossref]

Adams, R. D.

L. F. M. da Silva, A. Öchsner, and R. D. Adams, In: L. da Silva, A. Öchsner, and R. Adams, (eds.) Handbook of Adhesion Technology (Springer, 2018).

Ahmed, M. A.

Ahr, F.

S. W. Jolly, N. H. Matlis, F. Ahr, V. Leroux, T. Eichner, A.-L. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, and A. R. Maier, “Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation,” Nat. Commun. 10(1), 2591 (2019).
[Crossref]

Akiyama, J.

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
[Crossref]

Alismail, A.

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-Switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Antipenkov, R.

R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
[Crossref]

Bakule, P.

R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
[Crossref]

Banerjee, S.

Barros, H. G.

Batysta, F.

R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
[Crossref]

Bhandari, R.

Boge, R.

R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
[Crossref]

Boulanger, B.

Brons, J.

Butcher, T.

Byer, R. L.

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-Pumped Tunable Yb:YAG Miniature Lasers at Room Temperature: Modeling and Experiment,” IEEE J. Selected Topics in Quantum Electronics. 3(1), 100–104 (1997).
[Crossref]

Cahill, D. G.

D. G. Cahill and S.-M. Lee, “Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings,” J. Appl. Phys. 83, 5783 (1998).
[Crossref]

Calendron, A.-L.

S. W. Jolly, N. H. Matlis, F. Ahr, V. Leroux, T. Eichner, A.-L. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, and A. R. Maier, “Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation,” Nat. Commun. 10(1), 2591 (2019).
[Crossref]

Canalias, C.

Chung, T. R.

H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
[Crossref]

Collier, J.

da Silva, L. F. M.

L. F. M. da Silva, A. Öchsner, and R. D. Adams, In: L. da Silva, A. Öchsner, and R. Adams, (eds.) Handbook of Adhesion Technology (Springer, 2018).

De Vido, M.

Divoký, M.

Dobrovinskaya, E. R.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, “Properties of Sapphire,” in Sapphire Micro- and Opto-Electronic Materials, Structures, and Systems (Springer, 2009).

Edwards, C.

Eichner, T.

S. W. Jolly, N. H. Matlis, F. Ahr, V. Leroux, T. Eichner, A.-L. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, and A. R. Maier, “Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation,” Nat. Commun. 10(1), 2591 (2019).
[Crossref]

Ertel, K.

Fattahi, H.

Furuse, H.

Gorjan, M.

Graf, T.

Green, J. T.

R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
[Crossref]

Haefner, M.

Hanuš, M.

Hayashi, S.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

Hernandez-Gomez, C.

Higurashi, E.

M. Sakata, T. Oyake, J. Maire, M. Nomura, E. Higurashi, and J. Shiomi, “Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation,” Appl. Phys. Lett. 106(8), 081603 (2015).
[Crossref]

Horácek, J.

R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
[Crossref]

Hubka, Z.

R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
[Crossref]

Ichikawa, H.

Imayama, K.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-Switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Ishizuki, H.

S. W. Jolly, N. H. Matlis, F. Ahr, V. Leroux, T. Eichner, A.-L. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, and A. R. Maier, “Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation,” Nat. Commun. 10(1), 2591 (2019).
[Crossref]

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

Jolly, S. W.

S. W. Jolly, N. H. Matlis, F. Ahr, V. Leroux, T. Eichner, A.-L. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, and A. R. Maier, “Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation,” Nat. Commun. 10(1), 2591 (2019).
[Crossref]

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-Switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kärtner, F. X.

S. W. Jolly, N. H. Matlis, F. Ahr, V. Leroux, T. Eichner, A.-L. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, and A. R. Maier, “Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation,” Nat. Commun. 10(1), 2591 (2019).
[Crossref]

Kasu, M.

J. B. Liang, S. Masuya, M. Kasu, and N. Shigekawa, “Realization of direct bonding of single crystal diamond and Si substrates,” Appl. Phys. Lett. 110(11), 111603 (2017).
[Crossref]

Katsumata, T.

Kaumanns, M.

Kausas, A.

Kawasaki, T.

Kawase, K.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-Switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kikuchi, K.

H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
[Crossref]

Kobayashi, T.

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-Pumped Tunable Yb:YAG Miniature Lasers at Room Temperature: Modeling and Experiment,” IEEE J. Selected Topics in Quantum Electronics. 3(1), 100–104 (1997).
[Crossref]

T. Taira, T. Suzudo, and T. Kobayashi, “Design method of efficient, diode end-pumped solid-state lasers using M2 factor,” Reza Kenkyu 24(3), 360–366 (1996).
[Crossref]

Koike, Y.

Krausz, F.

Lee, S.-M.

D. G. Cahill and S.-M. Lee, “Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings,” J. Appl. Phys. 83, 5783 (1998).
[Crossref]

Leroux, V.

S. W. Jolly, N. H. Matlis, F. Ahr, V. Leroux, T. Eichner, A.-L. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, and A. R. Maier, “Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation,” Nat. Commun. 10(1), 2591 (2019).
[Crossref]

Liang, J. B.

J. B. Liang, S. Masuya, M. Kasu, and N. Shigekawa, “Realization of direct bonding of single crystal diamond and Si substrates,” Appl. Phys. Lett. 110(11), 111603 (2017).
[Crossref]

Lucianetti, A.

Lupei, A.

V. G. Lupei, A. Lupei, and N. Pavel, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590 (2001).
[Crossref]

Lupei, V.

Lupei, V. G.

V. G. Lupei, A. Lupei, and N. Pavel, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590 (2001).
[Crossref]

Lytvynov, L. A.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, “Properties of Sapphire,” in Sapphire Micro- and Opto-Electronic Materials, Structures, and Systems (Springer, 2009).

Maeda, R.

H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
[Crossref]

Maier, A. R.

S. W. Jolly, N. H. Matlis, F. Ahr, V. Leroux, T. Eichner, A.-L. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, and A. R. Maier, “Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation,” Nat. Commun. 10(1), 2591 (2019).
[Crossref]

Maire, J.

M. Sakata, T. Oyake, J. Maire, M. Nomura, E. Higurashi, and J. Shiomi, “Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation,” Appl. Phys. Lett. 106(8), 081603 (2015).
[Crossref]

Major, Z.

Mason, P.

Masuya, S.

J. B. Liang, S. Masuya, M. Kasu, and N. Shigekawa, “Realization of direct bonding of single crystal diamond and Si substrates,” Appl. Phys. Lett. 110(11), 111603 (2017).
[Crossref]

Matlis, N. H.

S. W. Jolly, N. H. Matlis, F. Ahr, V. Leroux, T. Eichner, A.-L. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, and A. R. Maier, “Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation,” Nat. Commun. 10(1), 2591 (2019).
[Crossref]

Mazurek, P.

R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
[Crossref]

Metzger, T.

Minamide, H.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

Mirov, S.

Miyamoto, A.

Mocek, T.

Murate, K.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

Nawata, K.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

Naylon, J. A.

R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
[Crossref]

Nomura, M.

M. Sakata, T. Oyake, J. Maire, M. Nomura, E. Higurashi, and J. Shiomi, “Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation,” Appl. Phys. Lett. 106(8), 081603 (2015).
[Crossref]

Novák, J.

R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
[Crossref]

Nubbemeyer, T.

Öchsner, A.

L. F. M. da Silva, A. Öchsner, and R. D. Adams, In: L. da Silva, A. Öchsner, and R. Adams, (eds.) Handbook of Adhesion Technology (Springer, 2018).

Osten, W.

Oyake, T.

M. Sakata, T. Oyake, J. Maire, M. Nomura, E. Higurashi, and J. Shiomi, “Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation,” Appl. Phys. Lett. 106(8), 081603 (2015).
[Crossref]

Pavel, N.

V. Lupei, N. Pavel, and T. Taira, “Laser emission in highly doped Nd:YAG crystals under 4F5/2 and 4F3/2 pumping,” Opt. Lett. 26(21), 1678–1680 (2001).
[Crossref]

V. G. Lupei, A. Lupei, and N. Pavel, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590 (2001).
[Crossref]

Phillips, J.

Pilar, J.

Pishchik, V.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, “Properties of Sapphire,” in Sapphire Micro- and Opto-Electronic Materials, Structures, and Systems (Springer, 2009).

Pronin, O.

Pruss, C.

Rus, B.

R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
[Crossref]

Saikawa, J.

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-Pumped Tunable Yb:YAG Miniature Lasers at Room Temperature: Modeling and Experiment,” IEEE J. Selected Topics in Quantum Electronics. 3(1), 100–104 (1997).
[Crossref]

Sakai, H.

Sakata, M.

M. Sakata, T. Oyake, J. Maire, M. Nomura, E. Higurashi, and J. Shiomi, “Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation,” Appl. Phys. Lett. 106(8), 081603 (2015).
[Crossref]

Sato, Y.

Y. Sato and T. Taira, “Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials,” Opt. Mater. Express 2(8), 1076–1087 (2012).
[Crossref]

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
[Crossref]

Shigekawa, N.

J. B. Liang, S. Masuya, M. Kasu, and N. Shigekawa, “Realization of direct bonding of single crystal diamond and Si substrates,” Appl. Phys. Lett. 110(11), 111603 (2017).
[Crossref]

Shikata, J.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

Shiomi, J.

M. Sakata, T. Oyake, J. Maire, M. Nomura, E. Higurashi, and J. Shiomi, “Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation,” Appl. Phys. Lett. 106(8), 081603 (2015).
[Crossref]

Shoji, I.

Smith, J.

Šobr, V.

R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
[Crossref]

Suga, T.

H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
[Crossref]

Sutter, D.

Suzudo, T.

T. Taira, T. Suzudo, and T. Kobayashi, “Design method of efficient, diode end-pumped solid-state lasers using M2 factor,” Reza Kenkyu 24(3), 360–366 (1996).
[Crossref]

Tago, T.

Taira, T.

T. Kawasaki, V. Yahia, and T. Taira, “100 Hz operation in 10 PW/sr·cm2 class Nd:YAG Micro-MOPA,” Opt. Express 27(14), 19555–19561 (2019).
[Crossref]

S. W. Jolly, N. H. Matlis, F. Ahr, V. Leroux, T. Eichner, A.-L. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, and A. R. Maier, “Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation,” Nat. Commun. 10(1), 2591 (2019).
[Crossref]

V. Yahia and T. Taira, “High brightness energetic pulses delivered by compact microchip-MOPA system,” Opt. Express 26(7), 8609 (2018).
[Crossref]

L. H. Zheng, A. Kausas, and T. Taira, “Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser,” Opt. Mater. Express 7(9), 3214 (2017).
[Crossref]

C. Canalias, S. Mirov, T. Taira, and B. Boulanger, “Shaping and patterning crystals for optics,” Opt. Mater. Express 7(9), 3466 (2017).
[Crossref]

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

L. H. Zheng, A. Kausas, and T. Taira, “>MW peak power at 266 nm, low jitter kHz repetition rate from intense pumped microlaser,” Opt. Express 24(25), 28748 (2016).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

Y. Sato and T. Taira, “Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials,” Opt. Mater. Express 2(8), 1076–1087 (2012).
[Crossref]

R. Bhandari, T. Taira, A. Miyamoto, Y. F. urukawa, and T. Tago, “> 3 MW peak power at 266 nm using Nd:YAG/ Cr4+:YAG microchip laser and fluxless-BBO,” Opt. Mater. Express 2(7), 907 (2012).
[Crossref]

T. Taira, “Domain-controlled laser ceramics toward Giant Micro-photonics [Invited],” Opt. Mater. Express 1(5), 1040 (2011).
[Crossref]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-Switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
[Crossref]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser,” Opt. Express 16(24), 19891 (2008).
[Crossref]

V. Lupei, N. Pavel, and T. Taira, “Laser emission in highly doped Nd:YAG crystals under 4F5/2 and 4F3/2 pumping,” Opt. Lett. 26(21), 1678–1680 (2001).
[Crossref]

T. Taira, “Concept for Measuring Laser Beam-Quality Parameters,” Reza Kenkyu 26(10), 723–729 (1998).
[Crossref]

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-Pumped Tunable Yb:YAG Miniature Lasers at Room Temperature: Modeling and Experiment,” IEEE J. Selected Topics in Quantum Electronics. 3(1), 100–104 (1997).
[Crossref]

T. Taira, T. Suzudo, and T. Kobayashi, “Design method of efficient, diode end-pumped solid-state lasers using M2 factor,” Reza Kenkyu 24(3), 360–366 (1996).
[Crossref]

T. Taira, “High power, tunable microchip lasers,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper CA3_3.

Takagi, H.

H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
[Crossref]

Takida, Y.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

Tsunekane, M.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-Switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Ueffing, M.

urukawa, Y. F.

Vogel, M.

Voss, A.

Yahia, V.

T. Kawasaki, V. Yahia, and T. Taira, “100 Hz operation in 10 PW/sr·cm2 class Nd:YAG Micro-MOPA,” Opt. Express 27(14), 19555–19561 (2019).
[Crossref]

V. Yahia and T. Taira, “High brightness energetic pulses delivered by compact microchip-MOPA system,” Opt. Express 26(7), 8609 (2018).
[Crossref]

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

Yamaguchi, K.

Yasuhara, R.

Zheng, L. H.

Appl. Phys. Lett. (4)

J. B. Liang, S. Masuya, M. Kasu, and N. Shigekawa, “Realization of direct bonding of single crystal diamond and Si substrates,” Appl. Phys. Lett. 110(11), 111603 (2017).
[Crossref]

H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
[Crossref]

M. Sakata, T. Oyake, J. Maire, M. Nomura, E. Higurashi, and J. Shiomi, “Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation,” Appl. Phys. Lett. 106(8), 081603 (2015).
[Crossref]

V. G. Lupei, A. Lupei, and N. Pavel, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-Switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

IEEE J. Selected Topics in Quantum Electronics. (1)

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-Pumped Tunable Yb:YAG Miniature Lasers at Room Temperature: Modeling and Experiment,” IEEE J. Selected Topics in Quantum Electronics. 3(1), 100–104 (1997).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

J. Appl. Phys. (1)

D. G. Cahill and S.-M. Lee, “Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings,” J. Appl. Phys. 83, 5783 (1998).
[Crossref]

Nat. Commun. (1)

S. W. Jolly, N. H. Matlis, F. Ahr, V. Leroux, T. Eichner, A.-L. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, and A. R. Maier, “Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation,” Nat. Commun. 10(1), 2591 (2019).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Opt. Mater. (1)

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
[Crossref]

Opt. Mater. Express (5)

Optica (1)

Rev. Sci. Instrum. (1)

R. Boge, J. Horáček, P. Mazůrek, J. A. Naylon, J. T. Green, Z. Hubka, V. Šobr, J. Novák, F. Batysta, R. Antipenkov, P. Bakule, and B. Rus, “Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers,” Rev. Sci. Instrum. 89(2), 023113 (2018).
[Crossref]

Reza Kenkyu (2)

T. Taira, “Concept for Measuring Laser Beam-Quality Parameters,” Reza Kenkyu 26(10), 723–729 (1998).
[Crossref]

T. Taira, T. Suzudo, and T. Kobayashi, “Design method of efficient, diode end-pumped solid-state lasers using M2 factor,” Reza Kenkyu 24(3), 360–366 (1996).
[Crossref]

Sci. Rep. (1)

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref]

Other (5)

https://www.jst.go.jp/impact/program/03.html

https://www.jst.go.jp/impact/download/data/impact_newsletter_vol13.pdf

L. F. M. da Silva, A. Öchsner, and R. D. Adams, In: L. da Silva, A. Öchsner, and R. Adams, (eds.) Handbook of Adhesion Technology (Springer, 2018).

T. Taira, “High power, tunable microchip lasers,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper CA3_3.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, “Properties of Sapphire,” in Sapphire Micro- and Opto-Electronic Materials, Structures, and Systems (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of DFC-chip TILA. Coating Type I: anti-reflection (AR) at 808 nm. Type II: high-reflection (HR) at 1064 nm. Type III: AR at 808 nm and 1064 nm. Type IV: partial reflection (PR) 40% at 1064 nm.
Fig. 2.
Fig. 2. Energy stability and peak-peak value from DFC-chip TILA. (a) 18 hours; (b) magnification interval for 6 minutes.
Fig. 3.
Fig. 3. Pulse duration and beam profile from passively Q-switched DFC-chip TILA.
Fig. 4.
Fig. 4. Wavelength bandwidth Δλ from DFC-chip TILA.
Fig. 5.
Fig. 5. Geometrical heat demonstration on (a) Directly-bonded bulk-chip, (b) End-cooling bulk-chip and (c) DFC-chip. Gain medium is Nd:YAG single crystal.
Fig. 6.
Fig. 6. Absolute temperature distribution in Directly-bonded bulk-chip (red circle line), End-cooling bulk-chip (green diamond line) and DFC-chip (blue hollow-circle line) from passively Q-switched laser cavity at repetition rate of 100 Hz. Initial temperature T0=15°C shown as black dot-line was set on copper holder.

Tables (3)

Tables Icon

Table 1. Energy scaling-up from Bulk-chip and DFC-chip in Nd:YAG micro laser cavity.

Tables Icon

Table 2. Temperature difference (ΔT) in (a) Directly-bonded bulk-chip, (b) End-cooling bulk-chip and (c) DFC-chip at various repetition rate. The total length of Nd:YAG gain medium is 4 mm.

Tables Icon

Table 3. Parameters for simulation of stationary heat transfer.

Metrics