Abstract

We report the first single-channel 15.3 Tbit/s, 1.28 Tbaud, 64 QAM transmission using 670 fs coherent Nyquist pulses. We newly constructed an optical gate to improve the signal-to-noise ratio (SNR) of the homodyne detection signal, a coherent spectral expansion technique, and an optical phase-locked loop (OPLL) circuit with a 0.6 deg. phase noise. We also constructed an active 70 fs timing stabilization circuit between the OTDM signal and Nyquist LO pulse to realize precise homodyne detection. With these new techniques, we successfully achieved a record speed of 15.3 Tbit/s in a single channel transmission over 150 km with a spectral efficiency of 8.3 bit/s/Hz.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz

Kosuke Kimura, Junpei Nitta, Masato Yoshida, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 26(13) 17418-17428 (2018)

Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 10.6 bit/s/Hz

Junpei Nitta, Masato Yoshida, Kosuke Kimura, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 25(13) 15199-15207 (2017)

Single-channel 1.92 Tbit/s, Pol-Mux-64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz

David Odeke Otuya, Keisuke Kasai, Masato Yoshida, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 22(20) 23776-23785 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Optical Fiber Communications Conference2019, paper Th4B.4.
  2. S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. Rusch, and W. Shi, “All-silicon IQ modulator for 100 GBaud 32QAM transmissions,” in Optical Fiber Communications Conference2019, paper Th4A.5.
  3. D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, 64 QAM coherent Nyquist orthogonal TDM transmission with a spectral efficiency of 10.6 bit/s/Hz,” J. Lightwave Technol. 34(2), 768–775 (2016).
    [Crossref]
  4. J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 10.6 bit/s/Hz,” Opt. Express 25(13), 15199–15207 (2017).
    [Crossref]
  5. K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz,” Opt. Express 26(13), 17418–17428 (2018).
    [Crossref]
  6. K. Harako, D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality,” Opt. Express 22(24), 29456–29464 (2014).
    [Crossref]
  7. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherent degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4(2), 215–223 (1998).
    [Crossref]
  8. M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30(19), 1603–1605 (1994).
    [Crossref]
  9. M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40-GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43(8), 704–708 (2007).
    [Crossref]
  10. M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, “1.55 µm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser,” Opt. Express 24(21), 24287–24296 (2016).
    [Crossref]
  11. C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39(14), 1071–1073 (2003).
    [Crossref]
  12. T. Hirooka, R. Hirata, J. Wang, M. Yoshida, and M. Nakazawa, “Single-channel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km,” Opt. Express 26(21), 27221–27236 (2018).
    [Crossref]
  13. K. Sugihara, Y. Miyata, T. Sugihara, K. Kubo, H. Yoshida, W. Matsumoto, and T. Mizuochi, “A spatially coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s,” in Optical Fiber Communication Conference2013, paper OM2B.4.
  14. M. Nakazawa, M. Yoshida, M. Terayama, S. Okamoto, K. Kasai, and T. Hirooka, “Observation of guided acoustic-wave Brillouin scattering noise and its compensation in digital coherent optical fiber transmission,” Opt. Express 26(7), 9165–9181 (2018).
    [Crossref]
  15. M. Yoshida, N. Takefushi, M. Terayama, K. Kasai, T. Hirooka, and M. Nakazawa, “Reverse phase modulation technique for GAWBS noise error floor elimination in 1024 QAM-160 km digital coherent transmission,” in OptoElectronics and Communications Conference2018, paper 4B1-3.

2018 (3)

2017 (1)

2016 (2)

2014 (1)

2007 (1)

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40-GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43(8), 704–708 (2007).
[Crossref]

2003 (1)

C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39(14), 1071–1073 (2003).
[Crossref]

1998 (1)

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherent degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4(2), 215–223 (1998).
[Crossref]

1994 (1)

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30(19), 1603–1605 (1994).
[Crossref]

Berger, J.

C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39(14), 1071–1073 (2003).
[Crossref]

Boerner, C.

C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39(14), 1071–1073 (2003).
[Crossref]

Dietrich, E.

C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39(14), 1071–1073 (2003).
[Crossref]

Ferber, S.

C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39(14), 1071–1073 (2003).
[Crossref]

Guo, M.

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. Rusch, and W. Shi, “All-silicon IQ modulator for 100 GBaud 32QAM transmissions,” in Optical Fiber Communications Conference2019, paper Th4A.5.

Hamaoka, F.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Optical Fiber Communications Conference2019, paper Th4B.4.

Harako, K.

Hilliger, E.

C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39(14), 1071–1073 (2003).
[Crossref]

Hirata, R.

Hirooka, T.

T. Hirooka, R. Hirata, J. Wang, M. Yoshida, and M. Nakazawa, “Single-channel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km,” Opt. Express 26(21), 27221–27236 (2018).
[Crossref]

K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz,” Opt. Express 26(13), 17418–17428 (2018).
[Crossref]

M. Nakazawa, M. Yoshida, M. Terayama, S. Okamoto, K. Kasai, and T. Hirooka, “Observation of guided acoustic-wave Brillouin scattering noise and its compensation in digital coherent optical fiber transmission,” Opt. Express 26(7), 9165–9181 (2018).
[Crossref]

J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 10.6 bit/s/Hz,” Opt. Express 25(13), 15199–15207 (2017).
[Crossref]

D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, 64 QAM coherent Nyquist orthogonal TDM transmission with a spectral efficiency of 10.6 bit/s/Hz,” J. Lightwave Technol. 34(2), 768–775 (2016).
[Crossref]

K. Harako, D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality,” Opt. Express 22(24), 29456–29464 (2014).
[Crossref]

M. Yoshida, N. Takefushi, M. Terayama, K. Kasai, T. Hirooka, and M. Nakazawa, “Reverse phase modulation technique for GAWBS noise error floor elimination in 1024 QAM-160 km digital coherent transmission,” in OptoElectronics and Communications Conference2018, paper 4B1-3.

Ida, M.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Optical Fiber Communications Conference2019, paper Th4B.4.

Kasai, K.

M. Nakazawa, M. Yoshida, M. Terayama, S. Okamoto, K. Kasai, and T. Hirooka, “Observation of guided acoustic-wave Brillouin scattering noise and its compensation in digital coherent optical fiber transmission,” Opt. Express 26(7), 9165–9181 (2018).
[Crossref]

K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz,” Opt. Express 26(13), 17418–17428 (2018).
[Crossref]

J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 10.6 bit/s/Hz,” Opt. Express 25(13), 15199–15207 (2017).
[Crossref]

M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, “1.55 µm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser,” Opt. Express 24(21), 24287–24296 (2016).
[Crossref]

D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, 64 QAM coherent Nyquist orthogonal TDM transmission with a spectral efficiency of 10.6 bit/s/Hz,” J. Lightwave Technol. 34(2), 768–775 (2016).
[Crossref]

K. Harako, D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality,” Opt. Express 22(24), 29456–29464 (2014).
[Crossref]

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40-GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43(8), 704–708 (2007).
[Crossref]

M. Yoshida, N. Takefushi, M. Terayama, K. Kasai, T. Hirooka, and M. Nakazawa, “Reverse phase modulation technique for GAWBS noise error floor elimination in 1024 QAM-160 km digital coherent transmission,” in OptoElectronics and Communications Conference2018, paper 4B1-3.

Kimura, K.

Kimura, Y.

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30(19), 1603–1605 (1994).
[Crossref]

Kobayashi, T.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Optical Fiber Communications Conference2019, paper Th4B.4.

Kubo, K.

K. Sugihara, Y. Miyata, T. Sugihara, K. Kubo, H. Yoshida, W. Matsumoto, and T. Mizuochi, “A spatially coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s,” in Optical Fiber Communication Conference2013, paper OM2B.4.

Kubota, H.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherent degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4(2), 215–223 (1998).
[Crossref]

Lin, J.

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. Rusch, and W. Shi, “All-silicon IQ modulator for 100 GBaud 32QAM transmissions,” in Optical Fiber Communications Conference2019, paper Th4A.5.

Ludwig, R.

C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39(14), 1071–1073 (2003).
[Crossref]

Marembert, V.

C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39(14), 1071–1073 (2003).
[Crossref]

Matsumoto, W.

K. Sugihara, Y. Miyata, T. Sugihara, K. Kubo, H. Yoshida, W. Matsumoto, and T. Mizuochi, “A spatially coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s,” in Optical Fiber Communication Conference2013, paper OM2B.4.

Miyamoto, Y.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Optical Fiber Communications Conference2019, paper Th4B.4.

Miyata, Y.

K. Sugihara, Y. Miyata, T. Sugihara, K. Kubo, H. Yoshida, W. Matsumoto, and T. Mizuochi, “A spatially coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s,” in Optical Fiber Communication Conference2013, paper OM2B.4.

Mizuochi, T.

K. Sugihara, Y. Miyata, T. Sugihara, K. Kubo, H. Yoshida, W. Matsumoto, and T. Mizuochi, “A spatially coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s,” in Optical Fiber Communication Conference2013, paper OM2B.4.

Nagatani, M.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Optical Fiber Communications Conference2019, paper Th4B.4.

Nakamura, M.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Optical Fiber Communications Conference2019, paper Th4B.4.

Nakazawa, M.

M. Nakazawa, M. Yoshida, M. Terayama, S. Okamoto, K. Kasai, and T. Hirooka, “Observation of guided acoustic-wave Brillouin scattering noise and its compensation in digital coherent optical fiber transmission,” Opt. Express 26(7), 9165–9181 (2018).
[Crossref]

K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz,” Opt. Express 26(13), 17418–17428 (2018).
[Crossref]

T. Hirooka, R. Hirata, J. Wang, M. Yoshida, and M. Nakazawa, “Single-channel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km,” Opt. Express 26(21), 27221–27236 (2018).
[Crossref]

J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 10.6 bit/s/Hz,” Opt. Express 25(13), 15199–15207 (2017).
[Crossref]

M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, “1.55 µm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser,” Opt. Express 24(21), 24287–24296 (2016).
[Crossref]

D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, 64 QAM coherent Nyquist orthogonal TDM transmission with a spectral efficiency of 10.6 bit/s/Hz,” J. Lightwave Technol. 34(2), 768–775 (2016).
[Crossref]

K. Harako, D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality,” Opt. Express 22(24), 29456–29464 (2014).
[Crossref]

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40-GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43(8), 704–708 (2007).
[Crossref]

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherent degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4(2), 215–223 (1998).
[Crossref]

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30(19), 1603–1605 (1994).
[Crossref]

M. Yoshida, N. Takefushi, M. Terayama, K. Kasai, T. Hirooka, and M. Nakazawa, “Reverse phase modulation technique for GAWBS noise error floor elimination in 1024 QAM-160 km digital coherent transmission,” in OptoElectronics and Communications Conference2018, paper 4B1-3.

Nitta, J.

Nosaka, H.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Optical Fiber Communications Conference2019, paper Th4B.4.

Ogiso, Y.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Optical Fiber Communications Conference2019, paper Th4B.4.

Okamoto, S.

Otuya, D. O.

Rusch, L.

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. Rusch, and W. Shi, “All-silicon IQ modulator for 100 GBaud 32QAM transmissions,” in Optical Fiber Communications Conference2019, paper Th4A.5.

Schmauss, B.

C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39(14), 1071–1073 (2003).
[Crossref]

Schmidt, C.

C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39(14), 1071–1073 (2003).
[Crossref]

Schubert, C.

C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39(14), 1071–1073 (2003).
[Crossref]

Sepehrian, H.

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. Rusch, and W. Shi, “All-silicon IQ modulator for 100 GBaud 32QAM transmissions,” in Optical Fiber Communications Conference2019, paper Th4A.5.

Shi, W.

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. Rusch, and W. Shi, “All-silicon IQ modulator for 100 GBaud 32QAM transmissions,” in Optical Fiber Communications Conference2019, paper Th4A.5.

Sugihara, K.

K. Sugihara, Y. Miyata, T. Sugihara, K. Kubo, H. Yoshida, W. Matsumoto, and T. Mizuochi, “A spatially coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s,” in Optical Fiber Communication Conference2013, paper OM2B.4.

Sugihara, T.

K. Sugihara, Y. Miyata, T. Sugihara, K. Kubo, H. Yoshida, W. Matsumoto, and T. Mizuochi, “A spatially coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s,” in Optical Fiber Communication Conference2013, paper OM2B.4.

Takefushi, N.

M. Yoshida, N. Takefushi, M. Terayama, K. Kasai, T. Hirooka, and M. Nakazawa, “Reverse phase modulation technique for GAWBS noise error floor elimination in 1024 QAM-160 km digital coherent transmission,” in OptoElectronics and Communications Conference2018, paper 4B1-3.

Tamura, K.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherent degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4(2), 215–223 (1998).
[Crossref]

Terayama, M.

M. Nakazawa, M. Yoshida, M. Terayama, S. Okamoto, K. Kasai, and T. Hirooka, “Observation of guided acoustic-wave Brillouin scattering noise and its compensation in digital coherent optical fiber transmission,” Opt. Express 26(7), 9165–9181 (2018).
[Crossref]

M. Yoshida, N. Takefushi, M. Terayama, K. Kasai, T. Hirooka, and M. Nakazawa, “Reverse phase modulation technique for GAWBS noise error floor elimination in 1024 QAM-160 km digital coherent transmission,” in OptoElectronics and Communications Conference2018, paper 4B1-3.

Wakita, H.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Optical Fiber Communications Conference2019, paper Th4B.4.

Wang, J.

Weber, H. G.

C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39(14), 1071–1073 (2003).
[Crossref]

Yamazaki, H.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Optical Fiber Communications Conference2019, paper Th4B.4.

Yoshida, E.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherent degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4(2), 215–223 (1998).
[Crossref]

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30(19), 1603–1605 (1994).
[Crossref]

Yoshida, H.

K. Sugihara, Y. Miyata, T. Sugihara, K. Kubo, H. Yoshida, W. Matsumoto, and T. Mizuochi, “A spatially coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s,” in Optical Fiber Communication Conference2013, paper OM2B.4.

Yoshida, K.

Yoshida, M.

T. Hirooka, R. Hirata, J. Wang, M. Yoshida, and M. Nakazawa, “Single-channel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km,” Opt. Express 26(21), 27221–27236 (2018).
[Crossref]

K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz,” Opt. Express 26(13), 17418–17428 (2018).
[Crossref]

M. Nakazawa, M. Yoshida, M. Terayama, S. Okamoto, K. Kasai, and T. Hirooka, “Observation of guided acoustic-wave Brillouin scattering noise and its compensation in digital coherent optical fiber transmission,” Opt. Express 26(7), 9165–9181 (2018).
[Crossref]

J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 10.6 bit/s/Hz,” Opt. Express 25(13), 15199–15207 (2017).
[Crossref]

M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, “1.55 µm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser,” Opt. Express 24(21), 24287–24296 (2016).
[Crossref]

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40-GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43(8), 704–708 (2007).
[Crossref]

M. Yoshida, N. Takefushi, M. Terayama, K. Kasai, T. Hirooka, and M. Nakazawa, “Reverse phase modulation technique for GAWBS noise error floor elimination in 1024 QAM-160 km digital coherent transmission,” in OptoElectronics and Communications Conference2018, paper 4B1-3.

Zhalehpour, S.

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. Rusch, and W. Shi, “All-silicon IQ modulator for 100 GBaud 32QAM transmissions,” in Optical Fiber Communications Conference2019, paper Th4A.5.

Zhang, Z.

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. Rusch, and W. Shi, “All-silicon IQ modulator for 100 GBaud 32QAM transmissions,” in Optical Fiber Communications Conference2019, paper Th4A.5.

Electron. Lett. (2)

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30(19), 1603–1605 (1994).
[Crossref]

C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, S. Ferber, E. Dietrich, R. Ludwig, B. Schmauss, and H. G. Weber, “160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett. 39(14), 1071–1073 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40-GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43(8), 704–708 (2007).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (6)

Opt. Fiber Technol. (1)

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherent degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4(2), 215–223 (1998).
[Crossref]

Other (4)

K. Sugihara, Y. Miyata, T. Sugihara, K. Kubo, H. Yoshida, W. Matsumoto, and T. Mizuochi, “A spatially coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s,” in Optical Fiber Communication Conference2013, paper OM2B.4.

M. Yoshida, N. Takefushi, M. Terayama, K. Kasai, T. Hirooka, and M. Nakazawa, “Reverse phase modulation technique for GAWBS noise error floor elimination in 1024 QAM-160 km digital coherent transmission,” in OptoElectronics and Communications Conference2018, paper 4B1-3.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Optical Fiber Communications Conference2019, paper Th4B.4.

S. Zhalehpour, J. Lin, M. Guo, H. Sepehrian, Z. Zhang, L. Rusch, and W. Shi, “All-silicon IQ modulator for 100 GBaud 32QAM transmissions,” in Optical Fiber Communications Conference2019, paper Th4A.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1. Experimental setup for a single-channel 15.3 Tbit/s -150 km 64 QAM coherent Nyquist pulse transmission.
Fig. 2.
Fig. 2. (a) Optical spectrum and (b) waveform of a 10 GHz MLFL output pulse. (c) is the optical spectrum obtained after spectral expansion with an HNLF.
Fig. 3.
Fig. 3. (a-1) and (a-2) Optical spectra and (b-1) and (b-2) autocorrelation waveforms of generated Nyquist pulses with α = 0 and 0.1, respectively.
Fig. 4.
Fig. 4. Waveform of a 64 QAM-OTDM signal at 640 Gbaud.
Fig. 5.
Fig. 5. Optical spectra of 15.3 Tbit/s OTDM signal. (a) before transmission, (b) after 150 km transmission.
Fig. 6.
Fig. 6. Optical spectra of signal and crosstalk after 150 km propagation.
Fig. 7.
Fig. 7. (a) RF spectrum and (b) SSB phase noise of a 10 GHz clock signal extracted from an intensity modulated LD signal after a 150 km transmission.
Fig. 8.
Fig. 8. (a) Optical spectrum and (b) waveform of a 10 GHz LO-MLFL output pulse. (c) is the optical spectrum after spectral broadening with an HNLF.
Fig. 9.
Fig. 9. (a-1) and (a-2) Optical spectra and (b-1) and (b-2) autocorrelation waveforms of the generated Nyquist LO pulse with α = 0 and 0.1, respectively.
Fig. 10.
Fig. 10. (a) RF spectrum and (b) SSB phase noise power density of IF signal in OPLL circuit. The transmission distance was 150 km.
Fig. 11.
Fig. 11. (a) Measurement setup for optical gate waveform with intensity modulator. (b) (c) Waveforms of electrical modulation signal and detected output signal from optical gate.
Fig. 12.
Fig. 12. (a) Measurement setup of residual self-beat signal in balanced PD. (b) RF spectra of self-beat signal (black) without and (red) with optical gate.
Fig. 13.
Fig. 13. Constellations of 1.28 Tbaud, 64 QAM signal under a back-to-back condition (a) without an optical gate and (b)with an optical gate.
Fig. 14.
Fig. 14. Change in clock timing between a 1.28 Tbaud OTDM signal and a Nyquist LO pulse before and after control.
Fig. 15.
Fig. 15. BER characteristics for one tributary of a 15.3 Tbit/s-150 km signal as a function of the launched power.
Fig. 16.
Fig. 16. BER characteristics for one tributary of a 15.3 Tbit/s OTDM signal.
Fig. 17.
Fig. 17. Constellations of a 1.28 Tbaud, 64 QAM signal after (a) 75 km and (b) 150 km transmissions.
Fig. 18.
Fig. 18. Comparison of the BER characteristics of single-polarization and polarization-multiplexed transmissions over 150 km.
Fig. 19.
Fig. 19. BERs for all 128 tributaries in a 15.3 Tbit/s-150 km polarization-multiplexed transmission.

Metrics