Abstract

Reflectance confocal microscopy is a widely used optical imaging technique for non-destructive three-dimensional (3D) surface measurement. In confocal microscopy, a stack of two-dimensional (2D) images along the axial position is used for 3D reconstruction. This means the speed of 3D volumetric acquisition is limited by the beam scanning and the mechanical axial scanning. To achieve fast volumetric imaging, simultaneous multiple point scanning by parallelizing the beam instead of transverse point scanning can be considered, using a pinhole array. Previously, we developed a direct-view confocal microscope with a focus tunable lens (FTL) to produce a monochrome 3D surface profile of a sample without any mechanical scanning. Here, we report a high-speed color 3D measurement method based on parallel confocal detection. The proposed method produces a color 3D image of an object by acquiring 180 2D color images with an acquisition time of 1 second. We also visualized the color information of the object by overlaying the color obtained with a color area detector and a white LED illumination on top of the 3D surface profile. In addition, we designed an improved optical system to reduce artifacts caused by internal reflections and developed a new algorithm for noise-resistant 3D measurements. The feasibility of the proposed non-contact high-speed color 3D measurement for use in industrial or biomedical fields was demonstrated by imaging the color 3D shapes of various specimens. We anticipate that this technology can be utilized in various fields, where rapid 3D surface profiles with color information are required.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical performance evaluation and chromatic aberration correction of a focus tunable lens used for 3D microscopy

Yufeng Yan, Xiaobo Tian, Rongguang Liang, and Jose Sasian
Biomed. Opt. Express 10(12) 6029-6042 (2019)

Chromatic confocal microscopy with a novel wavelength detection method using transmittance

Taejoong Kim, Sang Hoon Kim, DukHo Do, Hongki Yoo, and DaeGab Gweon
Opt. Express 21(5) 6286-6294 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).
  2. H. Leeghim, M. Ahn, and K. Kim, “Novel approach to optical profiler with gradient focal point methods,” Opt. Express 20(21), 23061–23073 (2012).
    [Crossref]
  3. J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
    [Crossref]
  4. P. Furrer and R. Gurny, “Recent advances in confocal microscopy for studying drug delivery to the eye: concepts and pharmaceutical applications,” Eur. J. Pharm. Biopharm. 74(1), 33–40 (2010).
    [Crossref]
  5. J. H. Nurre, S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, and B. D. Corner, “3D profilometry using a dynamically configurable confocal microscope,” in Three-Dimensional Image Capture and Applications II, (Jose, CA, United States, 1999), pp. 246–253.
  6. Eckart Uhlmann, Dirk Oberschmidt, and Gerald Kunath-Fandrei, “3D-analysis of microstructures with confocal laser scanning microscopy,” in Machines and processes for micro-scale and meso-scale fabrication, metrology and assembly, (American Society for Precision Engineering, 2003), 93–97.
  7. W. Kaplonek and K. Nadolny, “Advanced 3D laser microscopy for measurements and analysis of vitrified bonded abrasive tools,” J. Eng. Sci. Technol. 7(6), 661–678 (2012).
  8. H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
    [Crossref]
  9. E. Mersona, A. V. Kudryab, V. A. Trachenkob, D. Mersonac, V. Danilova, and A. Vinogradov, “The Use of Confocal Laser Scanning Microscopy for the 3D Quantitative Characterization of Fracture Surfaces and Cleavage Facets,” in 21st European Conference on Fracture, 2016), 533–540.
  10. C. M. Belcher, S. W. Punyasena, and M. Sivaguru, “Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal,” PLoS One 8(8), e72265 (2013).
    [Crossref]
  11. D. K. Hamilton and T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B: Photophys. Laser Chem. 27(4), 211–213 (1982).
    [Crossref]
  12. P. Ye, J. L. Paredes, Y. Wu, C. Chen, G. R. Arce, and D. W. Prather, “Compressive Confocal Microscopy: 3D Reconstruction Algorithms,” Proc. SPIE 7210, 72100G (2009).
    [Crossref]
  13. K. Carlsson and N. Åslund, “Confocal imaging for 3-D digital microscopy,” Appl. Opt. 26(16), 3232–3238 (1987).
    [Crossref]
  14. K. Carlsson, P. E. Danielsson, R. Lenz, A. Liljeborg, L. Majlöf, and N. Åslund, “Three-dimensional microscopy using a confocal laser scanning,” Opt. Lett. 10(2), 53–55 (1985).
    [Crossref]
  15. H. Yoo, S. Lee, D. Kang, T. Kim, D. Gweon, S. Lee, and K. Kim, “Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler,” Int. J. Precis. Eng. Man. 7, 3–7 (2006).
  16. B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum. 80(7), 073706 (2009).
    [Crossref]
  17. J.-A. Conchello and J. W. Lichtman, “Theoretical analysis of a rotating-disk partially confocal scanning microscope,” Appl. Opt. 33(4), 585–596 (1994).
    [Crossref]
  18. T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
    [Crossref]
  19. S. Stehbens, H. Pemble, L. Murrow, and T. Wittmann, “Imaging intracellular protein dynamics by spinning disk confocal microscopy,” Methods Enzymol. 504, 293–313 (2012).
    [Crossref]
  20. D. T. Fewer, S. J. Hewlett, E. M. McCabe, and J. Hegarty, “Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration,” J. Microsc. 187(1), 54–61 (1997).
    [Crossref]
  21. M. Ishihara and H. Sasaki, “High-speed surface measurement using a non-scanning multiple-beam confocal microscope,” Opt. Eng. 38(6), 1035–1040 (1999).
    [Crossref]
  22. L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33(31), 7334–7338 (1994).
    [Crossref]
  23. P. Pokorny and A. Miks, “3D optical two-mirror scanner with focus-tunable lens,” Appl. Opt. 54(22), 6955–6960 (2015).
    [Crossref]
  24. B. Javidi, J.-Y. Son, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, J. Sola-Pikabea, M. Martínez-Corral, P.-Y. Hsieh, and Y.-P. Huang, “Three-dimensional microscopy through liquid-lens axial scanning,” Proc. SPIE 9495, 949503 (2015).
    [Crossref]
  25. M. Martínez-Corral, P. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y. Huang, “Fast Axial-Scanning Widefield Microscopy With Constant Magnification and Resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
    [Crossref]
  26. Optotune, “Fast electrically tunable lens EL-10-30 series”, retrieved http://www.optotune.com/ .
  27. H. J. Jeong, H. Yoo, and D. Gweon, “High-speed 3-D measurement with a large field of view based on direct-view confocal microscope with an electrically tunable lens,” Opt. Express 24(4), 3806–3816 (2016).
    [Crossref]
  28. Y. Zhang, A. Roshan, S. Jabari, S. A. Khiabani, F. Fathollahi, and R. K. Mishra, “Understanding the Quality of Pansharpening - A lab study,” Photogramm. Eng. Remote Sens. 82(10), 747–755 (2016).
    [Crossref]
  29. Scientific-Volume-Imaging, “Signal-to-Noise ratio”, retrieved https://svi.nl/SignalToNoiseRatio .
  30. E. Sánchez-Ortiga, C. J. R. Sheppard, G. Saavedra, M. Martínez-Corral, A. Doblas, and A. Calatayud, “Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector,” Opt. Lett. 37(7), 1280–1282 (2012).
    [Crossref]
  31. C. Sheppard and D. Shotton, Confocal Laser Scanning Microscopy (BIOS Scientific Publishers, 1997).
  32. S. Cha, P. C. Lin, L. Zhu, P.-C. Sun, and Y. Fainman, “Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning,” Appl. Opt. 39(16), 2605–2613 (2000).
    [Crossref]
  33. S. Lawman and H. Liang, “High precision dynamic multi-interface profilometry with optical coherence tomography,” Appl. Opt. 50(32), 6039–6048 (2011).
    [Crossref]
  34. T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Microsc. 244(2), 113–121 (2011).
    [Crossref]
  35. L. Yu and M. K. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Opt. Express 12(26), 6632–6641 (2004).
    [Crossref]
  36. S. Ceccarelli, M. Guarneri, M. F. de Collibus, M. Francucci, M. Ciaffi, and A. Danielis, “Laser Scanners for High-Quality 3D and IR Imaging in Cultural Heritage Monitoring and Documentation,” J. Imaging 4(11), 130 (2018).
    [Crossref]
  37. L. Gevaux, C. Adnet, P. Séroul, R. Clerc, A. Trémeau, J. L. Perrot, and M. Hébert, “Three-dimensional hyperspectral imaging: a new method for human face acquisition,” Electronic Imaging 2018(8), 152 (2018).
    [Crossref]
  38. P. Hong-Seok and S. Chintal, “Development of High Speed and High Accuracy 3D Dental Intra Oral Scanner,” Procedia Eng. 100, 1174–1181 (2015).
    [Crossref]
  39. S. Ting-shu and S. Jian, “Intraoral Digital Impression Technique: A Review,” J Prosthodont. 24(4), 313–321 (2015).
    [Crossref]
  40. E. Stindel, J. L. Briard, P. Merloz, S. Plaweski, F. Dubrana, C. Lefevre, and J. Troccaz, “Bone Morphing: 3D Morphological Data for Total Knee Arthroplasty,” J. Prosthodontics 7(3), 156–168 (2002).
    [Crossref]
  41. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
    [Crossref]
  42. U. Jacobi, M. Chen, G. Frankowski, R. Sinkgraven, M. Hund, B. Rzany, W. Sterry, and J. Lademann, “In vivo determination of skin surface topography using an optical 3D device,” Skin Res Technol 10(4), 207–214 (2004).
    [Crossref]
  43. G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation,” Sensors 9(1), 568–601 (2009).
    [Crossref]
  44. Z. Zhang and C. Li, “Defect Inspection for Curved Surface with Highly Specular Reflection,” in Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, Z. Liu, H. Ukida, P. Ramuhalli, and K. Niel, eds. (Springer, 2015), pp. 251–317.
  45. M. Munaro, E. W. Y. So, S. Tonello, and E. Menegatti, “Efficient Completeness Inspection Using Real-Time 3D Color Reconstruction with a Dual-Laser Triangulation System,” in Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, Z. Liu, H. Ukida, P. Ramuhalli, and K. Niel, eds. (Springer, 2015), pp. 201–225.
  46. L. Cournoyer, M. Rioux, F. Blais, J. B. Taylor, M. Picard, C. Lahanier, J. A. Beraldin, G. Godin, and L. Borgeat, “Ultra high-resolution 3D laser color imaging of paintings: The Mona Lisa by Leonardo da Vinci,” in 7th International Conference on Lasers in the Conservation of Artworks, (Taylor & Francis Group, 2007), 435–440.

2018 (2)

S. Ceccarelli, M. Guarneri, M. F. de Collibus, M. Francucci, M. Ciaffi, and A. Danielis, “Laser Scanners for High-Quality 3D and IR Imaging in Cultural Heritage Monitoring and Documentation,” J. Imaging 4(11), 130 (2018).
[Crossref]

L. Gevaux, C. Adnet, P. Séroul, R. Clerc, A. Trémeau, J. L. Perrot, and M. Hébert, “Three-dimensional hyperspectral imaging: a new method for human face acquisition,” Electronic Imaging 2018(8), 152 (2018).
[Crossref]

2016 (2)

H. J. Jeong, H. Yoo, and D. Gweon, “High-speed 3-D measurement with a large field of view based on direct-view confocal microscope with an electrically tunable lens,” Opt. Express 24(4), 3806–3816 (2016).
[Crossref]

Y. Zhang, A. Roshan, S. Jabari, S. A. Khiabani, F. Fathollahi, and R. K. Mishra, “Understanding the Quality of Pansharpening - A lab study,” Photogramm. Eng. Remote Sens. 82(10), 747–755 (2016).
[Crossref]

2015 (5)

P. Pokorny and A. Miks, “3D optical two-mirror scanner with focus-tunable lens,” Appl. Opt. 54(22), 6955–6960 (2015).
[Crossref]

B. Javidi, J.-Y. Son, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, J. Sola-Pikabea, M. Martínez-Corral, P.-Y. Hsieh, and Y.-P. Huang, “Three-dimensional microscopy through liquid-lens axial scanning,” Proc. SPIE 9495, 949503 (2015).
[Crossref]

M. Martínez-Corral, P. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y. Huang, “Fast Axial-Scanning Widefield Microscopy With Constant Magnification and Resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

P. Hong-Seok and S. Chintal, “Development of High Speed and High Accuracy 3D Dental Intra Oral Scanner,” Procedia Eng. 100, 1174–1181 (2015).
[Crossref]

S. Ting-shu and S. Jian, “Intraoral Digital Impression Technique: A Review,” J Prosthodont. 24(4), 313–321 (2015).
[Crossref]

2013 (1)

C. M. Belcher, S. W. Punyasena, and M. Sivaguru, “Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal,” PLoS One 8(8), e72265 (2013).
[Crossref]

2012 (4)

H. Leeghim, M. Ahn, and K. Kim, “Novel approach to optical profiler with gradient focal point methods,” Opt. Express 20(21), 23061–23073 (2012).
[Crossref]

W. Kaplonek and K. Nadolny, “Advanced 3D laser microscopy for measurements and analysis of vitrified bonded abrasive tools,” J. Eng. Sci. Technol. 7(6), 661–678 (2012).

S. Stehbens, H. Pemble, L. Murrow, and T. Wittmann, “Imaging intracellular protein dynamics by spinning disk confocal microscopy,” Methods Enzymol. 504, 293–313 (2012).
[Crossref]

E. Sánchez-Ortiga, C. J. R. Sheppard, G. Saavedra, M. Martínez-Corral, A. Doblas, and A. Calatayud, “Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector,” Opt. Lett. 37(7), 1280–1282 (2012).
[Crossref]

2011 (3)

S. Lawman and H. Liang, “High precision dynamic multi-interface profilometry with optical coherence tomography,” Appl. Opt. 50(32), 6039–6048 (2011).
[Crossref]

T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Microsc. 244(2), 113–121 (2011).
[Crossref]

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

2010 (1)

P. Furrer and R. Gurny, “Recent advances in confocal microscopy for studying drug delivery to the eye: concepts and pharmaceutical applications,” Eur. J. Pharm. Biopharm. 74(1), 33–40 (2010).
[Crossref]

2009 (3)

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum. 80(7), 073706 (2009).
[Crossref]

P. Ye, J. L. Paredes, Y. Wu, C. Chen, G. R. Arce, and D. W. Prather, “Compressive Confocal Microscopy: 3D Reconstruction Algorithms,” Proc. SPIE 7210, 72100G (2009).
[Crossref]

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation,” Sensors 9(1), 568–601 (2009).
[Crossref]

2006 (1)

H. Yoo, S. Lee, D. Kang, T. Kim, D. Gweon, S. Lee, and K. Kim, “Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler,” Int. J. Precis. Eng. Man. 7, 3–7 (2006).

2005 (1)

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
[Crossref]

2004 (2)

U. Jacobi, M. Chen, G. Frankowski, R. Sinkgraven, M. Hund, B. Rzany, W. Sterry, and J. Lademann, “In vivo determination of skin surface topography using an optical 3D device,” Skin Res Technol 10(4), 207–214 (2004).
[Crossref]

L. Yu and M. K. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Opt. Express 12(26), 6632–6641 (2004).
[Crossref]

2002 (2)

T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
[Crossref]

E. Stindel, J. L. Briard, P. Merloz, S. Plaweski, F. Dubrana, C. Lefevre, and J. Troccaz, “Bone Morphing: 3D Morphological Data for Total Knee Arthroplasty,” J. Prosthodontics 7(3), 156–168 (2002).
[Crossref]

2000 (1)

1999 (1)

M. Ishihara and H. Sasaki, “High-speed surface measurement using a non-scanning multiple-beam confocal microscope,” Opt. Eng. 38(6), 1035–1040 (1999).
[Crossref]

1998 (1)

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[Crossref]

1997 (1)

D. T. Fewer, S. J. Hewlett, E. M. McCabe, and J. Hegarty, “Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration,” J. Microsc. 187(1), 54–61 (1997).
[Crossref]

1994 (2)

1987 (1)

1985 (1)

1982 (1)

D. K. Hamilton and T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B: Photophys. Laser Chem. 27(4), 211–213 (1982).
[Crossref]

Adnet, C.

L. Gevaux, C. Adnet, P. Séroul, R. Clerc, A. Trémeau, J. L. Perrot, and M. Hébert, “Three-dimensional hyperspectral imaging: a new method for human face acquisition,” Electronic Imaging 2018(8), 152 (2018).
[Crossref]

Ahn, M.

Arce, G. R.

P. Ye, J. L. Paredes, Y. Wu, C. Chen, G. R. Arce, and D. W. Prather, “Compressive Confocal Microscopy: 3D Reconstruction Algorithms,” Proc. SPIE 7210, 72100G (2009).
[Crossref]

Åslund, N.

Belcher, C. M.

C. M. Belcher, S. W. Punyasena, and M. Sivaguru, “Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal,” PLoS One 8(8), e72265 (2013).
[Crossref]

Beraldin, J. A.

L. Cournoyer, M. Rioux, F. Blais, J. B. Taylor, M. Picard, C. Lahanier, J. A. Beraldin, G. Godin, and L. Borgeat, “Ultra high-resolution 3D laser color imaging of paintings: The Mona Lisa by Leonardo da Vinci,” in 7th International Conference on Lasers in the Conservation of Artworks, (Taylor & Francis Group, 2007), 435–440.

Blais, F.

L. Cournoyer, M. Rioux, F. Blais, J. B. Taylor, M. Picard, C. Lahanier, J. A. Beraldin, G. Godin, and L. Borgeat, “Ultra high-resolution 3D laser color imaging of paintings: The Mona Lisa by Leonardo da Vinci,” in 7th International Conference on Lasers in the Conservation of Artworks, (Taylor & Francis Group, 2007), 435–440.

Borgeat, L.

L. Cournoyer, M. Rioux, F. Blais, J. B. Taylor, M. Picard, C. Lahanier, J. A. Beraldin, G. Godin, and L. Borgeat, “Ultra high-resolution 3D laser color imaging of paintings: The Mona Lisa by Leonardo da Vinci,” in 7th International Conference on Lasers in the Conservation of Artworks, (Taylor & Francis Group, 2007), 435–440.

Botvinick, E. L.

J. H. Nurre, S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, and B. D. Corner, “3D profilometry using a dynamically configurable confocal microscope,” in Three-Dimensional Image Capture and Applications II, (Jose, CA, United States, 1999), pp. 246–253.

Briard, J. L.

E. Stindel, J. L. Briard, P. Merloz, S. Plaweski, F. Dubrana, C. Lefevre, and J. Troccaz, “Bone Morphing: 3D Morphological Data for Total Knee Arthroplasty,” J. Prosthodontics 7(3), 156–168 (2002).
[Crossref]

Calatayud, A.

Carlsson, K.

Ceccarelli, S.

S. Ceccarelli, M. Guarneri, M. F. de Collibus, M. Francucci, M. Ciaffi, and A. Danielis, “Laser Scanners for High-Quality 3D and IR Imaging in Cultural Heritage Monitoring and Documentation,” J. Imaging 4(11), 130 (2018).
[Crossref]

Cha, S.

S. Cha, P. C. Lin, L. Zhu, P.-C. Sun, and Y. Fainman, “Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning,” Appl. Opt. 39(16), 2605–2613 (2000).
[Crossref]

J. H. Nurre, S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, and B. D. Corner, “3D profilometry using a dynamically configurable confocal microscope,” in Three-Dimensional Image Capture and Applications II, (Jose, CA, United States, 1999), pp. 246–253.

Chen, C.

P. Ye, J. L. Paredes, Y. Wu, C. Chen, G. R. Arce, and D. W. Prather, “Compressive Confocal Microscopy: 3D Reconstruction Algorithms,” Proc. SPIE 7210, 72100G (2009).
[Crossref]

Chen, M.

U. Jacobi, M. Chen, G. Frankowski, R. Sinkgraven, M. Hund, B. Rzany, W. Sterry, and J. Lademann, “In vivo determination of skin surface topography using an optical 3D device,” Skin Res Technol 10(4), 207–214 (2004).
[Crossref]

Chintal, S.

P. Hong-Seok and S. Chintal, “Development of High Speed and High Accuracy 3D Dental Intra Oral Scanner,” Procedia Eng. 100, 1174–1181 (2015).
[Crossref]

Chun, B. S.

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum. 80(7), 073706 (2009).
[Crossref]

Ciaffi, M.

S. Ceccarelli, M. Guarneri, M. F. de Collibus, M. Francucci, M. Ciaffi, and A. Danielis, “Laser Scanners for High-Quality 3D and IR Imaging in Cultural Heritage Monitoring and Documentation,” J. Imaging 4(11), 130 (2018).
[Crossref]

Clerc, R.

L. Gevaux, C. Adnet, P. Séroul, R. Clerc, A. Trémeau, J. L. Perrot, and M. Hébert, “Three-dimensional hyperspectral imaging: a new method for human face acquisition,” Electronic Imaging 2018(8), 152 (2018).
[Crossref]

Conchello, J. A.

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
[Crossref]

Conchello, J.-A.

Corner, B. D.

J. H. Nurre, S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, and B. D. Corner, “3D profilometry using a dynamically configurable confocal microscope,” in Three-Dimensional Image Capture and Applications II, (Jose, CA, United States, 1999), pp. 246–253.

Cournoyer, L.

L. Cournoyer, M. Rioux, F. Blais, J. B. Taylor, M. Picard, C. Lahanier, J. A. Beraldin, G. Godin, and L. Borgeat, “Ultra high-resolution 3D laser color imaging of paintings: The Mona Lisa by Leonardo da Vinci,” in 7th International Conference on Lasers in the Conservation of Artworks, (Taylor & Francis Group, 2007), 435–440.

Danielis, A.

S. Ceccarelli, M. Guarneri, M. F. de Collibus, M. Francucci, M. Ciaffi, and A. Danielis, “Laser Scanners for High-Quality 3D and IR Imaging in Cultural Heritage Monitoring and Documentation,” J. Imaging 4(11), 130 (2018).
[Crossref]

Danielsson, P. E.

Danilova, V.

E. Mersona, A. V. Kudryab, V. A. Trachenkob, D. Mersonac, V. Danilova, and A. Vinogradov, “The Use of Confocal Laser Scanning Microscopy for the 3D Quantitative Characterization of Fracture Surfaces and Cleavage Facets,” in 21st European Conference on Fracture, 2016), 533–540.

de Collibus, M. F.

S. Ceccarelli, M. Guarneri, M. F. de Collibus, M. Francucci, M. Ciaffi, and A. Danielis, “Laser Scanners for High-Quality 3D and IR Imaging in Cultural Heritage Monitoring and Documentation,” J. Imaging 4(11), 130 (2018).
[Crossref]

de Groot, P.

Deck, L.

Doblas, A.

B. Javidi, J.-Y. Son, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, J. Sola-Pikabea, M. Martínez-Corral, P.-Y. Hsieh, and Y.-P. Huang, “Three-dimensional microscopy through liquid-lens axial scanning,” Proc. SPIE 9495, 949503 (2015).
[Crossref]

M. Martínez-Corral, P. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y. Huang, “Fast Axial-Scanning Widefield Microscopy With Constant Magnification and Resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

E. Sánchez-Ortiga, C. J. R. Sheppard, G. Saavedra, M. Martínez-Corral, A. Doblas, and A. Calatayud, “Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector,” Opt. Lett. 37(7), 1280–1282 (2012).
[Crossref]

Docchio, F.

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation,” Sensors 9(1), 568–601 (2009).
[Crossref]

Dubrana, F.

E. Stindel, J. L. Briard, P. Merloz, S. Plaweski, F. Dubrana, C. Lefevre, and J. Troccaz, “Bone Morphing: 3D Morphological Data for Total Knee Arthroplasty,” J. Prosthodontics 7(3), 156–168 (2002).
[Crossref]

Fainman, Y.

S. Cha, P. C. Lin, L. Zhu, P.-C. Sun, and Y. Fainman, “Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning,” Appl. Opt. 39(16), 2605–2613 (2000).
[Crossref]

J. H. Nurre, S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, and B. D. Corner, “3D profilometry using a dynamically configurable confocal microscope,” in Three-Dimensional Image Capture and Applications II, (Jose, CA, United States, 1999), pp. 246–253.

Fathollahi, F.

Y. Zhang, A. Roshan, S. Jabari, S. A. Khiabani, F. Fathollahi, and R. K. Mishra, “Understanding the Quality of Pansharpening - A lab study,” Photogramm. Eng. Remote Sens. 82(10), 747–755 (2016).
[Crossref]

Fewer, D. T.

D. T. Fewer, S. J. Hewlett, E. M. McCabe, and J. Hegarty, “Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration,” J. Microsc. 187(1), 54–61 (1997).
[Crossref]

Francucci, M.

S. Ceccarelli, M. Guarneri, M. F. de Collibus, M. Francucci, M. Ciaffi, and A. Danielis, “Laser Scanners for High-Quality 3D and IR Imaging in Cultural Heritage Monitoring and Documentation,” J. Imaging 4(11), 130 (2018).
[Crossref]

Frankowski, G.

U. Jacobi, M. Chen, G. Frankowski, R. Sinkgraven, M. Hund, B. Rzany, W. Sterry, and J. Lademann, “In vivo determination of skin surface topography using an optical 3D device,” Skin Res Technol 10(4), 207–214 (2004).
[Crossref]

Furrer, P.

P. Furrer and R. Gurny, “Recent advances in confocal microscopy for studying drug delivery to the eye: concepts and pharmaceutical applications,” Eur. J. Pharm. Biopharm. 74(1), 33–40 (2010).
[Crossref]

Geng, J.

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

Gevaux, L.

L. Gevaux, C. Adnet, P. Séroul, R. Clerc, A. Trémeau, J. L. Perrot, and M. Hébert, “Three-dimensional hyperspectral imaging: a new method for human face acquisition,” Electronic Imaging 2018(8), 152 (2018).
[Crossref]

Godin, G.

L. Cournoyer, M. Rioux, F. Blais, J. B. Taylor, M. Picard, C. Lahanier, J. A. Beraldin, G. Godin, and L. Borgeat, “Ultra high-resolution 3D laser color imaging of paintings: The Mona Lisa by Leonardo da Vinci,” in 7th International Conference on Lasers in the Conservation of Artworks, (Taylor & Francis Group, 2007), 435–440.

Gu, M.

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).

Guarneri, M.

S. Ceccarelli, M. Guarneri, M. F. de Collibus, M. Francucci, M. Ciaffi, and A. Danielis, “Laser Scanners for High-Quality 3D and IR Imaging in Cultural Heritage Monitoring and Documentation,” J. Imaging 4(11), 130 (2018).
[Crossref]

Gurny, R.

P. Furrer and R. Gurny, “Recent advances in confocal microscopy for studying drug delivery to the eye: concepts and pharmaceutical applications,” Eur. J. Pharm. Biopharm. 74(1), 33–40 (2010).
[Crossref]

Gweon, D.

H. J. Jeong, H. Yoo, and D. Gweon, “High-speed 3-D measurement with a large field of view based on direct-view confocal microscope with an electrically tunable lens,” Opt. Express 24(4), 3806–3816 (2016).
[Crossref]

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum. 80(7), 073706 (2009).
[Crossref]

H. Yoo, S. Lee, D. Kang, T. Kim, D. Gweon, S. Lee, and K. Kim, “Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler,” Int. J. Precis. Eng. Man. 7, 3–7 (2006).

Hamilton, D. K.

D. K. Hamilton and T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B: Photophys. Laser Chem. 27(4), 211–213 (1982).
[Crossref]

Hébert, M.

L. Gevaux, C. Adnet, P. Séroul, R. Clerc, A. Trémeau, J. L. Perrot, and M. Hébert, “Three-dimensional hyperspectral imaging: a new method for human face acquisition,” Electronic Imaging 2018(8), 152 (2018).
[Crossref]

Hegarty, J.

D. T. Fewer, S. J. Hewlett, E. M. McCabe, and J. Hegarty, “Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration,” J. Microsc. 187(1), 54–61 (1997).
[Crossref]

Hewlett, S. J.

D. T. Fewer, S. J. Hewlett, E. M. McCabe, and J. Hegarty, “Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration,” J. Microsc. 187(1), 54–61 (1997).
[Crossref]

Hong-Seok, P.

P. Hong-Seok and S. Chintal, “Development of High Speed and High Accuracy 3D Dental Intra Oral Scanner,” Procedia Eng. 100, 1174–1181 (2015).
[Crossref]

Hsieh, P.

M. Martínez-Corral, P. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y. Huang, “Fast Axial-Scanning Widefield Microscopy With Constant Magnification and Resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

Hsieh, P.-Y.

B. Javidi, J.-Y. Son, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, J. Sola-Pikabea, M. Martínez-Corral, P.-Y. Hsieh, and Y.-P. Huang, “Three-dimensional microscopy through liquid-lens axial scanning,” Proc. SPIE 9495, 949503 (2015).
[Crossref]

Huang, Y.

M. Martínez-Corral, P. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y. Huang, “Fast Axial-Scanning Widefield Microscopy With Constant Magnification and Resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

Huang, Y.-P.

B. Javidi, J.-Y. Son, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, J. Sola-Pikabea, M. Martínez-Corral, P.-Y. Hsieh, and Y.-P. Huang, “Three-dimensional microscopy through liquid-lens axial scanning,” Proc. SPIE 9495, 949503 (2015).
[Crossref]

Hund, M.

U. Jacobi, M. Chen, G. Frankowski, R. Sinkgraven, M. Hund, B. Rzany, W. Sterry, and J. Lademann, “In vivo determination of skin surface topography using an optical 3D device,” Skin Res Technol 10(4), 207–214 (2004).
[Crossref]

Ishida, H.

Ishihara, M.

M. Ishihara and H. Sasaki, “High-speed surface measurement using a non-scanning multiple-beam confocal microscope,” Opt. Eng. 38(6), 1035–1040 (1999).
[Crossref]

Jabari, S.

Y. Zhang, A. Roshan, S. Jabari, S. A. Khiabani, F. Fathollahi, and R. K. Mishra, “Understanding the Quality of Pansharpening - A lab study,” Photogramm. Eng. Remote Sens. 82(10), 747–755 (2016).
[Crossref]

Jacobi, U.

U. Jacobi, M. Chen, G. Frankowski, R. Sinkgraven, M. Hund, B. Rzany, W. Sterry, and J. Lademann, “In vivo determination of skin surface topography using an optical 3D device,” Skin Res Technol 10(4), 207–214 (2004).
[Crossref]

Javidi, B.

B. Javidi, J.-Y. Son, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, J. Sola-Pikabea, M. Martínez-Corral, P.-Y. Hsieh, and Y.-P. Huang, “Three-dimensional microscopy through liquid-lens axial scanning,” Proc. SPIE 9495, 949503 (2015).
[Crossref]

Jeong, H. J.

Jian, S.

S. Ting-shu and S. Jian, “Intraoral Digital Impression Technique: A Review,” J Prosthodont. 24(4), 313–321 (2015).
[Crossref]

Jordan, H.-J.

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[Crossref]

Kang, D.

H. Yoo, S. Lee, D. Kang, T. Kim, D. Gweon, S. Lee, and K. Kim, “Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler,” Int. J. Precis. Eng. Man. 7, 3–7 (2006).

Kaplonek, W.

W. Kaplonek and K. Nadolny, “Advanced 3D laser microscopy for measurements and analysis of vitrified bonded abrasive tools,” J. Eng. Sci. Technol. 7(6), 661–678 (2012).

Khiabani, S. A.

Y. Zhang, A. Roshan, S. Jabari, S. A. Khiabani, F. Fathollahi, and R. K. Mishra, “Understanding the Quality of Pansharpening - A lab study,” Photogramm. Eng. Remote Sens. 82(10), 747–755 (2016).
[Crossref]

Kim, K.

H. Leeghim, M. Ahn, and K. Kim, “Novel approach to optical profiler with gradient focal point methods,” Opt. Express 20(21), 23061–23073 (2012).
[Crossref]

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum. 80(7), 073706 (2009).
[Crossref]

H. Yoo, S. Lee, D. Kang, T. Kim, D. Gweon, S. Lee, and K. Kim, “Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler,” Int. J. Precis. Eng. Man. 7, 3–7 (2006).

Kim, M. K.

Kim, T.

H. Yoo, S. Lee, D. Kang, T. Kim, D. Gweon, S. Lee, and K. Kim, “Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler,” Int. J. Precis. Eng. Man. 7, 3–7 (2006).

Kosugi, Y.

Kudryab, A. V.

E. Mersona, A. V. Kudryab, V. A. Trachenkob, D. Mersonac, V. Danilova, and A. Vinogradov, “The Use of Confocal Laser Scanning Microscopy for the 3D Quantitative Characterization of Fracture Surfaces and Cleavage Facets,” in 21st European Conference on Fracture, 2016), 533–540.

Kunath-Fandrei, Gerald

Eckart Uhlmann, Dirk Oberschmidt, and Gerald Kunath-Fandrei, “3D-analysis of microstructures with confocal laser scanning microscopy,” in Machines and processes for micro-scale and meso-scale fabrication, metrology and assembly, (American Society for Precision Engineering, 2003), 93–97.

Lademann, J.

U. Jacobi, M. Chen, G. Frankowski, R. Sinkgraven, M. Hund, B. Rzany, W. Sterry, and J. Lademann, “In vivo determination of skin surface topography using an optical 3D device,” Skin Res Technol 10(4), 207–214 (2004).
[Crossref]

Lahanier, C.

L. Cournoyer, M. Rioux, F. Blais, J. B. Taylor, M. Picard, C. Lahanier, J. A. Beraldin, G. Godin, and L. Borgeat, “Ultra high-resolution 3D laser color imaging of paintings: The Mona Lisa by Leonardo da Vinci,” in 7th International Conference on Lasers in the Conservation of Artworks, (Taylor & Francis Group, 2007), 435–440.

Lawman, S.

Lee, S.

H. Yoo, S. Lee, D. Kang, T. Kim, D. Gweon, S. Lee, and K. Kim, “Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler,” Int. J. Precis. Eng. Man. 7, 3–7 (2006).

H. Yoo, S. Lee, D. Kang, T. Kim, D. Gweon, S. Lee, and K. Kim, “Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler,” Int. J. Precis. Eng. Man. 7, 3–7 (2006).

Leeghim, H.

Lefevre, C.

E. Stindel, J. L. Briard, P. Merloz, S. Plaweski, F. Dubrana, C. Lefevre, and J. Troccaz, “Bone Morphing: 3D Morphological Data for Total Knee Arthroplasty,” J. Prosthodontics 7(3), 156–168 (2002).
[Crossref]

Lenz, R.

Li, C.

Z. Zhang and C. Li, “Defect Inspection for Curved Surface with Highly Specular Reflection,” in Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, Z. Liu, H. Ukida, P. Ramuhalli, and K. Niel, eds. (Springer, 2015), pp. 251–317.

Liang, H.

Lichtman, J. W.

Liljeborg, A.

Lin, P. C.

S. Cha, P. C. Lin, L. Zhu, P.-C. Sun, and Y. Fainman, “Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning,” Appl. Opt. 39(16), 2605–2613 (2000).
[Crossref]

J. H. Nurre, S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, and B. D. Corner, “3D profilometry using a dynamically configurable confocal microscope,” in Three-Dimensional Image Capture and Applications II, (Jose, CA, United States, 1999), pp. 246–253.

Majlöf, L.

Martínez-Corral, M.

M. Martínez-Corral, P. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y. Huang, “Fast Axial-Scanning Widefield Microscopy With Constant Magnification and Resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

B. Javidi, J.-Y. Son, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, J. Sola-Pikabea, M. Martínez-Corral, P.-Y. Hsieh, and Y.-P. Huang, “Three-dimensional microscopy through liquid-lens axial scanning,” Proc. SPIE 9495, 949503 (2015).
[Crossref]

E. Sánchez-Ortiga, C. J. R. Sheppard, G. Saavedra, M. Martínez-Corral, A. Doblas, and A. Calatayud, “Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector,” Opt. Lett. 37(7), 1280–1282 (2012).
[Crossref]

McCabe, E. M.

D. T. Fewer, S. J. Hewlett, E. M. McCabe, and J. Hegarty, “Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration,” J. Microsc. 187(1), 54–61 (1997).
[Crossref]

Menegatti, E.

M. Munaro, E. W. Y. So, S. Tonello, and E. Menegatti, “Efficient Completeness Inspection Using Real-Time 3D Color Reconstruction with a Dual-Laser Triangulation System,” in Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, Z. Liu, H. Ukida, P. Ramuhalli, and K. Niel, eds. (Springer, 2015), pp. 201–225.

Merloz, P.

E. Stindel, J. L. Briard, P. Merloz, S. Plaweski, F. Dubrana, C. Lefevre, and J. Troccaz, “Bone Morphing: 3D Morphological Data for Total Knee Arthroplasty,” J. Prosthodontics 7(3), 156–168 (2002).
[Crossref]

Mersona, E.

E. Mersona, A. V. Kudryab, V. A. Trachenkob, D. Mersonac, V. Danilova, and A. Vinogradov, “The Use of Confocal Laser Scanning Microscopy for the 3D Quantitative Characterization of Fracture Surfaces and Cleavage Facets,” in 21st European Conference on Fracture, 2016), 533–540.

Mersonac, D.

E. Mersona, A. V. Kudryab, V. A. Trachenkob, D. Mersonac, V. Danilova, and A. Vinogradov, “The Use of Confocal Laser Scanning Microscopy for the 3D Quantitative Characterization of Fracture Surfaces and Cleavage Facets,” in 21st European Conference on Fracture, 2016), 533–540.

Miks, A.

Mishra, R. K.

Y. Zhang, A. Roshan, S. Jabari, S. A. Khiabani, F. Fathollahi, and R. K. Mishra, “Understanding the Quality of Pansharpening - A lab study,” Photogramm. Eng. Remote Sens. 82(10), 747–755 (2016).
[Crossref]

Munaro, M.

M. Munaro, E. W. Y. So, S. Tonello, and E. Menegatti, “Efficient Completeness Inspection Using Real-Time 3D Color Reconstruction with a Dual-Laser Triangulation System,” in Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, Z. Liu, H. Ukida, P. Ramuhalli, and K. Niel, eds. (Springer, 2015), pp. 201–225.

Murrow, L.

S. Stehbens, H. Pemble, L. Murrow, and T. Wittmann, “Imaging intracellular protein dynamics by spinning disk confocal microscopy,” Methods Enzymol. 504, 293–313 (2012).
[Crossref]

Nadolny, K.

W. Kaplonek and K. Nadolny, “Advanced 3D laser microscopy for measurements and analysis of vitrified bonded abrasive tools,” J. Eng. Sci. Technol. 7(6), 661–678 (2012).

Nurre, J. H.

J. H. Nurre, S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, and B. D. Corner, “3D profilometry using a dynamically configurable confocal microscope,” in Three-Dimensional Image Capture and Applications II, (Jose, CA, United States, 1999), pp. 246–253.

Oberschmidt, Dirk

Eckart Uhlmann, Dirk Oberschmidt, and Gerald Kunath-Fandrei, “3D-analysis of microstructures with confocal laser scanning microscopy,” in Machines and processes for micro-scale and meso-scale fabrication, metrology and assembly, (American Society for Precision Engineering, 2003), 93–97.

Otsuki, S.

Paredes, J. L.

P. Ye, J. L. Paredes, Y. Wu, C. Chen, G. R. Arce, and D. W. Prather, “Compressive Confocal Microscopy: 3D Reconstruction Algorithms,” Proc. SPIE 7210, 72100G (2009).
[Crossref]

Pemble, H.

S. Stehbens, H. Pemble, L. Murrow, and T. Wittmann, “Imaging intracellular protein dynamics by spinning disk confocal microscopy,” Methods Enzymol. 504, 293–313 (2012).
[Crossref]

Perrot, J. L.

L. Gevaux, C. Adnet, P. Séroul, R. Clerc, A. Trémeau, J. L. Perrot, and M. Hébert, “Three-dimensional hyperspectral imaging: a new method for human face acquisition,” Electronic Imaging 2018(8), 152 (2018).
[Crossref]

Picard, M.

L. Cournoyer, M. Rioux, F. Blais, J. B. Taylor, M. Picard, C. Lahanier, J. A. Beraldin, G. Godin, and L. Borgeat, “Ultra high-resolution 3D laser color imaging of paintings: The Mona Lisa by Leonardo da Vinci,” in 7th International Conference on Lasers in the Conservation of Artworks, (Taylor & Francis Group, 2007), 435–440.

Plaweski, S.

E. Stindel, J. L. Briard, P. Merloz, S. Plaweski, F. Dubrana, C. Lefevre, and J. Troccaz, “Bone Morphing: 3D Morphological Data for Total Knee Arthroplasty,” J. Prosthodontics 7(3), 156–168 (2002).
[Crossref]

Pokorny, P.

Prather, D. W.

P. Ye, J. L. Paredes, Y. Wu, C. Chen, G. R. Arce, and D. W. Prather, “Compressive Confocal Microscopy: 3D Reconstruction Algorithms,” Proc. SPIE 7210, 72100G (2009).
[Crossref]

Punyasena, S. W.

C. M. Belcher, S. W. Punyasena, and M. Sivaguru, “Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal,” PLoS One 8(8), e72265 (2013).
[Crossref]

Rioux, M.

L. Cournoyer, M. Rioux, F. Blais, J. B. Taylor, M. Picard, C. Lahanier, J. A. Beraldin, G. Godin, and L. Borgeat, “Ultra high-resolution 3D laser color imaging of paintings: The Mona Lisa by Leonardo da Vinci,” in 7th International Conference on Lasers in the Conservation of Artworks, (Taylor & Francis Group, 2007), 435–440.

Roshan, A.

Y. Zhang, A. Roshan, S. Jabari, S. A. Khiabani, F. Fathollahi, and R. K. Mishra, “Understanding the Quality of Pansharpening - A lab study,” Photogramm. Eng. Remote Sens. 82(10), 747–755 (2016).
[Crossref]

Rzany, B.

U. Jacobi, M. Chen, G. Frankowski, R. Sinkgraven, M. Hund, B. Rzany, W. Sterry, and J. Lademann, “In vivo determination of skin surface topography using an optical 3D device,” Skin Res Technol 10(4), 207–214 (2004).
[Crossref]

Saavedra, G.

M. Martínez-Corral, P. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y. Huang, “Fast Axial-Scanning Widefield Microscopy With Constant Magnification and Resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

B. Javidi, J.-Y. Son, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, J. Sola-Pikabea, M. Martínez-Corral, P.-Y. Hsieh, and Y.-P. Huang, “Three-dimensional microscopy through liquid-lens axial scanning,” Proc. SPIE 9495, 949503 (2015).
[Crossref]

E. Sánchez-Ortiga, C. J. R. Sheppard, G. Saavedra, M. Martínez-Corral, A. Doblas, and A. Calatayud, “Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector,” Opt. Lett. 37(7), 1280–1282 (2012).
[Crossref]

Sánchez-Ortiga, E.

B. Javidi, J.-Y. Son, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, J. Sola-Pikabea, M. Martínez-Corral, P.-Y. Hsieh, and Y.-P. Huang, “Three-dimensional microscopy through liquid-lens axial scanning,” Proc. SPIE 9495, 949503 (2015).
[Crossref]

M. Martínez-Corral, P. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y. Huang, “Fast Axial-Scanning Widefield Microscopy With Constant Magnification and Resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

E. Sánchez-Ortiga, C. J. R. Sheppard, G. Saavedra, M. Martínez-Corral, A. Doblas, and A. Calatayud, “Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector,” Opt. Lett. 37(7), 1280–1282 (2012).
[Crossref]

Sansoni, G.

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation,” Sensors 9(1), 568–601 (2009).
[Crossref]

Sasaki, H.

M. Ishihara and H. Sasaki, “High-speed surface measurement using a non-scanning multiple-beam confocal microscope,” Opt. Eng. 38(6), 1035–1040 (1999).
[Crossref]

Séroul, P.

L. Gevaux, C. Adnet, P. Séroul, R. Clerc, A. Trémeau, J. L. Perrot, and M. Hébert, “Three-dimensional hyperspectral imaging: a new method for human face acquisition,” Electronic Imaging 2018(8), 152 (2018).
[Crossref]

Sheppard, C.

C. Sheppard and D. Shotton, Confocal Laser Scanning Microscopy (BIOS Scientific Publishers, 1997).

Sheppard, C. J. R.

Shimizu, M.

Shotton, D.

C. Sheppard and D. Shotton, Confocal Laser Scanning Microscopy (BIOS Scientific Publishers, 1997).

Sinkgraven, R.

U. Jacobi, M. Chen, G. Frankowski, R. Sinkgraven, M. Hund, B. Rzany, W. Sterry, and J. Lademann, “In vivo determination of skin surface topography using an optical 3D device,” Skin Res Technol 10(4), 207–214 (2004).
[Crossref]

Sivaguru, M.

C. M. Belcher, S. W. Punyasena, and M. Sivaguru, “Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal,” PLoS One 8(8), e72265 (2013).
[Crossref]

So, E. W. Y.

M. Munaro, E. W. Y. So, S. Tonello, and E. Menegatti, “Efficient Completeness Inspection Using Real-Time 3D Color Reconstruction with a Dual-Laser Triangulation System,” in Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, Z. Liu, H. Ukida, P. Ramuhalli, and K. Niel, eds. (Springer, 2015), pp. 201–225.

Sola-Pikabea, J.

B. Javidi, J.-Y. Son, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, J. Sola-Pikabea, M. Martínez-Corral, P.-Y. Hsieh, and Y.-P. Huang, “Three-dimensional microscopy through liquid-lens axial scanning,” Proc. SPIE 9495, 949503 (2015).
[Crossref]

Son, J.-Y.

B. Javidi, J.-Y. Son, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, J. Sola-Pikabea, M. Martínez-Corral, P.-Y. Hsieh, and Y.-P. Huang, “Three-dimensional microscopy through liquid-lens axial scanning,” Proc. SPIE 9495, 949503 (2015).
[Crossref]

Stehbens, S.

S. Stehbens, H. Pemble, L. Murrow, and T. Wittmann, “Imaging intracellular protein dynamics by spinning disk confocal microscopy,” Methods Enzymol. 504, 293–313 (2012).
[Crossref]

Sterry, W.

U. Jacobi, M. Chen, G. Frankowski, R. Sinkgraven, M. Hund, B. Rzany, W. Sterry, and J. Lademann, “In vivo determination of skin surface topography using an optical 3D device,” Skin Res Technol 10(4), 207–214 (2004).
[Crossref]

Stindel, E.

E. Stindel, J. L. Briard, P. Merloz, S. Plaweski, F. Dubrana, C. Lefevre, and J. Troccaz, “Bone Morphing: 3D Morphological Data for Total Knee Arthroplasty,” J. Prosthodontics 7(3), 156–168 (2002).
[Crossref]

Sun, P. C.

J. H. Nurre, S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, and B. D. Corner, “3D profilometry using a dynamically configurable confocal microscope,” in Three-Dimensional Image Capture and Applications II, (Jose, CA, United States, 1999), pp. 246–253.

Sun, P.-C.

Tanaami, T.

Taylor, J. B.

L. Cournoyer, M. Rioux, F. Blais, J. B. Taylor, M. Picard, C. Lahanier, J. A. Beraldin, G. Godin, and L. Borgeat, “Ultra high-resolution 3D laser color imaging of paintings: The Mona Lisa by Leonardo da Vinci,” in 7th International Conference on Lasers in the Conservation of Artworks, (Taylor & Francis Group, 2007), 435–440.

Ting-shu, S.

S. Ting-shu and S. Jian, “Intraoral Digital Impression Technique: A Review,” J Prosthodont. 24(4), 313–321 (2015).
[Crossref]

Tiziani, H.

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[Crossref]

Tomosada, N.

Tonello, S.

M. Munaro, E. W. Y. So, S. Tonello, and E. Menegatti, “Efficient Completeness Inspection Using Real-Time 3D Color Reconstruction with a Dual-Laser Triangulation System,” in Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, Z. Liu, H. Ukida, P. Ramuhalli, and K. Niel, eds. (Springer, 2015), pp. 201–225.

Trachenkob, V. A.

E. Mersona, A. V. Kudryab, V. A. Trachenkob, D. Mersonac, V. Danilova, and A. Vinogradov, “The Use of Confocal Laser Scanning Microscopy for the 3D Quantitative Characterization of Fracture Surfaces and Cleavage Facets,” in 21st European Conference on Fracture, 2016), 533–540.

Trebeschi, M.

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation,” Sensors 9(1), 568–601 (2009).
[Crossref]

Trémeau, A.

L. Gevaux, C. Adnet, P. Séroul, R. Clerc, A. Trémeau, J. L. Perrot, and M. Hébert, “Three-dimensional hyperspectral imaging: a new method for human face acquisition,” Electronic Imaging 2018(8), 152 (2018).
[Crossref]

Troccaz, J.

E. Stindel, J. L. Briard, P. Merloz, S. Plaweski, F. Dubrana, C. Lefevre, and J. Troccaz, “Bone Morphing: 3D Morphological Data for Total Knee Arthroplasty,” J. Prosthodontics 7(3), 156–168 (2002).
[Crossref]

Uhlmann, Eckart

Eckart Uhlmann, Dirk Oberschmidt, and Gerald Kunath-Fandrei, “3D-analysis of microstructures with confocal laser scanning microscopy,” in Machines and processes for micro-scale and meso-scale fabrication, metrology and assembly, (American Society for Precision Engineering, 2003), 93–97.

Vinogradov, A.

E. Mersona, A. V. Kudryab, V. A. Trachenkob, D. Mersonac, V. Danilova, and A. Vinogradov, “The Use of Confocal Laser Scanning Microscopy for the 3D Quantitative Characterization of Fracture Surfaces and Cleavage Facets,” in 21st European Conference on Fracture, 2016), 533–540.

Wegner, M.

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[Crossref]

Wilson, T.

T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Microsc. 244(2), 113–121 (2011).
[Crossref]

D. K. Hamilton and T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B: Photophys. Laser Chem. 27(4), 211–213 (1982).
[Crossref]

Wittmann, T.

S. Stehbens, H. Pemble, L. Murrow, and T. Wittmann, “Imaging intracellular protein dynamics by spinning disk confocal microscopy,” Methods Enzymol. 504, 293–313 (2012).
[Crossref]

Wu, Y.

P. Ye, J. L. Paredes, Y. Wu, C. Chen, G. R. Arce, and D. W. Prather, “Compressive Confocal Microscopy: 3D Reconstruction Algorithms,” Proc. SPIE 7210, 72100G (2009).
[Crossref]

Ye, P.

P. Ye, J. L. Paredes, Y. Wu, C. Chen, G. R. Arce, and D. W. Prather, “Compressive Confocal Microscopy: 3D Reconstruction Algorithms,” Proc. SPIE 7210, 72100G (2009).
[Crossref]

Yoo, H.

H. J. Jeong, H. Yoo, and D. Gweon, “High-speed 3-D measurement with a large field of view based on direct-view confocal microscope with an electrically tunable lens,” Opt. Express 24(4), 3806–3816 (2016).
[Crossref]

H. Yoo, S. Lee, D. Kang, T. Kim, D. Gweon, S. Lee, and K. Kim, “Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler,” Int. J. Precis. Eng. Man. 7, 3–7 (2006).

Yu, L.

Zhang, Y.

Y. Zhang, A. Roshan, S. Jabari, S. A. Khiabani, F. Fathollahi, and R. K. Mishra, “Understanding the Quality of Pansharpening - A lab study,” Photogramm. Eng. Remote Sens. 82(10), 747–755 (2016).
[Crossref]

Zhang, Z.

Z. Zhang and C. Li, “Defect Inspection for Curved Surface with Highly Specular Reflection,” in Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, Z. Liu, H. Ukida, P. Ramuhalli, and K. Niel, eds. (Springer, 2015), pp. 251–317.

Zhu, L.

S. Cha, P. C. Lin, L. Zhu, P.-C. Sun, and Y. Fainman, “Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning,” Appl. Opt. 39(16), 2605–2613 (2000).
[Crossref]

J. H. Nurre, S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, and B. D. Corner, “3D profilometry using a dynamically configurable confocal microscope,” in Three-Dimensional Image Capture and Applications II, (Jose, CA, United States, 1999), pp. 246–253.

Adv. Opt. Photonics (1)

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

Appl. Opt. (7)

Appl. Phys. B: Photophys. Laser Chem. (1)

D. K. Hamilton and T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B: Photophys. Laser Chem. 27(4), 211–213 (1982).
[Crossref]

Electronic Imaging (1)

L. Gevaux, C. Adnet, P. Séroul, R. Clerc, A. Trémeau, J. L. Perrot, and M. Hébert, “Three-dimensional hyperspectral imaging: a new method for human face acquisition,” Electronic Imaging 2018(8), 152 (2018).
[Crossref]

Eur. J. Pharm. Biopharm. (1)

P. Furrer and R. Gurny, “Recent advances in confocal microscopy for studying drug delivery to the eye: concepts and pharmaceutical applications,” Eur. J. Pharm. Biopharm. 74(1), 33–40 (2010).
[Crossref]

Int. J. Precis. Eng. Man. (1)

H. Yoo, S. Lee, D. Kang, T. Kim, D. Gweon, S. Lee, and K. Kim, “Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler,” Int. J. Precis. Eng. Man. 7, 3–7 (2006).

J Prosthodont. (1)

S. Ting-shu and S. Jian, “Intraoral Digital Impression Technique: A Review,” J Prosthodont. 24(4), 313–321 (2015).
[Crossref]

J. Disp. Technol. (1)

M. Martínez-Corral, P. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y. Huang, “Fast Axial-Scanning Widefield Microscopy With Constant Magnification and Resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

J. Eng. Sci. Technol. (1)

W. Kaplonek and K. Nadolny, “Advanced 3D laser microscopy for measurements and analysis of vitrified bonded abrasive tools,” J. Eng. Sci. Technol. 7(6), 661–678 (2012).

J. Imaging (1)

S. Ceccarelli, M. Guarneri, M. F. de Collibus, M. Francucci, M. Ciaffi, and A. Danielis, “Laser Scanners for High-Quality 3D and IR Imaging in Cultural Heritage Monitoring and Documentation,” J. Imaging 4(11), 130 (2018).
[Crossref]

J. Microsc. (2)

D. T. Fewer, S. J. Hewlett, E. M. McCabe, and J. Hegarty, “Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration,” J. Microsc. 187(1), 54–61 (1997).
[Crossref]

T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Microsc. 244(2), 113–121 (2011).
[Crossref]

J. Prosthodontics (1)

E. Stindel, J. L. Briard, P. Merloz, S. Plaweski, F. Dubrana, C. Lefevre, and J. Troccaz, “Bone Morphing: 3D Morphological Data for Total Knee Arthroplasty,” J. Prosthodontics 7(3), 156–168 (2002).
[Crossref]

Meas. Sci. Technol. (1)

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[Crossref]

Methods Enzymol. (1)

S. Stehbens, H. Pemble, L. Murrow, and T. Wittmann, “Imaging intracellular protein dynamics by spinning disk confocal microscopy,” Methods Enzymol. 504, 293–313 (2012).
[Crossref]

Nat. Methods (1)

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
[Crossref]

Opt. Eng. (1)

M. Ishihara and H. Sasaki, “High-speed surface measurement using a non-scanning multiple-beam confocal microscope,” Opt. Eng. 38(6), 1035–1040 (1999).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Photogramm. Eng. Remote Sens. (1)

Y. Zhang, A. Roshan, S. Jabari, S. A. Khiabani, F. Fathollahi, and R. K. Mishra, “Understanding the Quality of Pansharpening - A lab study,” Photogramm. Eng. Remote Sens. 82(10), 747–755 (2016).
[Crossref]

PLoS One (1)

C. M. Belcher, S. W. Punyasena, and M. Sivaguru, “Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal,” PLoS One 8(8), e72265 (2013).
[Crossref]

Proc. SPIE (2)

P. Ye, J. L. Paredes, Y. Wu, C. Chen, G. R. Arce, and D. W. Prather, “Compressive Confocal Microscopy: 3D Reconstruction Algorithms,” Proc. SPIE 7210, 72100G (2009).
[Crossref]

B. Javidi, J.-Y. Son, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, J. Sola-Pikabea, M. Martínez-Corral, P.-Y. Hsieh, and Y.-P. Huang, “Three-dimensional microscopy through liquid-lens axial scanning,” Proc. SPIE 9495, 949503 (2015).
[Crossref]

Procedia Eng. (1)

P. Hong-Seok and S. Chintal, “Development of High Speed and High Accuracy 3D Dental Intra Oral Scanner,” Procedia Eng. 100, 1174–1181 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum. 80(7), 073706 (2009).
[Crossref]

Sensors (1)

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation,” Sensors 9(1), 568–601 (2009).
[Crossref]

Skin Res Technol (1)

U. Jacobi, M. Chen, G. Frankowski, R. Sinkgraven, M. Hund, B. Rzany, W. Sterry, and J. Lademann, “In vivo determination of skin surface topography using an optical 3D device,” Skin Res Technol 10(4), 207–214 (2004).
[Crossref]

Other (10)

Z. Zhang and C. Li, “Defect Inspection for Curved Surface with Highly Specular Reflection,” in Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, Z. Liu, H. Ukida, P. Ramuhalli, and K. Niel, eds. (Springer, 2015), pp. 251–317.

M. Munaro, E. W. Y. So, S. Tonello, and E. Menegatti, “Efficient Completeness Inspection Using Real-Time 3D Color Reconstruction with a Dual-Laser Triangulation System,” in Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, Z. Liu, H. Ukida, P. Ramuhalli, and K. Niel, eds. (Springer, 2015), pp. 201–225.

L. Cournoyer, M. Rioux, F. Blais, J. B. Taylor, M. Picard, C. Lahanier, J. A. Beraldin, G. Godin, and L. Borgeat, “Ultra high-resolution 3D laser color imaging of paintings: The Mona Lisa by Leonardo da Vinci,” in 7th International Conference on Lasers in the Conservation of Artworks, (Taylor & Francis Group, 2007), 435–440.

C. Sheppard and D. Shotton, Confocal Laser Scanning Microscopy (BIOS Scientific Publishers, 1997).

Scientific-Volume-Imaging, “Signal-to-Noise ratio”, retrieved https://svi.nl/SignalToNoiseRatio .

Optotune, “Fast electrically tunable lens EL-10-30 series”, retrieved http://www.optotune.com/ .

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).

E. Mersona, A. V. Kudryab, V. A. Trachenkob, D. Mersonac, V. Danilova, and A. Vinogradov, “The Use of Confocal Laser Scanning Microscopy for the 3D Quantitative Characterization of Fracture Surfaces and Cleavage Facets,” in 21st European Conference on Fracture, 2016), 533–540.

J. H. Nurre, S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, and B. D. Corner, “3D profilometry using a dynamically configurable confocal microscope,” in Three-Dimensional Image Capture and Applications II, (Jose, CA, United States, 1999), pp. 246–253.

Eckart Uhlmann, Dirk Oberschmidt, and Gerald Kunath-Fandrei, “3D-analysis of microstructures with confocal laser scanning microscopy,” in Machines and processes for micro-scale and meso-scale fabrication, metrology and assembly, (American Society for Precision Engineering, 2003), 93–97.

Supplementary Material (3)

NameDescription
» Visualization 1       Visualization 1: The 3D movie of the 3D image (Fig. 10(b))
» Visualization 2       Visualization 2: The 3D movie of the 3D image (Fig. 10(d))
» Visualization 3       Visualization 3: The 3D movie of the 3D image (Fig. 10(f))

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic diagram of direct-view confocal microscopy which uses (a) common pinhole array for illumination and detection, and (b) two separate pinhole arrays for illumination and detection.
Fig. 2.
Fig. 2. A schematic diagram of the proposed high-speed color 3D measurement system with a focus tunable lens. WLS: white light source, CL: condenser lens, PA: pinhole array, PBS: polarizing beam splitter, FTLA: focus tunable lens assembly.
Fig. 3.
Fig. 3. A flow-chart of the 3D reconstruction algorithm.
Fig. 4.
Fig. 4. Images of projected pinhole pattern on the surface of a doll with different focal lengths (a) and (b). Red boxes show the magnified view of the in-focus image, and blue boxes show the magnified view of out-of-focus image.
Fig. 5.
Fig. 5. (a) In-focus and (b) out-of-focus images of the flat gray card and (c) corresponding axial response of intensity. Cross-correlation maps of (d) in-focus image and (e) out-of-focus image with a pinhole-shaped kernel. (f) Axial response of cross-correlation acquired at the center pixel of the flat gray card.
Fig. 6.
Fig. 6. The axial response of the system acquired at the center of the area detector. (a) Axial response of the 2D cross-correlation, and (b) Gaussian filtered axial response along the axial direction.
Fig. 7.
Fig. 7. (a) A photograph and (b) schematic diagram of the specimen with small engraved bars. (c) 3D imaging result of fabricated specimen, and (d) cross-sectional profile.
Fig. 8.
Fig. 8. (a) A photograph, (b) height map in pseudo-color, and (c) reconstructed color 3D image of the large step height specimen made of gray-color anodized aluminum.
Fig. 9.
Fig. 9. (a) A photograph of the color chart and the reconstructed color 3D images acquired by the presented system in the regions of (b) the black dashed box and (c) the orange dashed box.
Fig. 10.
Fig. 10. (a) A photograph and (b) reconstructed 3D image of molded dental plaster (See Visualization 1). (c) A photograph and (d) reconstructed 3D image of doll (See Visualization 2). (e) A photograph and (f) reconstructed 3D image of an electronic circuit board (See Visualization 3).

Metrics