Abstract

Split ring resonators (SRR) are optical nanostructures that have received a lot of attention for their ability to support magnetic resonance and for their potential use as materials with negative dielectric constant. In this work, we design SRRs as near-field transducers (NFT) for generating a nanoscale hotspot in heat-assisted magnetic recording (HAMR), which is considered a candidate for the next-generation data storage technology. The underlying mechanisms for the generation of hotspot and the dependence on wavelength and geometry of the SRR structure are studied. Optical and thermal performance of SRRs functioning as NFTs in a HAMR device are evaluated. These structures were fabricated using focused ion beam milling. The focusing capability of the SRR is experimentally demonstrated using a scattering near field scanning optical microscope.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording

Nan Zhou, Edward C. Kinzel, and Xianfan Xu
Appl. Opt. 50(31) G42-G46 (2011)

Effective heat dissipation in an adiabatic near-field transducer for HAMR

Chuan Zhong, Patrick Flanigan, Nicolás Abadía, Frank Bello, Brian D. Jennings, Gwenael Atcheson, Jing Li, Jian-Yao Zheng, Jing Jing Wang, Richard Hobbs, David McCloskey, and John F. Donegan
Opt. Express 26(15) 18842-18854 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  3. R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
    [Crossref]
  4. L. Pan and D. B. Bogy, “Data storage: Heat-assisted magnetic recording,” Nat. Photonics 3(4), 189–190 (2009).
    [Crossref]
  5. N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
    [Crossref]
  6. M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
    [Crossref]
  7. M. P. Sharrock, “Time-dependent magnetic phenomena and particle-size effects in recording media,” IEEE Trans. Magn. 26(1), 193–197 (1990).
    [Crossref]
  8. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
    [Crossref]
  9. W. A. Challener and A. V. Itagi, “Near-Field Optics for Heat-Assisted Magnetic Recording (Experiment, Theory, and Modeling),” in Modern Aspects of Electrochemistry No. 44: Modelling and Numerical Simulations II, M. Schlesinger, ed. (Springer, 2009), pp. 53–111.
  10. A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
    [Crossref]
  11. N. Zhou, L. M. Traverso, and X. Xu, “Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording,” Nanotechnology 26(13), 134001 (2015).
    [Crossref] [PubMed]
  12. E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
  13. B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
    [Crossref]
  14. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
    [Crossref]
  15. L. Traverso, A. Datta, and X. Xu, “Subdiffraction light focusing using a cross sectional ridge waveguide nanoscale aperture,” Opt. Express 24(23), 26016–26023 (2016).
    [Crossref] [PubMed]
  16. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref] [PubMed]
  17. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47(11), 2075–2084 (1999).
    [Crossref]
  18. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
    [Crossref] [PubMed]
  19. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30(11), 1348–1350 (2005).
    [Crossref] [PubMed]
  20. V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.) 3(2), 57–62 (2009).
    [Crossref]
  21. X. Shi, R. L. Thornton, and L. Hesselink, “Nano-aperture with 1000x power throughput enhancement for very small aperture laser system (VSAL),” in Optical Data Storage 2001 (SPIE, 2002), 4342, pp. 320–327.
  22. K. Şendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
    [Crossref] [PubMed]
  23. J. B. Leen, P. Hansen, Y. T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
    [Crossref]
  24. N. Zhou, E. C. Kinzel, and X. Xu, “Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording,” Appl. Opt. 50(31), G42–G46 (2011).
    [Crossref] [PubMed]
  25. S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
    [Crossref]
  26. T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
    [Crossref] [PubMed]
  27. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B-Lasers O. 84(1–2), 219–227 (2006).
    [Crossref]
  28. A. W. Clark, A. K. Sheridan, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Tuneable visible resonances in crescent shaped nano-split-ring resonators,” Appl. Phys. Lett. 91(9), 093109 (2007).
    [Crossref]
  29. P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures 9(1), 42–48 (2011).
    [Crossref]
  30. H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
    [Crossref] [PubMed]
  31. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  32. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
    [Crossref]
  33. A. Datta and X. Xu, “Infrared Near-Field Transducer for Heat-Assisted Magnetic Recording,” IEEE Trans. Magn. 53(12), 1–5 (2017).
    [Crossref]
  34. Z. H. Cen, B. X. Xu, J. F. Hu, J. M. Li, K. M. Cher, Y. T. Toh, K. D. Ye, and J. Zhang, “Optical property study of FePt-C nanocomposite thin film for heat-assisted magnetic recording,” Opt. Express 21(8), 9906–9914 (2013).
    [Crossref] [PubMed]
  35. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  36. A. Datta and X. Xu, “Improved Near-Field Transducer Design for Heat-Assisted Magnetic Recording,” IEEE Trans. Magn. 52(12), 1–6 (2016).
    [Crossref]
  37. N. Berkovitch, P. Ginzburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys. Condens. Matter 24(7), 073202 (2012).
    [Crossref] [PubMed]
  38. N. Zhou, Y. Li, and X. Xu, “Resolving near-field from high order signals of scattering near-field scanning optical microscopy,” Opt. Express 22(15), 18715–18723 (2014).
    [Crossref] [PubMed]
  39. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4–6), 321–328 (2000).
    [Crossref]

2017 (2)

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

A. Datta and X. Xu, “Infrared Near-Field Transducer for Heat-Assisted Magnetic Recording,” IEEE Trans. Magn. 53(12), 1–5 (2017).
[Crossref]

2016 (2)

A. Datta and X. Xu, “Improved Near-Field Transducer Design for Heat-Assisted Magnetic Recording,” IEEE Trans. Magn. 52(12), 1–6 (2016).
[Crossref]

L. Traverso, A. Datta, and X. Xu, “Subdiffraction light focusing using a cross sectional ridge waveguide nanoscale aperture,” Opt. Express 24(23), 26016–26023 (2016).
[Crossref] [PubMed]

2015 (1)

N. Zhou, L. M. Traverso, and X. Xu, “Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording,” Nanotechnology 26(13), 134001 (2015).
[Crossref] [PubMed]

2014 (2)

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

N. Zhou, Y. Li, and X. Xu, “Resolving near-field from high order signals of scattering near-field scanning optical microscopy,” Opt. Express 22(15), 18715–18723 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys. Condens. Matter 24(7), 073202 (2012).
[Crossref] [PubMed]

2011 (2)

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures 9(1), 42–48 (2011).
[Crossref]

N. Zhou, E. C. Kinzel, and X. Xu, “Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording,” Appl. Opt. 50(31), G42–G46 (2011).
[Crossref] [PubMed]

2010 (4)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

J. B. Leen, P. Hansen, Y. T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[Crossref]

2009 (3)

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.) 3(2), 57–62 (2009).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

L. Pan and D. B. Bogy, “Data storage: Heat-assisted magnetic recording,” Nat. Photonics 3(4), 189–190 (2009).
[Crossref]

2008 (3)

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
[Crossref]

T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
[Crossref] [PubMed]

2007 (2)

A. W. Clark, A. K. Sheridan, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Tuneable visible resonances in crescent shaped nano-split-ring resonators,” Appl. Phys. Lett. 91(9), 093109 (2007).
[Crossref]

S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
[Crossref]

2006 (2)

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B-Lasers O. 84(1–2), 219–227 (2006).
[Crossref]

2005 (4)

K. Şendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30(11), 1348–1350 (2005).
[Crossref] [PubMed]

2004 (3)

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4–6), 321–328 (2000).
[Crossref]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

1990 (1)

M. P. Sharrock, “Time-dependent magnetic phenomena and particle-size effects in recording media,” IEEE Trans. Magn. 26(1), 193–197 (1990).
[Crossref]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Albrecht, T. R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Balamane, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Batra, S.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

Berkovitch, N.

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys. Condens. Matter 24(7), 073202 (2012).
[Crossref] [PubMed]

Bogy, D. B.

L. Pan and D. B. Bogy, “Data storage: Heat-assisted magnetic recording,” Nat. Photonics 3(4), 189–190 (2009).
[Crossref]

Boone, T. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Buechel, D.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Cai, G. W.

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures 9(1), 42–48 (2011).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Casse, B. D. F.

H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

Cen, Z. H.

Challener, W.

K. Şendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

Cheng, Y. T.

J. B. Leen, P. Hansen, Y. T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[Crossref]

Cher, K. M.

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Clark, A. W.

A. W. Clark, A. K. Sheridan, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Tuneable visible resonances in crescent shaped nano-split-ring resonators,” Appl. Phys. Lett. 91(9), 093109 (2007).
[Crossref]

Cooper, J. M.

A. W. Clark, A. K. Sheridan, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Tuneable visible resonances in crescent shaped nano-split-ring resonators,” Appl. Phys. Lett. 91(9), 093109 (2007).
[Crossref]

Corrigan, T. D.

Cumming, D. R. S.

A. W. Clark, A. K. Sheridan, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Tuneable visible resonances in crescent shaped nano-split-ring resonators,” Appl. Phys. Lett. 91(9), 093109 (2007).
[Crossref]

Datta, A.

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

A. Datta and X. Xu, “Infrared Near-Field Transducer for Heat-Assisted Magnetic Recording,” IEEE Trans. Magn. 53(12), 1–5 (2017).
[Crossref]

A. Datta and X. Xu, “Improved Near-Field Transducer Design for Heat-Assisted Magnetic Recording,” IEEE Trans. Magn. 52(12), 1–6 (2016).
[Crossref]

L. Traverso, A. Datta, and X. Xu, “Subdiffraction light focusing using a cross sectional ridge waveguide nanoscale aperture,” Opt. Express 24(23), 26016–26023 (2016).
[Crossref] [PubMed]

Delgado, V.

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.) 3(2), 57–62 (2009).
[Crossref]

Ding, P.

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures 9(1), 42–48 (2011).
[Crossref]

Dobisz, E.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Drew, H. D.

Economou, E. N.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30(11), 1348–1350 (2005).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Erden, M. F.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Etrich, C.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B-Lasers O. 84(1–2), 219–227 (2006).
[Crossref]

Freire, M. J.

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.) 3(2), 57–62 (2009).
[Crossref]

Gage, E.

M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
[Crossref]

Gage, E. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Gao, K.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Gibby, A.

J. B. Leen, P. Hansen, Y. T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[Crossref]

Giessen, H.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B-Lasers O. 84(1–2), 219–227 (2006).
[Crossref]

Ginzburg, P.

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys. Condens. Matter 24(7), 073202 (2012).
[Crossref] [PubMed]

Glidle, A.

A. W. Clark, A. K. Sheridan, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Tuneable visible resonances in crescent shaped nano-split-ring resonators,” Appl. Phys. Lett. 91(9), 093109 (2007).
[Crossref]

Gokemeijer, N.

M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
[Crossref]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Gundogdu, T. F.

Guo, H.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B-Lasers O. 84(1–2), 219–227 (2006).
[Crossref]

Hammack, A. T.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Hansen, P.

J. B. Leen, P. Hansen, Y. T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[Crossref]

Hellwig, O.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Hesselink, L.

J. B. Leen, P. Hansen, Y. T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[Crossref]

Hirotsune, A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Hohlfeld, J.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

Hsia, Y.-T.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Hu, J. F.

Hu, W. Q.

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures 9(1), 42–48 (2011).
[Crossref]

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Jelinek, L.

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.) 3(2), 57–62 (2009).
[Crossref]

Jin, E. X.

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ju, G.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kafesaki, M.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30(11), 1348–1350 (2005).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Karns, D.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Katine, J. A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Katsarakis, N.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30(11), 1348–1350 (2005).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Keilmann, F.

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4–6), 321–328 (2000).
[Crossref]

Kercher, D. S.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Kinzel, E. C.

Knoll, B.

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4–6), 321–328 (2000).
[Crossref]

Kolb, P. W.

Konstantinidis, G.

Koschny, T.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30(11), 1348–1350 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Kostopoulos, A.

Kryder, M. H.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Kubota, Y.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

Kuhl, J.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B-Lasers O. 84(1–2), 219–227 (2006).
[Crossref]

Lederer, F.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B-Lasers O. 84(1–2), 219–227 (2006).
[Crossref]

Leen, J. B.

J. B. Leen, P. Hansen, Y. T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[Crossref]

Li, J. M.

Li, J.-L.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Li, L.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

Li, Y.

Liang, E. J.

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures 9(1), 42–48 (2011).
[Crossref]

Linden, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Liu, N.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B-Lasers O. 84(1–2), 219–227 (2006).
[Crossref]

Loa, I.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B-Lasers O. 84(1–2), 219–227 (2006).
[Crossref]

Lu, B.

M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
[Crossref]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

Marqués, R.

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.) 3(2), 57–62 (2009).
[Crossref]

McDaniel, T. W.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Mihalcea, C.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

Moser, H. O.

H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

Mountfield, K.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Nemoto, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Orenstein, M.

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys. Condens. Matter 24(7), 073202 (2012).
[Crossref] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Pan, L.

L. Pan and D. B. Bogy, “Data storage: Heat-assisted magnetic recording,” Nat. Photonics 3(4), 189–190 (2009).
[Crossref]

Pelhos, K.

M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
[Crossref]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

Penciu, R. S.

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

Peng, C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
[Crossref]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

K. Şendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Peng, Y.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Phaneuf, R. J.

Poon, C. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Rausch, T.

M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
[Crossref]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

Rawat, V.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

Robertson, N.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Rockstuhl, C.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B-Lasers O. 84(1–2), 219–227 (2006).
[Crossref]

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
[Crossref]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

Ruiz, R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Saw, B. T.

H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

Schmadel, D. C.

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Scholz, W.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Seigler, M. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
[Crossref]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

Sendur, K.

K. Şendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

Sharrock, M. P.

M. P. Sharrock, “Time-dependent magnetic phenomena and particle-size effects in recording media,” IEEE Trans. Magn. 26(1), 193–197 (1990).
[Crossref]

Sheridan, A. K.

A. W. Clark, A. K. Sheridan, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Tuneable visible resonances in crescent shaped nano-split-ring resonators,” Appl. Phys. Lett. 91(9), 093109 (2007).
[Crossref]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Soukoulis, C. M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30(11), 1348–1350 (2005).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

Stipe, B. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Strand, T. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Sushkov, A. B.

Syassen, K.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B-Lasers O. 84(1–2), 219–227 (2006).
[Crossref]

Sydoruk, O.

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.) 3(2), 57–62 (2009).
[Crossref]

Tatartschuk, E.

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.) 3(2), 57–62 (2009).
[Crossref]

Terris, B. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Toh, Y. T.

Traverso, L.

Traverso, L. M.

N. Zhou, L. M. Traverso, and X. Xu, “Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording,” Nanotechnology 26(13), 134001 (2015).
[Crossref] [PubMed]

Tretyakov, S.

S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wegener, M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Weller, D.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wilhelmi, O.

H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

Xu, B. X.

Xu, X.

A. Datta and X. Xu, “Infrared Near-Field Transducer for Heat-Assisted Magnetic Recording,” IEEE Trans. Magn. 53(12), 1–5 (2017).
[Crossref]

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

A. Datta and X. Xu, “Improved Near-Field Transducer Design for Heat-Assisted Magnetic Recording,” IEEE Trans. Magn. 52(12), 1–6 (2016).
[Crossref]

L. Traverso, A. Datta, and X. Xu, “Subdiffraction light focusing using a cross sectional ridge waveguide nanoscale aperture,” Opt. Express 24(23), 26016–26023 (2016).
[Crossref] [PubMed]

N. Zhou, L. M. Traverso, and X. Xu, “Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording,” Nanotechnology 26(13), 134001 (2015).
[Crossref] [PubMed]

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

N. Zhou, Y. Li, and X. Xu, “Resolving near-field from high order signals of scattering near-field scanning optical microscopy,” Opt. Express 22(15), 18715–18723 (2014).
[Crossref] [PubMed]

N. Zhou, E. C. Kinzel, and X. Xu, “Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording,” Appl. Opt. 50(31), G42–G46 (2011).
[Crossref] [PubMed]

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).

Xue, Q. Z.

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures 9(1), 42–48 (2011).
[Crossref]

Yang, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
[Crossref]

Yang, X.-M.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

Ye, K. D.

Zentgraf, T.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B-Lasers O. 84(1–2), 219–227 (2006).
[Crossref]

Zhang, J.

Zhou, H.

M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
[Crossref]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Zhou, N.

N. Zhou, L. M. Traverso, and X. Xu, “Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording,” Nanotechnology 26(13), 134001 (2015).
[Crossref] [PubMed]

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

N. Zhou, Y. Li, and X. Xu, “Resolving near-field from high order signals of scattering near-field scanning optical microscopy,” Opt. Express 22(15), 18715–18723 (2014).
[Crossref] [PubMed]

N. Zhou, E. C. Kinzel, and X. Xu, “Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording,” Appl. Opt. 50(31), G42–G46 (2011).
[Crossref] [PubMed]

Zhu, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B-Lasers O. (1)

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B-Lasers O. 84(1–2), 219–227 (2006).
[Crossref]

Appl. Phys. Lett. (3)

A. W. Clark, A. K. Sheridan, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Tuneable visible resonances in crescent shaped nano-split-ring resonators,” Appl. Phys. Lett. 91(9), 093109 (2007).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

J. B. Leen, P. Hansen, Y. T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[Crossref]

IEEE T. Microw. Theory (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

IEEE Trans. Magn. (5)

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X.-M. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42(10), 2417–2421 (2006).
[Crossref]

M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch, “Integrated heat assisted magnetic recording head: Design and recording demonstration,” IEEE Trans. Magn. 44(1), 119–124 (2008).
[Crossref]

M. P. Sharrock, “Time-dependent magnetic phenomena and particle-size effects in recording media,” IEEE Trans. Magn. 26(1), 193–197 (1990).
[Crossref]

A. Datta and X. Xu, “Infrared Near-Field Transducer for Heat-Assisted Magnetic Recording,” IEEE Trans. Magn. 53(12), 1–5 (2017).
[Crossref]

A. Datta and X. Xu, “Improved Near-Field Transducer Design for Heat-Assisted Magnetic Recording,” IEEE Trans. Magn. 52(12), 1–6 (2016).
[Crossref]

J. Phys. Condens. Matter (1)

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys. Condens. Matter 24(7), 073202 (2012).
[Crossref] [PubMed]

Jpn. J. Appl. Phys (1)

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).

Metamaterials (Amst.) (2)

S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
[Crossref]

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.) 3(2), 57–62 (2009).
[Crossref]

Nanophotonics (1)

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Nanotechnology (1)

N. Zhou, L. M. Traverso, and X. Xu, “Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording,” Nanotechnology 26(13), 134001 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (4)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

L. Pan and D. B. Bogy, “Data storage: Heat-assisted magnetic recording,” Nat. Photonics 3(4), 189–190 (2009).
[Crossref]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Opt. Commun. (1)

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4–6), 321–328 (2000).
[Crossref]

Opt. Eng. (1)

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Photon. Nanostructures (1)

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures 9(1), 42–48 (2011).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (4)

H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

K. Şendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Proc. IEEE (1)

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Science (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Other (2)

W. A. Challener and A. V. Itagi, “Near-Field Optics for Heat-Assisted Magnetic Recording (Experiment, Theory, and Modeling),” in Modern Aspects of Electrochemistry No. 44: Modelling and Numerical Simulations II, M. Schlesinger, ed. (Springer, 2009), pp. 53–111.

X. Shi, R. L. Thornton, and L. Hesselink, “Nano-aperture with 1000x power throughput enhancement for very small aperture laser system (VSAL),” in Optical Data Storage 2001 (SPIE, 2002), 4342, pp. 320–327.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic of a single loop split ring resonator nanostructure, (b) its equivalent LC circuit, (c) double loop SRR and (d) its equivalent LC circuit.
Fig. 2
Fig. 2 Possible orientations of the propagation vector of the incident light and the electric and magnetic field polarizations to excite resonance mode in the SRR structure. (a) The magnetic field is pointed out-of the plane with the electric field pointed parallel to the gap, (b) The magnetic field is pointed out of the plane with the electric field pointed across the gap and (c) The propagation vector is pointed out of the plane with the electric field pointed across the gap.
Fig. 3
Fig. 3 Schematic of a single loop SRR showing the relevant parameters and the placement of the magnetic pole and the recording medium.
Fig. 4
Fig. 4 Coupling efficiency versus wavelength for a single loop SRR.
Fig. 5
Fig. 5 (a) Electric field profile at the recording medium at 1550 nm, (b) Current density at the surface of the NFT at 1550 nm, (c) Out-of-plane magnetic field at the recording medium at 1550 nm. (d) Electric field profile at the recording medium at 800 nm, (e) Current density at the surface of the NFT at 800 nm and (f) Out-of-plane magnetic field at the recording medium at 800 nm. Scale bar in these figures is 50 nm.
Fig. 6
Fig. 6 Coupling efficiency into the recording medium versus wavelength for different values of w and the arm length lx. (a) lx = 90 nm, (b) lx = 150 nm, (c) lx = 200 nm and (d) lx = 250 nm.
Fig. 7
Fig. 7 (a) Schematic of the double loop SRR with the relevant dimensions, (b) Coupling efficiency into the recording medium versus wavelength for different values of w and the arm length lx. (b) lx = 120 nm, (c) lx = 150 nm and (d) lx = 250 nm.
Fig. 8
Fig. 8 (a) Electric field profile at the recording medium corresponding to mode (1), (b) Surface current density of the NFT for mode (1), (c) Out-of-plane magnetic field for mode (1), (d) Electric field profile at the recording medium corresponding to mode (2), (e) Surface current density at the surface of the NFT for mode (2) and (f) Out-of-plane magnetic field for mode (2). (Modes (1) and (2) denote the resonance peaks as seen in Fig. 7(b)). Scale bar in these figures is 150 nm.
Fig. 9
Fig. 9 For a single loop SRR, temperature plots of (a) recording medium at the end of 1 ns and (b) the NFT at steady state. For a double loop SRR, temperature plots of (c) recording medium at the end of 1 ns and (d) the NFT at steady state.
Fig. 10
Fig. 10 (a), (b) and (c) SEM images of SRR structures fabricated through FIB milling. Scale bar is 200 nm.
Fig. 11
Fig. 11 s-NSOM results of SRR structure. (a) SEM image of an SRR structure, (b) AFM topography, (c) 2nd harmonic image of s-NSOM signal, and (d) 3rd harmonic image of s-NSOM signal.

Tables (1)

Tables Icon

Table 1 Different layers in the recording medium and their properties

Metrics