Abstract

A common-path dual-wavelength phase demodulation technique for extrinsic Fabry–Perot interferometric (EFPI) sensors is proposed on the basis of a broadly tunable modulated grating Y-branch (MG-Y) laser. It can address the three main concerns of existing dual-wavelength phase interrogation methods: the imbalances and disturbances caused by two optical paths utilizing two lasers or two photodetectors, the restrictions between two operating wavelengths and the cavity length of EFPI, and the difficulty in eliminating the direct current (DC) component of the interferometric fringe. Dual-wavelength phase interrogation is achieved in a common optical path through high-speed wavelength switching. Taking advantage of the MG-Y laser’s full spectrum scanning ability (1527 ∼ 1567 nm), initial cavity length and DC component can be directly measured by white light interferometry. Two quadrature wavelengths are then selected to perform high speed phase demodulation scheme. Three polyethylene terephthalate (PET) diaphragm based EFPI acoustic sensors with cavity lengths of 127.954 µm, 148.366 µm and 497.300 µm, are used to demonstrate the effectiveness.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Three-wavelength passive demodulation technique for the interrogation of EFPI sensors with arbitrary cavity length

Jingshan Jia, Yi Jiang, Hongchun Gao, Liuchao Zhang, and Yuan Jiang
Opt. Express 27(6) 8890-8899 (2019)

Symmetrical demodulation method for the phase recovery of extrinsic Fabry–Perot interferometric sensors

Jingshan Jia, Yi Jiang, Junbin Huang, Jie Hu, and Lan Jiang
Opt. Express 28(7) 9149-9157 (2020)

Multiplexing fiber-optic Fabry–Perot acoustic sensors using self-calibrating wavelength shifting interferometry

Qiang Liu, Zhenguo Jing, Yueying Liu, Ang Li, Zhenjie Xia, and Wei Peng
Opt. Express 27(26) 38191-38203 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Zaki, H. Chai, D. Aggelis, and N. Alver, “Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique,” Sensors 15(8), 19069–19101 (2015).
    [Crossref]
  2. Q. Y. Lu and C. H. Wong, “Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring,” Virtual Phys. Prototy. 13(2), 39–48 (2018).
    [Crossref]
  3. C. Hu, Z. Yu, and A. Wang, “An all fiber-optic multi-parameter structure health monitoring system,” Opt. Express 24(18), 20287–20296 (2016).
    [Crossref]
  4. R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications,” Sensors 15(8), 18666–18713 (2015).
    [Crossref]
  5. B. Fischer, “Optical microphone hears ultrasound,” Nat. Photonics 10(6), 356–358 (2016).
    [Crossref]
  6. Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [Crossref]
  7. J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, F. Wu, and Z. Ding, “Wavelength-division-multiplexing method of polarized low-coherence interferometry for fiber Fabry–Perot interferometric sensors,” Opt. Lett. 38(19), 3751–3753 (2013).
    [Crossref]
  8. Z. Wang, Y. Jiang, W. Ding, and R. Gao, “A cross-correlation based fiber optic white-light interferometry with wavelet transform denoising,” in Fourth Asia Pacific Optical Sensors Conference (International Society for Optics and Photonics2013), p. 89241J.
  9. X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
    [Crossref]
  10. J. Zhenguo and Y. Qingxu, “White light optical fiber EFPI sensor based on cross-correlation signal processing method,” in Proc. 6th Int. Symp. Test and Measurement (2005), 3509.
  11. X. Mao, X. Zhou, and Q. Yu, “Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors,” Opt. Commun. 361, 17–20 (2016).
    [Crossref]
  12. Q. Zhang, Y. Zhu, X. Luo, G. Liu, and M. Han, “Acoustic emission sensor system using a chirped fiber-Bragg-grating Fabry–Perot interferometer and smart feedback control,” Opt. Lett. 42(3), 631–634 (2017).
    [Crossref]
  13. J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
    [Crossref]
  14. X. Mao, X. Tian, X. Zhou, and Q. Yu, “Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism,” Opt. Eng. 54(4), 046107 (2015).
    [Crossref]
  15. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry–Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
    [Crossref]
  16. E. Lu, Z. Ran, F. Peng, Z. Liu, and F. Xu, “Demodulation of micro fiber-optic Fabry–Perot interferometer using subcarrier and dual-wavelength method,” Opt. Commun. 285(6), 1087–1090 (2012).
    [Crossref]
  17. H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase Demodulation of Short-Cavity Fabry–Perot Interferometric Acoustic Sensors With Two Wavelengths,” IEEE Photonics J. 9(2), 1–9 (2017).
    [Crossref]
  18. A. Pinto, O. Frazão, J. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol. 28(21), 3149–3155 (2010).
    [Crossref]
  19. J. Cheng, D.-f. Lu, R. Gao, and Z.-m. Qi, “Fiber optic microphone with large dynamic range based on bi-fiber Fabry-Perot cavity,” in AOPC 2017: Fiber Optic Sensing and Optical Communications (International Society for Optics and Photonics2017), 104642C.
  20. J. Jiang, T. Zhang, S. Wang, K. Liu, C. Li, Z. Zhao, and T. Liu, “Noncontact Ultrasonic Detection in Low-Pressure Carbon Dioxide Medium Using High Sensitivity Fiber-Optic Fabry–Perot Sensor System,” J. Lightwave Technol. 35(23), 5079–5085 (2017).
    [Crossref]
  21. J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
    [Crossref]
  22. J. Xia, S. Xiong, F. Wang, and H. Luo, “Wavelength-switched phase interrogator for extrinsic Fabry–Perot interferometric sensors,” Opt. Lett. 41(13), 3082–3085 (2016).
    [Crossref]
  23. H. Liao, P. Lu, D. Liu, L. Liu, and J. Zhang, “Demodulation of diaphragm based fiber-optic acoustic sensor using with symmetric 3× 3 coupler,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (IEEE, 2017), 1–3.
  24. H. Liao, P. Lu, L. Liu, D. Liu, and J. Zhang, “Phase demodulation of Fabry-Perot interferometer-based acoustic sensor utilizing tunable filter with two quadrature wavelengths,” in Photonic Instrumentation Engineering IV(International Society for Optics and Photonics), 101101J (2017).
  25. J. Jia, Y. Jiang, H. Gao, L. Zhang, and Y. Jiang, “Three-wavelength passive demodulation technique for the interrogation of EFPI sensors with arbitrary cavity length,” Opt. Express 27(6), 8890–8899 (2019).
    [Crossref]
  26. M. P. Minneman, J. Ensher, M. Crawforda, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” in Asia Communications and Photonics Conference and Exhibition (Optical Society of America, 2011), 831116.
  27. J. Zhao, H. Zhou, F. Liu, and Y. Yu, “Numerical analysis of phase noise characteristics of SGDBR lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 223–231 (2015).
    [Crossref]
  28. D.-h. Choi, R. Yoshimura, and K. Ohbayashi, “Tuning of successively scanned two monolithic Vernier-tuned lasers and selective data sampling in optical comb swept source optical coherence tomography,” Biomed. Opt. Express 4(12), 2962–2987 (2013).
    [Crossref]
  29. J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett. 39(21), 6233–6236 (2014).
    [Crossref]
  30. D. MacDougall, J. Farrell, J. Brown, M. Bance, and R. Adamson, “Long-range, wide-field swept-source optical coherence tomography with GPU accelerated digital lock-in Doppler vibrography for real-time, in vivo middle ear diagnostics,” Biomed. Opt. Express 7(11), 4621–4635 (2016).
    [Crossref]
  31. J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (Optical Society of America), TuE2 (2004).
  32. S. O’Connor, M. A. Bernacil, and D. Derickson, “Generation of high speed, linear wavelength sweeps using sampled grating distributed Bragg reflector lasers,” in LEOS 2008-21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE 2008), 147–148.
  33. B. George and D. Derickson, “High-speed concatenation of frequency ramps using sampled grating distributed Bragg reflector laser diode sources for OCT resolution enhancement,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV (International Society for Optics and Photonics), 75542O (2010).
  34. J. Poliak, H. Heininger, F. Mohr, and O. Wilfert, “Modelling of MG-Y laser tuning characteristics,” in Infrared Sensors, Devices, and Applications III (International Society for Optics and Photonics 2013), p. 88680N.
  35. Y. Wei and Z. Zhai, “Error analysis of dual wavelength quadrature phase demodulation for low-finesse Fabry–Pérot cavity based fibre optic sensor,” Optik 122(14), 1309–1311 (2011).
    [Crossref]
  36. K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
    [Crossref]
  37. T. Chang, J. Lang, W. Sun, J. Chen, M. Yu, W. Gao, and H. Cui, “Phase Compensation Scheme for Fiber-Optic Interferometric Vibration Demodulation,” IEEE Sens. J. 17(22), 7448–7454 (2017).
    [Crossref]

2019 (1)

2018 (2)

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Q. Y. Lu and C. H. Wong, “Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring,” Virtual Phys. Prototy. 13(2), 39–48 (2018).
[Crossref]

2017 (4)

Q. Zhang, Y. Zhu, X. Luo, G. Liu, and M. Han, “Acoustic emission sensor system using a chirped fiber-Bragg-grating Fabry–Perot interferometer and smart feedback control,” Opt. Lett. 42(3), 631–634 (2017).
[Crossref]

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase Demodulation of Short-Cavity Fabry–Perot Interferometric Acoustic Sensors With Two Wavelengths,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

J. Jiang, T. Zhang, S. Wang, K. Liu, C. Li, Z. Zhao, and T. Liu, “Noncontact Ultrasonic Detection in Low-Pressure Carbon Dioxide Medium Using High Sensitivity Fiber-Optic Fabry–Perot Sensor System,” J. Lightwave Technol. 35(23), 5079–5085 (2017).
[Crossref]

T. Chang, J. Lang, W. Sun, J. Chen, M. Yu, W. Gao, and H. Cui, “Phase Compensation Scheme for Fiber-Optic Interferometric Vibration Demodulation,” IEEE Sens. J. 17(22), 7448–7454 (2017).
[Crossref]

2016 (6)

2015 (4)

A. Zaki, H. Chai, D. Aggelis, and N. Alver, “Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique,” Sensors 15(8), 19069–19101 (2015).
[Crossref]

R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications,” Sensors 15(8), 18666–18713 (2015).
[Crossref]

X. Mao, X. Tian, X. Zhou, and Q. Yu, “Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism,” Opt. Eng. 54(4), 046107 (2015).
[Crossref]

J. Zhao, H. Zhou, F. Liu, and Y. Yu, “Numerical analysis of phase noise characteristics of SGDBR lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 223–231 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (1)

E. Lu, Z. Ran, F. Peng, Z. Liu, and F. Xu, “Demodulation of micro fiber-optic Fabry–Perot interferometer using subcarrier and dual-wavelength method,” Opt. Commun. 285(6), 1087–1090 (2012).
[Crossref]

2011 (2)

X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
[Crossref]

Y. Wei and Z. Zhai, “Error analysis of dual wavelength quadrature phase demodulation for low-finesse Fabry–Pérot cavity based fibre optic sensor,” Optik 122(14), 1309–1311 (2011).
[Crossref]

2010 (1)

2006 (1)

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

1991 (1)

1982 (1)

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Adamson, R.

Aggelis, D.

A. Zaki, H. Chai, D. Aggelis, and N. Alver, “Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique,” Sensors 15(8), 19069–19101 (2015).
[Crossref]

Alver, N.

A. Zaki, H. Chai, D. Aggelis, and N. Alver, “Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique,” Sensors 15(8), 19069–19101 (2015).
[Crossref]

Applegate, B. E.

Bae, H.

Bance, M.

Bernacil, M. A.

S. O’Connor, M. A. Bernacil, and D. Derickson, “Generation of high speed, linear wavelength sweeps using sampled grating distributed Bragg reflector lasers,” in LEOS 2008-21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE 2008), 147–148.

Brown, J.

Carbajal, E. F.

Chai, H.

A. Zaki, H. Chai, D. Aggelis, and N. Alver, “Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique,” Sensors 15(8), 19069–19101 (2015).
[Crossref]

Chang, T.

T. Chang, J. Lang, W. Sun, J. Chen, M. Yu, W. Gao, and H. Cui, “Phase Compensation Scheme for Fiber-Optic Interferometric Vibration Demodulation,” IEEE Sens. J. 17(22), 7448–7454 (2017).
[Crossref]

Chen, J.

T. Chang, J. Lang, W. Sun, J. Chen, M. Yu, W. Gao, and H. Cui, “Phase Compensation Scheme for Fiber-Optic Interferometric Vibration Demodulation,” IEEE Sens. J. 17(22), 7448–7454 (2017).
[Crossref]

Chen, X.

Chen, Y.

Cheng, J.

J. Cheng, D.-f. Lu, R. Gao, and Z.-m. Qi, “Fiber optic microphone with large dynamic range based on bi-fiber Fabry-Perot cavity,” in AOPC 2017: Fiber Optic Sensing and Optical Communications (International Society for Optics and Photonics2017), 104642C.

Choi, D.-h.

Claus, R. O.

Crawforda, M.

M. P. Minneman, J. Ensher, M. Crawforda, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” in Asia Communications and Photonics Conference and Exhibition (Optical Society of America, 2011), 831116.

Cui, H.

T. Chang, J. Lang, W. Sun, J. Chen, M. Yu, W. Gao, and H. Cui, “Phase Compensation Scheme for Fiber-Optic Interferometric Vibration Demodulation,” IEEE Sens. J. 17(22), 7448–7454 (2017).
[Crossref]

Dandridge, A.

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Derickson, D.

M. P. Minneman, J. Ensher, M. Crawforda, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” in Asia Communications and Photonics Conference and Exhibition (Optical Society of America, 2011), 831116.

B. George and D. Derickson, “High-speed concatenation of frequency ramps using sampled grating distributed Bragg reflector laser diode sources for OCT resolution enhancement,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV (International Society for Optics and Photonics), 75542O (2010).

S. O’Connor, M. A. Bernacil, and D. Derickson, “Generation of high speed, linear wavelength sweeps using sampled grating distributed Bragg reflector lasers,” in LEOS 2008-21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE 2008), 147–148.

Di Sante, R.

R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications,” Sensors 15(8), 18666–18713 (2015).
[Crossref]

Ding, W.

Z. Wang, Y. Jiang, W. Ding, and R. Gao, “A cross-correlation based fiber optic white-light interferometry with wavelet transform denoising,” in Fourth Asia Pacific Optical Sensors Conference (International Society for Optics and Photonics2013), p. 89241J.

Ding, Z.

Ensher, J.

M. P. Minneman, J. Ensher, M. Crawforda, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” in Asia Communications and Photonics Conference and Exhibition (Optical Society of America, 2011), 831116.

Farrell, J.

Fischer, B.

B. Fischer, “Optical microphone hears ultrasound,” Nat. Photonics 10(6), 356–358 (2016).
[Crossref]

Frazão, O.

Fu, X.

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase Demodulation of Short-Cavity Fabry–Perot Interferometric Acoustic Sensors With Two Wavelengths,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Gao, H.

J. Jia, Y. Jiang, H. Gao, L. Zhang, and Y. Jiang, “Three-wavelength passive demodulation technique for the interrogation of EFPI sensors with arbitrary cavity length,” Opt. Express 27(6), 8890–8899 (2019).
[Crossref]

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Gao, R.

Z. Wang, Y. Jiang, W. Ding, and R. Gao, “A cross-correlation based fiber optic white-light interferometry with wavelet transform denoising,” in Fourth Asia Pacific Optical Sensors Conference (International Society for Optics and Photonics2013), p. 89241J.

J. Cheng, D.-f. Lu, R. Gao, and Z.-m. Qi, “Fiber optic microphone with large dynamic range based on bi-fiber Fabry-Perot cavity,” in AOPC 2017: Fiber Optic Sensing and Optical Communications (International Society for Optics and Photonics2017), 104642C.

Gao, W.

T. Chang, J. Lang, W. Sun, J. Chen, M. Yu, W. Gao, and H. Cui, “Phase Compensation Scheme for Fiber-Optic Interferometric Vibration Demodulation,” IEEE Sens. J. 17(22), 7448–7454 (2017).
[Crossref]

George, B.

B. George and D. Derickson, “High-speed concatenation of frequency ramps using sampled grating distributed Bragg reflector laser diode sources for OCT resolution enhancement,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV (International Society for Optics and Photonics), 75542O (2010).

Gunther, M. F.

Hammerfeldt, S.

J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (Optical Society of America), TuE2 (2004).

Han, M.

Heininger, H.

J. Poliak, H. Heininger, F. Mohr, and O. Wilfert, “Modelling of MG-Y laser tuning characteristics,” in Infrared Sensors, Devices, and Applications III (International Society for Optics and Photonics 2013), p. 88680N.

Hu, C.

Huang, X.

Jia, J.

J. Jia, Y. Jiang, H. Gao, L. Zhang, and Y. Jiang, “Three-wavelength passive demodulation technique for the interrogation of EFPI sensors with arbitrary cavity length,” Opt. Express 27(6), 8890–8899 (2019).
[Crossref]

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Jiang, J.

Jiang, L.

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Jiang, Y.

J. Jia, Y. Jiang, H. Gao, L. Zhang, and Y. Jiang, “Three-wavelength passive demodulation technique for the interrogation of EFPI sensors with arbitrary cavity length,” Opt. Express 27(6), 8890–8899 (2019).
[Crossref]

J. Jia, Y. Jiang, H. Gao, L. Zhang, and Y. Jiang, “Three-wavelength passive demodulation technique for the interrogation of EFPI sensors with arbitrary cavity length,” Opt. Express 27(6), 8890–8899 (2019).
[Crossref]

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Z. Wang, Y. Jiang, W. Ding, and R. Gao, “A cross-correlation based fiber optic white-light interferometry with wavelet transform denoising,” in Fourth Asia Pacific Optical Sensors Conference (International Society for Optics and Photonics2013), p. 89241J.

Kobelke, J.

Koo, K. P.

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Lang, J.

T. Chang, J. Lang, W. Sun, J. Chen, M. Yu, W. Gao, and H. Cui, “Phase Compensation Scheme for Fiber-Optic Interferometric Vibration Demodulation,” IEEE Sens. J. 17(22), 7448–7454 (2017).
[Crossref]

Li, C.

Liao, H.

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase Demodulation of Short-Cavity Fabry–Perot Interferometric Acoustic Sensors With Two Wavelengths,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

H. Liao, P. Lu, L. Liu, D. Liu, and J. Zhang, “Phase demodulation of Fabry-Perot interferometer-based acoustic sensor utilizing tunable filter with two quadrature wavelengths,” in Photonic Instrumentation Engineering IV(International Society for Optics and Photonics), 101101J (2017).

H. Liao, P. Lu, D. Liu, L. Liu, and J. Zhang, “Demodulation of diaphragm based fiber-optic acoustic sensor using with symmetric 3× 3 coupler,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (IEEE, 2017), 1–3.

Liu, D.

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase Demodulation of Short-Cavity Fabry–Perot Interferometric Acoustic Sensors With Two Wavelengths,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

H. Liao, P. Lu, D. Liu, L. Liu, and J. Zhang, “Demodulation of diaphragm based fiber-optic acoustic sensor using with symmetric 3× 3 coupler,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (IEEE, 2017), 1–3.

H. Liao, P. Lu, L. Liu, D. Liu, and J. Zhang, “Phase demodulation of Fabry-Perot interferometer-based acoustic sensor utilizing tunable filter with two quadrature wavelengths,” in Photonic Instrumentation Engineering IV(International Society for Optics and Photonics), 101101J (2017).

Liu, F.

J. Zhao, H. Zhou, F. Liu, and Y. Yu, “Numerical analysis of phase noise characteristics of SGDBR lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 223–231 (2015).
[Crossref]

Liu, G.

Liu, K.

Liu, L.

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase Demodulation of Short-Cavity Fabry–Perot Interferometric Acoustic Sensors With Two Wavelengths,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

H. Liao, P. Lu, D. Liu, L. Liu, and J. Zhang, “Demodulation of diaphragm based fiber-optic acoustic sensor using with symmetric 3× 3 coupler,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (IEEE, 2017), 1–3.

H. Liao, P. Lu, L. Liu, D. Liu, and J. Zhang, “Phase demodulation of Fabry-Perot interferometer-based acoustic sensor utilizing tunable filter with two quadrature wavelengths,” in Photonic Instrumentation Engineering IV(International Society for Optics and Photonics), 101101J (2017).

Liu, T.

Liu, Z.

E. Lu, Z. Ran, F. Peng, Z. Liu, and F. Xu, “Demodulation of micro fiber-optic Fabry–Perot interferometer using subcarrier and dual-wavelength method,” Opt. Commun. 285(6), 1087–1090 (2012).
[Crossref]

Lopez-Amo, M.

Lu, D.-f.

J. Cheng, D.-f. Lu, R. Gao, and Z.-m. Qi, “Fiber optic microphone with large dynamic range based on bi-fiber Fabry-Perot cavity,” in AOPC 2017: Fiber Optic Sensing and Optical Communications (International Society for Optics and Photonics2017), 104642C.

Lu, E.

E. Lu, Z. Ran, F. Peng, Z. Liu, and F. Xu, “Demodulation of micro fiber-optic Fabry–Perot interferometer using subcarrier and dual-wavelength method,” Opt. Commun. 285(6), 1087–1090 (2012).
[Crossref]

Lu, P.

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase Demodulation of Short-Cavity Fabry–Perot Interferometric Acoustic Sensors With Two Wavelengths,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

H. Liao, P. Lu, L. Liu, D. Liu, and J. Zhang, “Phase demodulation of Fabry-Perot interferometer-based acoustic sensor utilizing tunable filter with two quadrature wavelengths,” in Photonic Instrumentation Engineering IV(International Society for Optics and Photonics), 101101J (2017).

H. Liao, P. Lu, D. Liu, L. Liu, and J. Zhang, “Demodulation of diaphragm based fiber-optic acoustic sensor using with symmetric 3× 3 coupler,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (IEEE, 2017), 1–3.

Lu, Q. Y.

Q. Y. Lu and C. H. Wong, “Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring,” Virtual Phys. Prototy. 13(2), 39–48 (2018).
[Crossref]

Lundqvist, L.

J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (Optical Society of America), TuE2 (2004).

Luo, H.

Luo, X.

Ma, J.

MacDougall, D.

Mao, X.

X. Mao, X. Zhou, and Q. Yu, “Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors,” Opt. Commun. 361, 17–20 (2016).
[Crossref]

X. Mao, X. Tian, X. Zhou, and Q. Yu, “Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism,” Opt. Eng. 54(4), 046107 (2015).
[Crossref]

Minneman, M. P.

M. P. Minneman, J. Ensher, M. Crawforda, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” in Asia Communications and Photonics Conference and Exhibition (Optical Society of America, 2011), 831116.

Mohr, F.

J. Poliak, H. Heininger, F. Mohr, and O. Wilfert, “Modelling of MG-Y laser tuning characteristics,” in Infrared Sensors, Devices, and Applications III (International Society for Optics and Photonics 2013), p. 88680N.

Murphy, K. A.

Ni, W.

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase Demodulation of Short-Cavity Fabry–Perot Interferometric Acoustic Sensors With Two Wavelengths,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

O’Connor, S.

S. O’Connor, M. A. Bernacil, and D. Derickson, “Generation of high speed, linear wavelength sweeps using sampled grating distributed Bragg reflector lasers,” in LEOS 2008-21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE 2008), 147–148.

Oghalai, J. S.

Ohbayashi, K.

Park, J.

Peng, F.

E. Lu, Z. Ran, F. Peng, Z. Liu, and F. Xu, “Demodulation of micro fiber-optic Fabry–Perot interferometer using subcarrier and dual-wavelength method,” Opt. Commun. 285(6), 1087–1090 (2012).
[Crossref]

Pinto, A.

Poliak, J.

J. Poliak, H. Heininger, F. Mohr, and O. Wilfert, “Modelling of MG-Y laser tuning characteristics,” in Infrared Sensors, Devices, and Applications III (International Society for Optics and Photonics 2013), p. 88680N.

Qi, Z.-m.

J. Cheng, D.-f. Lu, R. Gao, and Z.-m. Qi, “Fiber optic microphone with large dynamic range based on bi-fiber Fabry-Perot cavity,” in AOPC 2017: Fiber Optic Sensing and Optical Communications (International Society for Optics and Photonics2017), 104642C.

Qingxu, Y.

J. Zhenguo and Y. Qingxu, “White light optical fiber EFPI sensor based on cross-correlation signal processing method,” in Proc. 6th Int. Symp. Test and Measurement (2005), 3509.

Ran, Z.

E. Lu, Z. Ran, F. Peng, Z. Liu, and F. Xu, “Demodulation of micro fiber-optic Fabry–Perot interferometer using subcarrier and dual-wavelength method,” Opt. Commun. 285(6), 1087–1090 (2012).
[Crossref]

Rao, Y.-J.

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Rigole, P.-J.

J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (Optical Society of America), TuE2 (2004).

Santos, J.

Sarlet, G.

J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (Optical Society of America), TuE2 (2004).

Schuster, K.

Sun, W.

T. Chang, J. Lang, W. Sun, J. Chen, M. Yu, W. Gao, and H. Cui, “Phase Compensation Scheme for Fiber-Optic Interferometric Vibration Demodulation,” IEEE Sens. J. 17(22), 7448–7454 (2017).
[Crossref]

Szabo, P.

J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (Optical Society of America), TuE2 (2004).

Tian, X.

X. Mao, X. Tian, X. Zhou, and Q. Yu, “Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism,” Opt. Eng. 54(4), 046107 (2015).
[Crossref]

Tveten, A. B.

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Vengsarkar, A. M.

Wang, A.

Wang, F.

Wang, S.

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

J. Jiang, T. Zhang, S. Wang, K. Liu, C. Li, Z. Zhao, and T. Liu, “Noncontact Ultrasonic Detection in Low-Pressure Carbon Dioxide Medium Using High Sensitivity Fiber-Optic Fabry–Perot Sensor System,” J. Lightwave Technol. 35(23), 5079–5085 (2017).
[Crossref]

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase Demodulation of Short-Cavity Fabry–Perot Interferometric Acoustic Sensors With Two Wavelengths,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, F. Wu, and Z. Ding, “Wavelength-division-multiplexing method of polarized low-coherence interferometry for fiber Fabry–Perot interferometric sensors,” Opt. Lett. 38(19), 3751–3753 (2013).
[Crossref]

Wang, Z.

Z. Wang, Y. Jiang, W. Ding, and R. Gao, “A cross-correlation based fiber optic white-light interferometry with wavelet transform denoising,” in Fourth Asia Pacific Optical Sensors Conference (International Society for Optics and Photonics2013), p. 89241J.

Wei, Y.

Y. Wei and Z. Zhai, “Error analysis of dual wavelength quadrature phase demodulation for low-finesse Fabry–Pérot cavity based fibre optic sensor,” Optik 122(14), 1309–1311 (2011).
[Crossref]

Wesström, J.-O.

J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (Optical Society of America), TuE2 (2004).

Wilfert, O.

J. Poliak, H. Heininger, F. Mohr, and O. Wilfert, “Modelling of MG-Y laser tuning characteristics,” in Infrared Sensors, Devices, and Applications III (International Society for Optics and Photonics 2013), p. 88680N.

Wong, C. H.

Q. Y. Lu and C. H. Wong, “Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring,” Virtual Phys. Prototy. 13(2), 39–48 (2018).
[Crossref]

Wu, F.

Xia, J.

Xiong, S.

Xu, F.

E. Lu, Z. Ran, F. Peng, Z. Liu, and F. Xu, “Demodulation of micro fiber-optic Fabry–Perot interferometer using subcarrier and dual-wavelength method,” Opt. Commun. 285(6), 1087–1090 (2012).
[Crossref]

Yin, J.

Yoshimura, R.

Yu, M.

T. Chang, J. Lang, W. Sun, J. Chen, M. Yu, W. Gao, and H. Cui, “Phase Compensation Scheme for Fiber-Optic Interferometric Vibration Demodulation,” IEEE Sens. J. 17(22), 7448–7454 (2017).
[Crossref]

J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
[Crossref]

Yu, Q.

X. Mao, X. Zhou, and Q. Yu, “Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors,” Opt. Commun. 361, 17–20 (2016).
[Crossref]

X. Mao, X. Tian, X. Zhou, and Q. Yu, “Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism,” Opt. Eng. 54(4), 046107 (2015).
[Crossref]

X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
[Crossref]

Yu, Y.

J. Zhao, H. Zhou, F. Liu, and Y. Yu, “Numerical analysis of phase noise characteristics of SGDBR lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 223–231 (2015).
[Crossref]

Yu, Z.

Zaki, A.

A. Zaki, H. Chai, D. Aggelis, and N. Alver, “Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique,” Sensors 15(8), 19069–19101 (2015).
[Crossref]

Zhai, Z.

Y. Wei and Z. Zhai, “Error analysis of dual wavelength quadrature phase demodulation for low-finesse Fabry–Pérot cavity based fibre optic sensor,” Optik 122(14), 1309–1311 (2011).
[Crossref]

Zhang, J.

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase Demodulation of Short-Cavity Fabry–Perot Interferometric Acoustic Sensors With Two Wavelengths,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

H. Liao, P. Lu, D. Liu, L. Liu, and J. Zhang, “Demodulation of diaphragm based fiber-optic acoustic sensor using with symmetric 3× 3 coupler,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (IEEE, 2017), 1–3.

H. Liao, P. Lu, L. Liu, D. Liu, and J. Zhang, “Phase demodulation of Fabry-Perot interferometer-based acoustic sensor utilizing tunable filter with two quadrature wavelengths,” in Photonic Instrumentation Engineering IV(International Society for Optics and Photonics), 101101J (2017).

Zhang, L.

J. Jia, Y. Jiang, H. Gao, L. Zhang, and Y. Jiang, “Three-wavelength passive demodulation technique for the interrogation of EFPI sensors with arbitrary cavity length,” Opt. Express 27(6), 8890–8899 (2019).
[Crossref]

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Zhang, Q.

Zhang, T.

Zhao, J.

J. Zhao, H. Zhou, F. Liu, and Y. Yu, “Numerical analysis of phase noise characteristics of SGDBR lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 223–231 (2015).
[Crossref]

Zhao, M.

Zhao, Z.

Zhenguo, J.

J. Zhenguo and Y. Qingxu, “White light optical fiber EFPI sensor based on cross-correlation signal processing method,” in Proc. 6th Int. Symp. Test and Measurement (2005), 3509.

Zhou, H.

J. Zhao, H. Zhou, F. Liu, and Y. Yu, “Numerical analysis of phase noise characteristics of SGDBR lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 223–231 (2015).
[Crossref]

Zhou, X.

X. Mao, X. Zhou, and Q. Yu, “Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors,” Opt. Commun. 361, 17–20 (2016).
[Crossref]

X. Mao, X. Tian, X. Zhou, and Q. Yu, “Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism,” Opt. Eng. 54(4), 046107 (2015).
[Crossref]

X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
[Crossref]

Zhu, Y.

Appl. Phys. Lett. (1)

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Biomed. Opt. Express (2)

IEEE J. Sel. Top. Quantum Electron. (1)

J. Zhao, H. Zhou, F. Liu, and Y. Yu, “Numerical analysis of phase noise characteristics of SGDBR lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 223–231 (2015).
[Crossref]

IEEE Photonics J. (1)

H. Liao, P. Lu, L. Liu, S. Wang, W. Ni, X. Fu, D. Liu, and J. Zhang, “Phase Demodulation of Short-Cavity Fabry–Perot Interferometric Acoustic Sensors With Two Wavelengths,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

IEEE Sens. J. (2)

X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
[Crossref]

T. Chang, J. Lang, W. Sun, J. Chen, M. Yu, W. Gao, and H. Cui, “Phase Compensation Scheme for Fiber-Optic Interferometric Vibration Demodulation,” IEEE Sens. J. 17(22), 7448–7454 (2017).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photonics (1)

B. Fischer, “Optical microphone hears ultrasound,” Nat. Photonics 10(6), 356–358 (2016).
[Crossref]

Opt. Commun. (2)

X. Mao, X. Zhou, and Q. Yu, “Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors,” Opt. Commun. 361, 17–20 (2016).
[Crossref]

E. Lu, Z. Ran, F. Peng, Z. Liu, and F. Xu, “Demodulation of micro fiber-optic Fabry–Perot interferometer using subcarrier and dual-wavelength method,” Opt. Commun. 285(6), 1087–1090 (2012).
[Crossref]

Opt. Eng. (1)

X. Mao, X. Tian, X. Zhou, and Q. Yu, “Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism,” Opt. Eng. 54(4), 046107 (2015).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Opt. Lett. (5)

Optik (1)

Y. Wei and Z. Zhai, “Error analysis of dual wavelength quadrature phase demodulation for low-finesse Fabry–Pérot cavity based fibre optic sensor,” Optik 122(14), 1309–1311 (2011).
[Crossref]

Sensors (2)

R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications,” Sensors 15(8), 18666–18713 (2015).
[Crossref]

A. Zaki, H. Chai, D. Aggelis, and N. Alver, “Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique,” Sensors 15(8), 19069–19101 (2015).
[Crossref]

Virtual Phys. Prototy. (1)

Q. Y. Lu and C. H. Wong, “Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring,” Virtual Phys. Prototy. 13(2), 39–48 (2018).
[Crossref]

Other (10)

Z. Wang, Y. Jiang, W. Ding, and R. Gao, “A cross-correlation based fiber optic white-light interferometry with wavelet transform denoising,” in Fourth Asia Pacific Optical Sensors Conference (International Society for Optics and Photonics2013), p. 89241J.

J. Zhenguo and Y. Qingxu, “White light optical fiber EFPI sensor based on cross-correlation signal processing method,” in Proc. 6th Int. Symp. Test and Measurement (2005), 3509.

J.-O. Wesström, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (Optical Society of America), TuE2 (2004).

S. O’Connor, M. A. Bernacil, and D. Derickson, “Generation of high speed, linear wavelength sweeps using sampled grating distributed Bragg reflector lasers,” in LEOS 2008-21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE 2008), 147–148.

B. George and D. Derickson, “High-speed concatenation of frequency ramps using sampled grating distributed Bragg reflector laser diode sources for OCT resolution enhancement,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV (International Society for Optics and Photonics), 75542O (2010).

J. Poliak, H. Heininger, F. Mohr, and O. Wilfert, “Modelling of MG-Y laser tuning characteristics,” in Infrared Sensors, Devices, and Applications III (International Society for Optics and Photonics 2013), p. 88680N.

H. Liao, P. Lu, D. Liu, L. Liu, and J. Zhang, “Demodulation of diaphragm based fiber-optic acoustic sensor using with symmetric 3× 3 coupler,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (IEEE, 2017), 1–3.

H. Liao, P. Lu, L. Liu, D. Liu, and J. Zhang, “Phase demodulation of Fabry-Perot interferometer-based acoustic sensor utilizing tunable filter with two quadrature wavelengths,” in Photonic Instrumentation Engineering IV(International Society for Optics and Photonics), 101101J (2017).

M. P. Minneman, J. Ensher, M. Crawforda, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” in Asia Communications and Photonics Conference and Exhibition (Optical Society of America, 2011), 831116.

J. Cheng, D.-f. Lu, R. Gao, and Z.-m. Qi, “Fiber optic microphone with large dynamic range based on bi-fiber Fabry-Perot cavity,” in AOPC 2017: Fiber Optic Sensing and Optical Communications (International Society for Optics and Photonics2017), 104642C.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of the common-path dual-wavelength quadrature phase demodulation system. (Inset) Diagram of the EFPI sensor with a polyethylene terephthalate (PET) diaphragm.
Fig. 2.
Fig. 2. Interference spectrum of the EFPI acoustic sensor with a cavity length of 148.366 µm.
Fig. 3.
Fig. 3. Automated calibration of MG-Y lasers. (a) Diagram of the laboratory-built automated calibration system. (b) Tuning paths of three injection currents for creating a linear wavelength ramp between 1527 nm and 1567 nm. (c) Output intensity and SOA-injection current ISOA after intensity calibration.
Fig. 4.
Fig. 4. Demodulation of an EFPI acoustic sensor with cavity length of 148.366 µm at 15 kHz acoustic signals: (a) Extracted orthogonal signals corresponding to λ1 and λ2. (b) Demodulated phase variations. (c) Power spectrum in the frequency domain. (d) Peak-to-valley amplitude fluctuations of the demodulated phase variations at 15 kHz acoustic signals.
Fig. 5.
Fig. 5. Power spectrum of phase variations at 1 kHz and 8 kHz acoustic signals. (Inset) Time domain waveform signals. (a) 1 kHz. (b) 8 kHz.
Fig. 6.
Fig. 6. Power spectrum of three EFPI acoustic sensors with cavity lengths of 127.954 µm, 148.366 µm and 497.300 µm at 8 kHz acoustic signals.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I 1 = A + B cos ( 4 n π λ 1 L + φ 0 )
I 2 = A + B cos ( 4 n π λ 2 L + φ 0 )
β = 4 π n L ( 1 λ 1 1 λ 2 ) 4 π n L 0 ( 1 λ 1 1 λ 2 ) = π 2 + k π
Δ λ = λ 2 λ 1 = λ 1 λ 2 8 n L 0 λ 1 2 8 n L 0
I 2 = A + B cos ( 4 n π λ 1 L + φ 0 π 2 ) = A + B sin ( 4 n π λ 1 L + φ 0 )
φ 1 = 4 n π λ 1 L
I 1 = A + B cos ( φ 1 + φ 0 )
I 2 = A + B sin ( φ 1 + φ 0 )
φ 1 + φ 0 = arctan ( I 2 A I 1 A ) + m π

Metrics