Abstract

Three-dimensional (3D) imaging can be reconstructed by a computational ghost imaging system with single pixel detectors based on a photometric stereo, but the requirement of large measurements and long imaging times are obstacles to its development. Also, the compressibility of the target’s surface normals has not been fully studied, which causes the waste in sampling efficiency in single-pixel imaging. In this paper, we propose a method to adaptively measure the object’s 3D information based on surface normals. In the proposed method, the regions of object’s surface are illuminated by patterns of different spatial resolutions according to the variation of surface normals. The experimental results demonstrate that our proposed scheme can reduce measurements and preserve the quality of the formed 3D image.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bi-frequency 3D ghost imaging with Haar wavelet transform

Mengjia Xi, Hui Chen, Yuan Yuan, Gao Wang, Yuchen He, Yan Liang, Jianbin Liu, Huaibin Zheng, and Zhuo Xu
Opt. Express 27(22) 32349-32359 (2019)

Improving the noise immunity of 3D computational ghost imaging

Lei Zhang, Zitao Lin, Ruiqing He, Yan Qian, Qian Chen, and Wenwen Zhang
Opt. Express 27(3) 2344-2353 (2019)

Adaptive compressive ghost imaging based on wavelet trees and sparse representation

Wen-Kai Yu, Ming-Fei Li, Xu-Ri Yao, Xue-Feng Liu, Ling-An Wu, and Guang-Jie Zhai
Opt. Express 22(6) 7133-7144 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
    [Crossref]
  2. R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
    [Crossref]
  3. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
    [Crossref]
  4. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
    [Crossref]
  5. S.-C. Song, M.-J. Sun, and L.-A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive-negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
    [Crossref]
  6. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics (Optical Society of America, 2013), p. CTu1C.4.
  7. L. Kai-Hong, H. Bo-Qiang, Z. Wei-Mou, and W. Ling-An, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29(7), 074216 (2012).
    [Crossref]
  8. M.-J. Sun, M.-F. Li, and L.-A. Wu, “Nonlocal imaging of a reflective object using positive and negative correlations,” Appl. Opt. 54(25), 7494–7499 (2015).
    [Crossref]
  9. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
    [Crossref]
  10. Z.-H. Xu, W. Chen, J. Penuelas, M. Padgett, and M.-J. Sun, “1000 fps computational ghost imaging using LED-based structured illumination,” Opt. Express 26(3), 2427–2434 (2018).
    [Crossref]
  11. S. Jiang, X. Li, Z. Zhang, W. Jiang, Y. Wang, G. He, Y. Wang, and B. Sun, “Scan efficiency of structured illumination in iterative single pixel imaging,” Opt. Express 27(16), 22499–22507 (2019).
    [Crossref]
  12. W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
    [Crossref]
  13. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
    [Crossref]
  14. P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A 84(6), 061804 (2011).
    [Crossref]
  15. A. Averbuch, S. Dekel, and S. Deutsch, “Adaptive compressed image sensing using dictionaries,” SIAM J. Imaging Sci. 5(1), 57–89 (2012).
    [Crossref]
  16. M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3(1), 1545 (2013).
    [Crossref]
  17. W.-K. Yu, M.-F. Li, X.-R. Yao, X.-F. Liu, L.-A. Wu, and G.-J. Zhai, “Adaptive compressive ghost imaging based on wavelet trees and sparse representation,” Opt. Express 22(6), 7133–7144 (2014).
    [Crossref]
  18. Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18(3), 035203 (2016).
    [Crossref]
  19. M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
    [Crossref]
  20. W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
    [Crossref]
  21. E. Salvador-Balaguer, P. Latorre-Carmona, C. Chabert, F. Pla, J. Lancis, and E. Tajahuerce, “Low-cost single-pixel 3D imaging by using an led array,” Opt. Express 26(12), 15623–15631 (2018).
    [Crossref]
  22. L. Zhang, Z. Lin, R. He, Y. Qian, Q. Chen, and W. Zhang, “Improving the noise immunity of 3D computational ghost imaging,” Opt. Express 27(3), 2344–2353 (2019).
    [Crossref]
  23. M.-J. Sun and J.-M. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: a brief review,” Sensors 19(3), 732 (2019).
    [Crossref]
  24. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
    [Crossref]
  25. H. Dai, G. Gu, W. He, L. Ye, T. Mao, and Q. Chen, “Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation,” Opt. Express 24(23), 26080–26096 (2016).
    [Crossref]

2019 (4)

S. Jiang, X. Li, Z. Zhang, W. Jiang, Y. Wang, G. He, Y. Wang, and B. Sun, “Scan efficiency of structured illumination in iterative single pixel imaging,” Opt. Express 27(16), 22499–22507 (2019).
[Crossref]

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

L. Zhang, Z. Lin, R. He, Y. Qian, Q. Chen, and W. Zhang, “Improving the noise immunity of 3D computational ghost imaging,” Opt. Express 27(3), 2344–2353 (2019).
[Crossref]

M.-J. Sun and J.-M. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: a brief review,” Sensors 19(3), 732 (2019).
[Crossref]

2018 (2)

2016 (4)

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18(3), 035203 (2016).
[Crossref]

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

S.-C. Song, M.-J. Sun, and L.-A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive-negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
[Crossref]

H. Dai, G. Gu, W. He, L. Ye, T. Mao, and Q. Chen, “Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation,” Opt. Express 24(23), 26080–26096 (2016).
[Crossref]

2015 (2)

M.-J. Sun, M.-F. Li, and L.-A. Wu, “Nonlocal imaging of a reflective object using positive and negative correlations,” Appl. Opt. 54(25), 7494–7499 (2015).
[Crossref]

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
[Crossref]

2014 (1)

2013 (2)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3(1), 1545 (2013).
[Crossref]

2012 (3)

A. Averbuch, S. Dekel, and S. Deutsch, “Adaptive compressed image sensing using dictionaries,” SIAM J. Imaging Sci. 5(1), 57–89 (2012).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

L. Kai-Hong, H. Bo-Qiang, Z. Wei-Mou, and W. Ling-An, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29(7), 074216 (2012).
[Crossref]

2011 (1)

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A 84(6), 061804 (2011).
[Crossref]

2010 (1)

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

2009 (1)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

2008 (1)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Aßmann, M.

M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3(1), 1545 (2013).
[Crossref]

Averbuch, A.

A. Averbuch, S. Dekel, and S. Deutsch, “Adaptive compressed image sensing using dictionaries,” SIAM J. Imaging Sci. 5(1), 57–89 (2012).
[Crossref]

Bayer, M.

M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3(1), 1545 (2013).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Bo-Qiang, H.

L. Kai-Hong, H. Bo-Qiang, Z. Wei-Mou, and W. Ling-An, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29(7), 074216 (2012).
[Crossref]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics (Optical Society of America, 2013), p. CTu1C.4.

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics (Optical Society of America, 2013), p. CTu1C.4.

Boyd, R. W.

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A 84(6), 061804 (2011).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Bromberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Chabert, C.

Chan, K. W. C.

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A 84(6), 061804 (2011).
[Crossref]

Chen, Q.

Chen, W.

Dai, H.

Dekel, S.

A. Averbuch, S. Dekel, and S. Deutsch, “Adaptive compressed image sensing using dictionaries,” SIAM J. Imaging Sci. 5(1), 57–89 (2012).
[Crossref]

Deutsch, S.

A. Averbuch, S. Dekel, and S. Deutsch, “Adaptive compressed image sensing using dictionaries,” SIAM J. Imaging Sci. 5(1), 57–89 (2012).
[Crossref]

Edgar, M. P.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18(3), 035203 (2016).
[Crossref]

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics (Optical Society of America, 2013), p. CTu1C.4.

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

Gibson, G. M.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18(3), 035203 (2016).
[Crossref]

Gong, W.

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
[Crossref]

Gu, G.

Han, S.

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
[Crossref]

He, G.

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

S. Jiang, X. Li, Z. Zhang, W. Jiang, Y. Wang, G. He, Y. Wang, and B. Sun, “Scan efficiency of structured illumination in iterative single pixel imaging,” Opt. Express 27(16), 22499–22507 (2019).
[Crossref]

He, R.

He, W.

Howell, J. C.

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A 84(6), 061804 (2011).
[Crossref]

Jiang, S.

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

S. Jiang, X. Li, Z. Zhang, W. Jiang, Y. Wang, G. He, Y. Wang, and B. Sun, “Scan efficiency of structured illumination in iterative single pixel imaging,” Opt. Express 27(16), 22499–22507 (2019).
[Crossref]

Jiang, W.

S. Jiang, X. Li, Z. Zhang, W. Jiang, Y. Wang, G. He, Y. Wang, and B. Sun, “Scan efficiency of structured illumination in iterative single pixel imaging,” Opt. Express 27(16), 22499–22507 (2019).
[Crossref]

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

Kai-Hong, L.

L. Kai-Hong, H. Bo-Qiang, Z. Wei-Mou, and W. Ling-An, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29(7), 074216 (2012).
[Crossref]

Katz, O.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Lamb, R.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Lancis, J.

Latorre-Carmona, P.

Li, M.-F.

Li, X.

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

S. Jiang, X. Li, Z. Zhang, W. Jiang, Y. Wang, G. He, Y. Wang, and B. Sun, “Scan efficiency of structured illumination in iterative single pixel imaging,” Opt. Express 27(16), 22499–22507 (2019).
[Crossref]

Lin, Z.

Ling-An, W.

L. Kai-Hong, H. Bo-Qiang, Z. Wei-Mou, and W. Ling-An, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29(7), 074216 (2012).
[Crossref]

Liu, X.-F.

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

Mao, T.

Padgett, M.

Padgett, M. J.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18(3), 035203 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics (Optical Society of America, 2013), p. CTu1C.4.

Penuelas, J.

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Pla, F.

Qian, Y.

Radwell, N.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18(3), 035203 (2016).
[Crossref]

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Salvador-Balaguer, E.

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Shapiro, J. H.

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Song, S.-C.

S.-C. Song, M.-J. Sun, and L.-A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive-negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
[Crossref]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Sun, B.

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

S. Jiang, X. Li, Z. Zhang, W. Jiang, Y. Wang, G. He, Y. Wang, and B. Sun, “Scan efficiency of structured illumination in iterative single pixel imaging,” Opt. Express 27(16), 22499–22507 (2019).
[Crossref]

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18(3), 035203 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics (Optical Society of America, 2013), p. CTu1C.4.

Sun, M.-J.

M.-J. Sun and J.-M. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: a brief review,” Sensors 19(3), 732 (2019).
[Crossref]

Z.-H. Xu, W. Chen, J. Penuelas, M. Padgett, and M.-J. Sun, “1000 fps computational ghost imaging using LED-based structured illumination,” Opt. Express 26(3), 2427–2434 (2018).
[Crossref]

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

S.-C. Song, M.-J. Sun, and L.-A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive-negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
[Crossref]

M.-J. Sun, M.-F. Li, and L.-A. Wu, “Nonlocal imaging of a reflective object using positive and negative correlations,” Appl. Opt. 54(25), 7494–7499 (2015).
[Crossref]

Tajahuerce, E.

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics (Optical Society of America, 2013), p. CTu1C.4.

Wang, Y.

Wei-Mou, Z.

L. Kai-Hong, H. Bo-Qiang, Z. Wei-Mou, and W. Ling-An, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29(7), 074216 (2012).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics (Optical Society of America, 2013), p. CTu1C.4.

Welsh, S. S.

Wu, L.-A.

Xu, Z.-H.

Yao, X.-R.

Ye, L.

Yu, W.-K.

Zerom, P.

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A 84(6), 061804 (2011).
[Crossref]

Zhai, G.-J.

Zhang, J.-M.

M.-J. Sun and J.-M. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: a brief review,” Sensors 19(3), 732 (2019).
[Crossref]

Zhang, L.

Zhang, W.

Zhang, Y.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18(3), 035203 (2016).
[Crossref]

Zhang, Z.

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

S. Jiang, X. Li, Z. Zhang, W. Jiang, Y. Wang, G. He, Y. Wang, and B. Sun, “Scan efficiency of structured illumination in iterative single pixel imaging,” Opt. Express 27(16), 22499–22507 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Chin. Phys. Lett. (1)

L. Kai-Hong, H. Bo-Qiang, Z. Wei-Mou, and W. Ling-An, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29(7), 074216 (2012).
[Crossref]

J. Opt. (1)

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18(3), 035203 (2016).
[Crossref]

Nat. Commun. (1)

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Opt. Commun. (1)

S.-C. Song, M.-J. Sun, and L.-A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive-negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
[Crossref]

Opt. Express (7)

Opt. Lasers Eng. (1)

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

Phys. Rev. A (3)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A 84(6), 061804 (2011).
[Crossref]

Phys. Rev. Lett. (2)

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Sci. Rep. (2)

M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3(1), 1545 (2013).
[Crossref]

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
[Crossref]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Sensors (1)

M.-J. Sun and J.-M. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: a brief review,” Sensors 19(3), 732 (2019).
[Crossref]

SIAM J. Imaging Sci. (1)

A. Averbuch, S. Dekel, and S. Deutsch, “Adaptive compressed image sensing using dictionaries,” SIAM J. Imaging Sci. 5(1), 57–89 (2012).
[Crossref]

Other (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics (Optical Society of America, 2013), p. CTu1C.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. A schematic of 3D CGI system. The entire space can be represented by Cartesian coordinates $(x,\;y,\;z)$ originating from the center of projected patterns on the object plane. The three bucket detectors marked as up, left and right are located at $(15, -224, -425)$, $(-187, 77, -425)$, $(145, 65, -425)$ in the unit of millimeter, respectively.
Fig. 2.
Fig. 2. Flow chart of 3D ghost imaging based on adaptive sampling. (a) The object. (b) Low-resolution patterns based on Hadamard matrix. (c) Low-resolution shading images. (d) The local flatness map $v(x,\;y)$. (e) Template $m(x,\;y)$. (f) High-resolution patterns. (g) High-resolution shading images of target’s uneven region. (h) Adaptive-resolution shading images. (i) The 3D image of object.
Fig. 3.
Fig. 3. Flow chart for generation process of high-resolution illumination patterns based on Hadamard matrix. The area with blue grid in (a), (b) and (c) is the predicted high resolution area, while shaded area is low resolution area. (a) The low-resolution template $m(x,\;y)\,(size: 2^N\times 2^N)$. (b) The high-resolution template $M(X,Y)\,(size:2^L\times 2^L)$. (c) $M(n)\,(size: 1\times 2^{2L})$. (d) Hadamard matrix $H_T\,(size: 2^T\times 2^T)$. (e) Measurement matrix $H_L\,(size: 2^T\times 2^{2L})$. (f) High-resolution patterns.
Fig. 4.
Fig. 4. Results of 3D ghost imaging based on adaptive compressed sampling. The pictures above dotted line are images of a simple model consisting of a plane and a hemisphere while below are images of local face model. (a.1), (a.2), (a.3) and (g.1), (g.2), (g.3) are low-resolution images of the two targets, obtained by three bucket detectors located at up, left and right, respectively. (b) and (h) are maps of $G_{VN}$, and (c) and (i) are area division template $m(x,\;y)$. (d.1), (d.2), (d.3) and (j.1), (j.2), (j.3) are high-resolution images. (e.1), (e.2), (e.3), and (k.1), (k.2), (k.3) are adaptive-resolution images. (f) and (l) are three-dimensional images of the two targets reconstructed by our proposed scheme.
Fig. 5.
Fig. 5. (a) 3D reconstruction result of the scheme proposed by this paper. (b.1) and (c.1) are the results for region 1 and region 2 by our proposed method. (b.2) and (c.2) are the low-resolution results by traditional scheme, while (b.3) and (c.3) are high-resolution results.
Fig. 6.
Fig. 6. (a) object. (b.1), (c.1) and (d.1) are area division template m(x, y) for the schemes reduce the sampling number by 0% $(k = 0)$, 25% $(k = 1)$ and 50% $(k = 2)$ respectively while (b.1), (c.1) and (d.1) are the results of these conditions respectively.
Fig. 7.
Fig. 7. (a)(e)error probe fluctuation. (b.1), (b.2) and (f.1), (f.2) are low-resolution 3D imaging results by traditional scheme of simple model and local face model; (c.1), (c.2) and (g.1), (g.2) are high-resolution 3D imaging results of traditional scheme; (d.1), (d.2) and (h.1), (h.2) are results of the scheme proposed by this paper.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I i ( x , y ) = A k ( x , y ) s i k A k ( x , y ) s i k
I ( x , y ) = R ( p ( x , y ) , q ( x , y ) )
n = ( n x , n y , n z ) T = ( p , q , 1 ) T p 2 + q 2 + 1
I i ( x , y ) = I s α ( d i n )
n = 1 I s α ( D 1 I )
G V N = | p x | + | p y | + | q x | + | q y |
v ( x , y ) = 1 9 i = 1 , j = 1 i = 1 , j = 1 G V N ( x + i , y + j )
m ( x , y ) = { 0 v ( x , y ) > T 1 v ( x , y ) T
M ( X , Y ) = m ( x , y ) [ 1 1 1 1 ] 2 α
{ X = [ n / L ] + 1 Y = n m o d L
H L ( m , n ) = { H T ( m , n ) M ( n ) = 1 0 M ( n ) = 0
n = i = 1 n M ( i )
I i A ( x , y ) = ( 1 M ( x , y ) ) I i T ( x , y ) + κ i M ( x , y ) I i H ( x , y )
κ i = x = 1 x = 2 L y = 1 y = 2 L I i T ( x , y ) M ( x , y ) x = 1 x = 2 L y = 1 y = 2 L I i H ( x , y ) M ( x , y ) ( i = u p , l e f t , r i g h t )
N A N T = 2 N × 2 N + 2 T 2 L × 2 L = 1 2 2 α + 1 2 k ( α = 1 , 2 , 3 , , k = 1 , 2 , 3 , )

Metrics