Abstract

The surface plasmons that are excited by the multiple layer grating structures on the gold thin film are studied using the finite-difference time-domain method in this paper. The structure parameters’ effects on the coupling enhancement of surface plasmons are examined, and the structure design guidelines are given. It is found that the distance between the grating layers and the distance between the gratings and gold thin film are the key structure parameters for better cavity resonances. To have the stronger field enhancements of the excited surface plasmons for the multilayer grating structures, it is found that the width of the gratings should be smaller for the lower grating layers. The multiple layer gratings with proper structure designs can have better performances than single layer grating structure because the cavity effects can enhance the light coupling and more light can be coupled into the surface plasmons by more layers of grating. It is found that the maximum electric field intensity for five layer grating structures can be 163% of the case of the single layer grating structure in our simulations.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Extraordinary transmittance in three-dimensional crater, pyramid, and hole-array structures prepared through reversal imprinting of metal films

H. L. Chen, S. Y. Chuang, W. H. Lee, S. S. Kuo, W. F. Su, S. L. Ku, and Y. F. Chou
Opt. Express 17(3) 1636-1645 (2009)

SERS enhancements via periodic arrays of gold nanoparticles on silver film structures

Jason M. Montgomery, Alexandra Imre, Ulrich Welp, Vitalii Vlasko-Vlasov, and Stephen K. Gray
Opt. Express 17(10) 8669-8675 (2009)

Enhancement of focusing energy of ultra-thin planar lens through plasmonic resonance and coupling

J. Jiao, Q. Zhao, X. Li, G. F. Liang, X. P. Huang, and X. G. Luo
Opt. Express 22(21) 26277-26284 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photon. Res. 5(6), 654–661 (2017).
    [Crossref]
  2. M. H. Elshorbagy, A. Cuadrado, and J. Alda, “Plasmonic Sensor Based on Dielectric Nanoprisms,” Nanoscale Res. Lett. 12(1), 580 (2017).
    [Crossref] [PubMed]
  3. H.-C. Ho, L.-W. Nien, J.-H. Li, and C.-H. Hsueh, “Suspended graphene with periodic dimer nanostructure on Si cavities for surface-enhanced Raman scattering applications,” Appl. Phys. Lett. 110(17), 171111 (2017).
    [Crossref]
  4. R. De, Y.-S. Shin, C.-L. Lee, and M.-K. Oh, “Long-standing stability of silver nanorod array substrates functionalized using a series of thiols for a SERS-based sensing application,” Appl. Spectrosc. 70(7), 1137–1149 (2016).
    [Crossref] [PubMed]
  5. C. L. Tan, S. K. Lee, and Y. T. Lee, “Bi-SERS sensing and enhancement by Au-Ag bimetallic non-alloyed nanoparticles on amorphous and crystalline silicon substrate,” Opt. Express 23(5), 6254–6263 (2015).
    [Crossref] [PubMed]
  6. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14(1), 314–319 (2006).
    [Crossref] [PubMed]
  7. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
    [Crossref]
  8. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [Crossref]
  9. W. Ye, R. Long, H. Huang, and Y. Xiong, “Plasmonic nanostructures in solar energy conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1008–1021 (2017).
    [Crossref]
  10. W. Adams, M. Sadatgol, and D. Ö. Güney, “Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging,” AIP Adv. 6(10), 100701 (2016).
    [Crossref]
  11. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
    [Crossref] [PubMed]
  12. S. A. Maier, Plasmonics: fundamentals and applications, (Springer Science & Business Media, 2007).
  13. G. Dabos, D. Ketzaki, A. Manolis, L. Markey, J. C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, D. Tsiokos, and N. Pleros, “Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics,” IEEE Photonics J. 10(1), 1–8 (2018).
    [Crossref]
  14. G. D. Osowiecki, E. Barakat, A. Naqavi, and H. P. Herzig, “Vertically coupled plasmonic slot waveguide cavity for localized biosensing applications,” Opt. Express 22(17), 20871–20880 (2014).
    [Crossref] [PubMed]
  15. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
    [Crossref] [PubMed]
  16. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
    [Crossref] [PubMed]
  17. Y. Luo, M. Chamanzar, and A. Adibi, “Compact on-chip plasmonic light concentration based on a hybrid photonic-plasmonic structure,” Opt. Express 21(2), 1898–1910 (2013).
    [Crossref] [PubMed]
  18. G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
    [Crossref] [PubMed]
  19. T. Tang, J. Qin, J. Xie, L. Deng, and L. Bi, “Magneto-optical Goos-Hänchen effect in a prism-waveguide coupling structure,” Opt. Express 22(22), 27042–27055 (2014).
    [Crossref] [PubMed]
  20. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
    [Crossref] [PubMed]
  21. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
    [Crossref]
  22. T.-W. Lee and S. K. Gray, “Remote grating-assisted excitation of narrow-band surface plasmons,” Opt. Express 18(23), 23857–23864 (2010).
    [Crossref] [PubMed]
  23. N. Anttu, Z. Q. Guan, U. Håkanson, H. X. Xu, and H. Q. Xu, “Excitations of surface plasmon polaritons in double layer metal grating structures,” Appl. Phys. Lett. 100(9), 091111 (2012).
    [Crossref]
  24. D. Xiang, L.-L. Wang, L. Wang, X. Zhai, and W.-Q. Huang, “Optical transmission through double-layer compound metallic gratings with subwavelength slits,” J. Mod. Opt. 59(15), 1342–1348 (2012).
    [Crossref]
  25. C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
    [Crossref]
  26. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31(4), 516–518 (2006).
    [Crossref] [PubMed]
  27. J. M. McMahon, S. K. Gray, and G. C. Schatz, “Calculating nonlocal optical properties of structures with arbitrary shape,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 035423 (2010).
    [Crossref]
  28. H. Philipp, “Silicon dioxide (SiO2) (glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  29. Q. Li, X. Jiao, P. Wang, H. Ming, and J. Xie, “Analysis of novel optical properties of subwavelength double-layers metallic grating,” Appl. Phys. B 81(6), 787–790 (2005).
    [Crossref]
  30. C.-W. Cheng, M. N. Abbas, M.-H. Shih, and Y.-C. Chang, “Characterization of the surface plasmon polariton band gap in an Ag/SiO2/Ag T-shaped periodical structure,” Opt. Express 19(24), 23698–23705 (2011).
    [Crossref] [PubMed]

2018 (2)

G. Dabos, D. Ketzaki, A. Manolis, L. Markey, J. C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, D. Tsiokos, and N. Pleros, “Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

2017 (4)

W. Ye, R. Long, H. Huang, and Y. Xiong, “Plasmonic nanostructures in solar energy conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1008–1021 (2017).
[Crossref]

M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photon. Res. 5(6), 654–661 (2017).
[Crossref]

M. H. Elshorbagy, A. Cuadrado, and J. Alda, “Plasmonic Sensor Based on Dielectric Nanoprisms,” Nanoscale Res. Lett. 12(1), 580 (2017).
[Crossref] [PubMed]

H.-C. Ho, L.-W. Nien, J.-H. Li, and C.-H. Hsueh, “Suspended graphene with periodic dimer nanostructure on Si cavities for surface-enhanced Raman scattering applications,” Appl. Phys. Lett. 110(17), 171111 (2017).
[Crossref]

2016 (2)

2015 (1)

2014 (2)

2013 (1)

2012 (2)

N. Anttu, Z. Q. Guan, U. Håkanson, H. X. Xu, and H. Q. Xu, “Excitations of surface plasmon polaritons in double layer metal grating structures,” Appl. Phys. Lett. 100(9), 091111 (2012).
[Crossref]

D. Xiang, L.-L. Wang, L. Wang, X. Zhai, and W.-Q. Huang, “Optical transmission through double-layer compound metallic gratings with subwavelength slits,” J. Mod. Opt. 59(15), 1342–1348 (2012).
[Crossref]

2011 (1)

2010 (3)

T.-W. Lee and S. K. Gray, “Remote grating-assisted excitation of narrow-band surface plasmons,” Opt. Express 18(23), 23857–23864 (2010).
[Crossref] [PubMed]

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Calculating nonlocal optical properties of structures with arbitrary shape,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 035423 (2010).
[Crossref]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
[Crossref] [PubMed]

2009 (1)

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

2007 (3)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[Crossref]

2006 (2)

2005 (2)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Q. Li, X. Jiao, P. Wang, H. Ming, and J. Xie, “Analysis of novel optical properties of subwavelength double-layers metallic grating,” Appl. Phys. B 81(6), 787–790 (2005).
[Crossref]

2002 (1)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

1968 (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Abbas, M. N.

Adams, W.

W. Adams, M. Sadatgol, and D. Ö. Güney, “Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging,” AIP Adv. 6(10), 100701 (2016).
[Crossref]

Adibi, A.

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Alda, J.

Anttu, N.

N. Anttu, Z. Q. Guan, U. Håkanson, H. X. Xu, and H. Q. Xu, “Excitations of surface plasmon polaritons in double layer metal grating structures,” Appl. Phys. Lett. 100(9), 091111 (2012).
[Crossref]

Atwater, H. A.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
[Crossref] [PubMed]

Aussenegg, F. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Bao, J.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Barakat, E.

Bi, L.

Boltasseva, A.

Bower, J. E.

Bozhevolnyi, S. I.

Briggs, R. M.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
[Crossref] [PubMed]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Burgos, S. P.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
[Crossref] [PubMed]

Carr, D. W.

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Chamanzar, M.

Chan, H. B.

Chang, Y.-C.

Chatzianagnostou, E.

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

Chen, J.

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[Crossref]

Cheng, C.

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[Crossref]

Cheng, C.-W.

Chmielak, B.

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

G. Dabos, D. Ketzaki, A. Manolis, L. Markey, J. C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, D. Tsiokos, and N. Pleros, “Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Cirelli, R. A.

Cuadrado, A.

Dabos, G.

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

G. Dabos, D. Ketzaki, A. Manolis, L. Markey, J. C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, D. Tsiokos, and N. Pleros, “Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

De, R.

Deng, L.

Dereux, A.

G. Dabos, D. Ketzaki, A. Manolis, L. Markey, J. C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, D. Tsiokos, and N. Pleros, “Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

Ditlbacher, H.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Elshorbagy, M. H.

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Fan, Y.-X.

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[Crossref]

Feigenbaum, E.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
[Crossref] [PubMed]

Ferry, E.

Giesecke, A. L.

G. Dabos, D. Ketzaki, A. Manolis, L. Markey, J. C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, D. Tsiokos, and N. Pleros, “Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Giesecke, A.-L.

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

Grandidier, J.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
[Crossref] [PubMed]

Gray, S. K.

T.-W. Lee and S. K. Gray, “Remote grating-assisted excitation of narrow-band surface plasmons,” Opt. Express 18(23), 23857–23864 (2010).
[Crossref] [PubMed]

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Calculating nonlocal optical properties of structures with arbitrary shape,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 035423 (2010).
[Crossref]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Guan, Z. Q.

N. Anttu, Z. Q. Guan, U. Håkanson, H. X. Xu, and H. Q. Xu, “Excitations of surface plasmon polaritons in double layer metal grating structures,” Appl. Phys. Lett. 100(9), 091111 (2012).
[Crossref]

Güney, D. Ö.

W. Adams, M. Sadatgol, and D. Ö. Güney, “Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging,” AIP Adv. 6(10), 100701 (2016).
[Crossref]

Guo, X.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Håkanson, U.

N. Anttu, Z. Q. Guan, U. Håkanson, H. X. Xu, and H. Q. Xu, “Excitations of surface plasmon polaritons in double layer metal grating structures,” Appl. Phys. Lett. 100(9), 091111 (2012).
[Crossref]

Herzig, H. P.

Ho, H.-C.

H.-C. Ho, L.-W. Nien, J.-H. Li, and C.-H. Hsueh, “Suspended graphene with periodic dimer nanostructure on Si cavities for surface-enhanced Raman scattering applications,” Appl. Phys. Lett. 110(17), 171111 (2017).
[Crossref]

Hsueh, C.-H.

H.-C. Ho, L.-W. Nien, J.-H. Li, and C.-H. Hsueh, “Suspended graphene with periodic dimer nanostructure on Si cavities for surface-enhanced Raman scattering applications,” Appl. Phys. Lett. 110(17), 171111 (2017).
[Crossref]

Huang, H.

W. Ye, R. Long, H. Huang, and Y. Xiong, “Plasmonic nanostructures in solar energy conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1008–1021 (2017).
[Crossref]

Huang, W.-Q.

D. Xiang, L.-L. Wang, L. Wang, X. Zhai, and W.-Q. Huang, “Optical transmission through double-layer compound metallic gratings with subwavelength slits,” J. Mod. Opt. 59(15), 1342–1348 (2012).
[Crossref]

Jiao, X.

Q. Li, X. Jiao, P. Wang, H. Ming, and J. Xie, “Analysis of novel optical properties of subwavelength double-layers metallic grating,” Appl. Phys. B 81(6), 787–790 (2005).
[Crossref]

Ketzaki, D.

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

G. Dabos, D. Ketzaki, A. Manolis, L. Markey, J. C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, D. Tsiokos, and N. Pleros, “Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Klemens, F.

Krenn, J. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Lee, C.-L.

Lee, S. K.

Lee, T.-W.

Lee, Y. T.

Leitner, A.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Leosson, K.

Li, J.-H.

H.-C. Ho, L.-W. Nien, J.-H. Li, and C.-H. Hsueh, “Suspended graphene with periodic dimer nanostructure on Si cavities for surface-enhanced Raman scattering applications,” Appl. Phys. Lett. 110(17), 171111 (2017).
[Crossref]

Li, Q.

Q. Li, X. Jiao, P. Wang, H. Ming, and J. Xie, “Analysis of novel optical properties of subwavelength double-layers metallic grating,” Appl. Phys. B 81(6), 787–790 (2005).
[Crossref]

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Long, R.

W. Ye, R. Long, H. Huang, and Y. Xiong, “Plasmonic nanostructures in solar energy conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1008–1021 (2017).
[Crossref]

Luo, Y.

Ma, Y.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Manolis, A.

G. Dabos, D. Ketzaki, A. Manolis, L. Markey, J. C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, D. Tsiokos, and N. Pleros, “Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

Marcet, Z.

Markey, L.

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

G. Dabos, D. Ketzaki, A. Manolis, L. Markey, J. C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, D. Tsiokos, and N. Pleros, “Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

McMahon, J. M.

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Calculating nonlocal optical properties of structures with arbitrary shape,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 035423 (2010).
[Crossref]

Miner, J.

Ming, H.

Q. Li, X. Jiao, P. Wang, H. Ming, and J. Xie, “Analysis of novel optical properties of subwavelength double-layers metallic grating,” Appl. Phys. B 81(6), 787–790 (2005).
[Crossref]

Naqavi, A.

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Nien, L.-W.

H.-C. Ho, L.-W. Nien, J.-H. Li, and C.-H. Hsueh, “Suspended graphene with periodic dimer nanostructure on Si cavities for surface-enhanced Raman scattering applications,” Appl. Phys. Lett. 110(17), 171111 (2017).
[Crossref]

Nikolajsen, T.

Oh, M.-K.

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Osowiecki, G. D.

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Pai, C. S.

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Pleros, N.

G. Dabos, D. Ketzaki, A. Manolis, L. Markey, J. C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, D. Tsiokos, and N. Pleros, “Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

Porschatis, C.

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

G. Dabos, D. Ketzaki, A. Manolis, L. Markey, J. C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, D. Tsiokos, and N. Pleros, “Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Qin, J.

Qiu, M.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Raschke, M. B.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Ren, F.-F.

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[Crossref]

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Rusakov, D.

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

Sadatgol, M.

W. Adams, M. Sadatgol, and D. Ö. Güney, “Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging,” AIP Adv. 6(10), 100701 (2016).
[Crossref]

Schatz, G. C.

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Calculating nonlocal optical properties of structures with arbitrary shape,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 035423 (2010).
[Crossref]

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Shih, M.-H.

Shin, Y.-S.

Tan, C. L.

Tang, T.

Tanner, D. B.

Taylor, J. A.

Tong, L.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Tsiokos, D.

G. Dabos, D. Ketzaki, A. Manolis, L. Markey, J. C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, D. Tsiokos, and N. Pleros, “Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

Wahlbrink, T.

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

Wang, H.-T.

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[Crossref]

Wang, L.

D. Xiang, L.-L. Wang, L. Wang, X. Zhai, and W.-Q. Huang, “Optical transmission through double-layer compound metallic gratings with subwavelength slits,” J. Mod. Opt. 59(15), 1342–1348 (2012).
[Crossref]

Wang, L.-L.

D. Xiang, L.-L. Wang, L. Wang, X. Zhai, and W.-Q. Huang, “Optical transmission through double-layer compound metallic gratings with subwavelength slits,” J. Mod. Opt. 59(15), 1342–1348 (2012).
[Crossref]

Wang, P.

Q. Li, X. Jiao, P. Wang, H. Ming, and J. Xie, “Analysis of novel optical properties of subwavelength double-layers metallic grating,” Appl. Phys. B 81(6), 787–790 (2005).
[Crossref]

Weeber, J. C.

G. Dabos, D. Ketzaki, A. Manolis, L. Markey, J. C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, D. Tsiokos, and N. Pleros, “Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Weeber, J.-C.

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

Wiley, B. J.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Woo, K.

Wu, Q.-Y.

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[Crossref]

Xiang, D.

D. Xiang, L.-L. Wang, L. Wang, X. Zhai, and W.-Q. Huang, “Optical transmission through double-layer compound metallic gratings with subwavelength slits,” J. Mod. Opt. 59(15), 1342–1348 (2012).
[Crossref]

Xie, J.

T. Tang, J. Qin, J. Xie, L. Deng, and L. Bi, “Magneto-optical Goos-Hänchen effect in a prism-waveguide coupling structure,” Opt. Express 22(22), 27042–27055 (2014).
[Crossref] [PubMed]

Q. Li, X. Jiao, P. Wang, H. Ming, and J. Xie, “Analysis of novel optical properties of subwavelength double-layers metallic grating,” Appl. Phys. B 81(6), 787–790 (2005).
[Crossref]

Xiong, Y.

W. Ye, R. Long, H. Huang, and Y. Xiong, “Plasmonic nanostructures in solar energy conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1008–1021 (2017).
[Crossref]

Xu, H. Q.

N. Anttu, Z. Q. Guan, U. Håkanson, H. X. Xu, and H. Q. Xu, “Excitations of surface plasmon polaritons in double layer metal grating structures,” Appl. Phys. Lett. 100(9), 091111 (2012).
[Crossref]

Xu, H. X.

N. Anttu, Z. Q. Guan, U. Håkanson, H. X. Xu, and H. Q. Xu, “Excitations of surface plasmon polaritons in double layer metal grating structures,” Appl. Phys. Lett. 100(9), 091111 (2012).
[Crossref]

Xu, J.

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[Crossref]

Yang, Q.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Ye, W.

W. Ye, R. Long, H. Huang, and Y. Xiong, “Plasmonic nanostructures in solar energy conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1008–1021 (2017).
[Crossref]

Yu, H.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Zhai, X.

D. Xiang, L.-L. Wang, L. Wang, X. Zhai, and W.-Q. Huang, “Optical transmission through double-layer compound metallic gratings with subwavelength slits,” J. Mod. Opt. 59(15), 1342–1348 (2012).
[Crossref]

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Zhang, X.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

AIP Adv. (1)

W. Adams, M. Sadatgol, and D. Ö. Güney, “Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging,” AIP Adv. 6(10), 100701 (2016).
[Crossref]

Appl. Phys. B (1)

Q. Li, X. Jiao, P. Wang, H. Ming, and J. Xie, “Analysis of novel optical properties of subwavelength double-layers metallic grating,” Appl. Phys. B 81(6), 787–790 (2005).
[Crossref]

Appl. Phys. Lett. (4)

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[Crossref]

N. Anttu, Z. Q. Guan, U. Håkanson, H. X. Xu, and H. Q. Xu, “Excitations of surface plasmon polaritons in double layer metal grating structures,” Appl. Phys. Lett. 100(9), 091111 (2012).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

H.-C. Ho, L.-W. Nien, J.-H. Li, and C.-H. Hsueh, “Suspended graphene with periodic dimer nanostructure on Si cavities for surface-enhanced Raman scattering applications,” Appl. Phys. Lett. 110(17), 171111 (2017).
[Crossref]

Appl. Spectrosc. (1)

IEEE Photonics J. (1)

G. Dabos, D. Ketzaki, A. Manolis, L. Markey, J. C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, D. Tsiokos, and N. Pleros, “Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

J. Appl. Phys. (1)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

W. Ye, R. Long, H. Huang, and Y. Xiong, “Plasmonic nanostructures in solar energy conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1008–1021 (2017).
[Crossref]

J. Mod. Opt. (1)

D. Xiang, L.-L. Wang, L. Wang, X. Zhai, and W.-Q. Huang, “Optical transmission through double-layer compound metallic gratings with subwavelength slits,” J. Mod. Opt. 59(15), 1342–1348 (2012).
[Crossref]

Nano Lett. (3)

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
[Crossref] [PubMed]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

M. H. Elshorbagy, A. Cuadrado, and J. Alda, “Plasmonic Sensor Based on Dielectric Nanoprisms,” Nanoscale Res. Lett. 12(1), 580 (2017).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (1)

Photon. Res. (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Calculating nonlocal optical properties of structures with arbitrary shape,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 035423 (2010).
[Crossref]

Phys. Rev. Lett. (1)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Sci. Rep. (1)

G. Dabos, A. Manolis, D. Tsiokos, D. Ketzaki, E. Chatzianagnostou, L. Markey, D. Rusakov, J.-C. Weeber, A. Dereux, A.-L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, and N. Pleros, “Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes,” Sci. Rep. 8(1), 13380 (2018).
[Crossref] [PubMed]

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Other (2)

H. Philipp, “Silicon dioxide (SiO2) (glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

S. A. Maier, Plasmonics: fundamentals and applications, (Springer Science & Business Media, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic drawing of the multiple layer grating structure, where the distance between two layers of grating is d, the grating period is p, the grating widths in grating layer n is wn, the thickness of grating is t, the thickness of gold thin film above the SiO2 is l, εd is the permittivity of SiO2, ε1 represents the dielectric constant of air. The incident plane wave with x-polarization propagates in the positive y direction.
Fig. 2
Fig. 2 (a) Schematic drawing of the double layer grating structure, where the distance between two layers of grating is d, the grating period is p, the grating widths of grating layers 1 and 2 are w1 and w2, respectively. The incident plane wave is x-polarization with wavelength 815.5 nm and propagates in the positive y direction. (b) Transmission for different d for double layer grating structure.
Fig. 3
Fig. 3 Magnitude of electric field distribution, for (a) d = 608 nm, (b) d = 893 nm, and (c) d = 1198 nm at the resonance wavelength 815.5 nm.
Fig. 4
Fig. 4 Electric field intensity enhancement of different grating structures, single layer (black line), double layer of d = 608 nm (red light), double layer of d = 893 nm (green line), and double layer of d = 1198 nm (blue line) with the width of grating as 200 nm and the grating period p as 800 nm.
Fig. 5
Fig. 5 Electric field intensity in (a) single layer grating structure and (b) double layer grating structure as a function of grating width.
Fig. 6
Fig. 6 Relation of electric field intensity and the gold thin film thickness for double layer structure.
Fig. 7
Fig. 7 Electric field intensity distributions in (a) single layer grating structure, (b) double layer grating structure, (c) three layer grating structure, (d) four layer grating structure, and (e) five layer grating structure. The incident light is from the bottom to the top with the wavelength as 815.5 nm. The maximum intensities in different grating layer are 174.6, 243.0, 273.5, 279.6, and 284.5.
Fig. 8
Fig. 8 (a) Electric field intensity at 5 nm above the gold thin film verse wavelength for the multilayer grating structures and (b) transmission and intensity of different layer grating structures, where the transmission is shown as the black line and the maximum electric field intensity is shown as the blue line.
Fig. 9
Fig. 9 Electric field intensity distributions under full width at half maximum of Gaussian mode source of (a) 2 μm, (b) 4 μm, and (c) 6 μm.

Tables (1)

Tables Icon

Table 1 Summary of performance and structure parameters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

 m λ 0 p ~ ε m ' ( λ 0 ) ε 1 ( ε m ' ( λ 0 )+  ε 1 ) ,
4π n d λ 0 =2mπ,

Metrics