Abstract

Monolithically integrated polarization beam splitters (PBSs) are needed to reduce the form-factor and assembly cost of optical coherent receivers. A highly efficient passive polarization rotator and splitter based on mode-evolution is demonstrated. The device is fabricated on InP substrate with a single etch-step and uses an adiabatic mode-converter and an asymmetric Y-coupler. Despite its simple fabrication process, the device shows a polarization extinction ratio (PER) better than 19 dB over 1520 nm to 1620 nm, thus covering both C- and L-band. The peak value of 24 dB is obtained for TE and TM polarizations. Its fabrication tolerance is large, so that even under a width variation of +/− 200 nm the PER remains above 17 dB over the entire C- and L-band.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mode-evolution-based polarization rotator-splitter design via simple fabrication process

Wangqing Yuan, Keisuke Kojima, Bingnan Wang, Toshiaki Koike-Akino, Kieran Parsons, Satoshi Nishikawa, and Eiji Yagyu
Opt. Express 20(9) 10163-10169 (2012)

Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide

Hongnan Xu and Yaocheng Shi
Opt. Express 25(15) 18485-18491 (2017)

Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction

Jing Wang, Ben Niu, Zhen Sheng, Aimin Wu, Wei Li, Xi Wang, Shichang Zou, Minghao Qi, and Fuwan Gan
Opt. Express 22(11) 13565-13571 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [Crossref]
  2. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
    [Crossref] [PubMed]
  3. R. Nagarajan, J. Rahn, M. Kato, J. Pleumeekers, D. Lambert, V. Lal, H. S. Tsai, A. Nilsson, A. Dentai, M. Kuntz, R. Malendevich, J. Tang, J. Zhang, T. Butrie, M. Raburn, B. Little, W. Chen, G. Goldfarb, V. Dominic, B. Taylor, M. Reffle, F. Kish, and D. Welch, “10 Channel, 45.6 Gb/s per channel, polarization-multiplexed DQPSK, InP receiver photonic integrated circuit,” J. Lightwave Technol. 29(4), 386–395 (2011).
    [Crossref]
  4. F. Dell’Olio, D. Conteduca, G. Brunetti, M. N. Armenise, and C. Ciminelli, “Novel CMOS-compatible athermal and polarization-insensitive ring resonator as photonic notch filter,” IEEE Photonics J. 10(6), 1–11 (2018).
    [Crossref]
  5. W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
    [Crossref]
  6. A. Beling, N. Ebel, A. Matiss, G. Unterbörsch, M. Nölle, J. Fischer, J. Hilt, L. Molle, C. Schubert, F. Verluise, and L. Fulop, “Fully-integrated polarization-diversity coherent receiver module for 100G DP-QPSK,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OML5.
  7. T. Richter, M. Kroh, J. Wang, A. Theurer, C. Zawadzki, Z. Zhang, N. Keil, A. Steffan, and C. Schubert, “Integrated polarization-diversity coherent receiver on polymer PLC for QPSK and QAM signals,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW3G.1.
    [Crossref]
  8. R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, and M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28(5), 565–573 (1996).
    [Crossref]
  9. R. Zhang, P. Runge, G. Zhou, R. Klötzer, D. Pech, H.-G. Bach, D. Pérez-Galacho, A. Ortega-Murnox, R. Halir, and I. Molina-Fernández, “56Gbaud DP-QPSK receiver module with a monolithic integrated PBS and 90° hybrid InP chip,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.
  10. C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011).
    [Crossref]
  11. C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic silicon coherent receiver,” J. Lightwave Technol. 28(4), 520–528 (2010).
    [Crossref]
  12. L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y.-S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol. 25(3), 740–746 (2007).
    [Crossref]
  13. D. Pérez-Galacho, R. Zhang, A. Ortega-Monux, R. Halir, C. Alonso-Ramos, P. Runge, K. Janiak, G. Zhou, H.-G. Bach, A. G. Steffan, and I. Molina-Fernandez, “Integrated polarization beam splitter for 100/400 GE polarization multiplexed coherent optical communications,” J. Lightwave Technol. 32(3), 361–368 (2014).
    [Crossref]
  14. M. F. Baier, F. M. Soares, W. Passenberg, T. Gaertner, M. Moehrle, and N. Grote, “Polarization beam splitter building block for InP based generic photonic integrated circuits,” 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.
    [Crossref]
  15. S. Keyvaninia, P. Runge, F. Schröder, and M. Schell, “Novel concept for polarization splitting in InP Platforms”, European Conference on Integrated Optics (ECIO), Gent, Belgium, 24–26 April 2019.
  16. N. Abadía, X. Dai, Q. Lu, W. H. Guo, D. Patel, D. V. Plant, and J. F. Donegan, “Highly fabrication tolerant InP based polarization beam splitter based on p-i-n structure,” Opt. Express 25(9), 10070–10077 (2017).
    [Crossref] [PubMed]
  17. D. Pérez-Galacho, R. Halir, A. Ortega-Moñux, C. Alonso-Ramos, R. Zhang, P. Runge, K. Janiak, H. G. Bach, A. G. Steffan, and Í. Molina-Fernández, “Integrated polarization beam splitter with relaxed fabrication tolerances,” Opt. Express 21(12), 14146–14151 (2013).
    [Crossref] [PubMed]
  18. H. Xu, D. Dai, and Y. Shi, “Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials,” Laser Photonics Rev. 13(4), 1800349 (2019).
    [Crossref]
  19. D. Dai, “Advanced passive silicon photonic devices with asymmetric waveguide structures,” Proc. IEEE 106(12), 2117–2143 (2018).
    [Crossref]
  20. Y. Tian, J. Qiu, C. Liu, S. Tian, Z. Huang, and J. Wu, “Compact polarization beam splitter with a high extinction ratio over S + C + L band,” Opt. Express 27(2), 999–1009 (2019).
    [Crossref] [PubMed]
  21. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]
  22. W. D. Sacher, T. Barwicz, B. J. Taylor, and J. K. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22(4), 3777–3786 (2014).
    [Crossref] [PubMed]
  23. J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
    [Crossref] [PubMed]
  24. L. Socci, V. Sorianello, and M. Romagnoli, “300 nm bandwidth adiabatic SOI polarization splitter-rotators exploiting continuous symmetry breaking,” Opt. Express 23(15), 19261–19271 (2015).
    [Crossref] [PubMed]
  25. D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41(10), 2346–2349 (2016).
    [Crossref] [PubMed]
  26. D. Guo and T. Chu, “Broadband and low-crosstalk polarization splitter-rotator with optimized tapers,” OSA Continuum 1(3), 841–850 (2018).
    [Crossref]
  27. W. Yuan, K. Kojima, B. Wang, T. Koike-Akino, K. Parsons, S. Nishikawa, and E. Yagyu, “Mode-evolution-based polarization rotator-splitter design via simple fabrication process,” Opt. Express 20(9), 10163–10169 (2012).
    [Crossref] [PubMed]
  28. K. Mertens, B. Scholl, and H. J. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol. 13(10), 2087–2092 (1995).
    [Crossref]
  29. K. Mertens, M. Sennewald, and H. J. Schmitt, “Polarization conversion by hybrid modes: Theory and applications,” Radio Sci. 31(6), 1773–1779 (1996).
    [Crossref]
  30. Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
    [Crossref]
  31. S. Keyvaninia, T. Beckerwerth, G. Zhou, M. Gruner, F. Ganzer, W. Ebert, S. Mutschall, A. Seeger, P. Runge, and M. Schell, “Novel photodetector chip for polarization diverse detection,” J. Lightw. Technol., doi: 10.1109/JLT.2019.2908247 .
  32. C.-J. Chung, J. Midkiff, K. M. Yoo, A. Rostamian, J. Guo, R. T. Chen, and S. Chakravarty, “InP-based polarization rotator-splitter for mid-infrared photonic integration circuits,” AIP Adv. 9(1), 015303 (2019).
    [Crossref]
  33. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
    [Crossref]
  34. X. Sun, H. C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett. 34(3), 280–282 (2009).
    [Crossref] [PubMed]
  35. D. Dai and M. Zhang, “Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls,” Opt. Express 23(25), 32452–32464 (2015).
    [Crossref] [PubMed]
  36. FIMMWAVE/FIMMPROP, Photon Design Ltd, http:/www.photond.com .

2019 (3)

H. Xu, D. Dai, and Y. Shi, “Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials,” Laser Photonics Rev. 13(4), 1800349 (2019).
[Crossref]

Y. Tian, J. Qiu, C. Liu, S. Tian, Z. Huang, and J. Wu, “Compact polarization beam splitter with a high extinction ratio over S + C + L band,” Opt. Express 27(2), 999–1009 (2019).
[Crossref] [PubMed]

C.-J. Chung, J. Midkiff, K. M. Yoo, A. Rostamian, J. Guo, R. T. Chen, and S. Chakravarty, “InP-based polarization rotator-splitter for mid-infrared photonic integration circuits,” AIP Adv. 9(1), 015303 (2019).
[Crossref]

2018 (3)

D. Guo and T. Chu, “Broadband and low-crosstalk polarization splitter-rotator with optimized tapers,” OSA Continuum 1(3), 841–850 (2018).
[Crossref]

D. Dai, “Advanced passive silicon photonic devices with asymmetric waveguide structures,” Proc. IEEE 106(12), 2117–2143 (2018).
[Crossref]

F. Dell’Olio, D. Conteduca, G. Brunetti, M. N. Armenise, and C. Ciminelli, “Novel CMOS-compatible athermal and polarization-insensitive ring resonator as photonic notch filter,” IEEE Photonics J. 10(6), 1–11 (2018).
[Crossref]

2017 (1)

2016 (1)

2015 (2)

2014 (3)

2013 (1)

2012 (1)

2011 (3)

2010 (1)

2009 (1)

2008 (1)

2007 (2)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y.-S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol. 25(3), 740–746 (2007).
[Crossref]

2004 (1)

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[Crossref]

1996 (2)

R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, and M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28(5), 565–573 (1996).
[Crossref]

K. Mertens, M. Sennewald, and H. J. Schmitt, “Polarization conversion by hybrid modes: Theory and applications,” Radio Sci. 31(6), 1773–1779 (1996).
[Crossref]

1995 (1)

K. Mertens, B. Scholl, and H. J. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol. 13(10), 2087–2092 (1995).
[Crossref]

1991 (1)

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
[Crossref]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Abadía, N.

Alonso-Ramos, C.

Armenise, M. N.

F. Dell’Olio, D. Conteduca, G. Brunetti, M. N. Armenise, and C. Ciminelli, “Novel CMOS-compatible athermal and polarization-insensitive ring resonator as photonic notch filter,” IEEE Photonics J. 10(6), 1–11 (2018).
[Crossref]

Augustin, L. M.

Bach, H. G.

Bach, H.-G.

D. Pérez-Galacho, R. Zhang, A. Ortega-Monux, R. Halir, C. Alonso-Ramos, P. Runge, K. Janiak, G. Zhou, H.-G. Bach, A. G. Steffan, and I. Molina-Fernandez, “Integrated polarization beam splitter for 100/400 GE polarization multiplexed coherent optical communications,” J. Lightwave Technol. 32(3), 361–368 (2014).
[Crossref]

R. Zhang, P. Runge, G. Zhou, R. Klötzer, D. Pech, H.-G. Bach, D. Pérez-Galacho, A. Ortega-Murnox, R. Halir, and I. Molina-Fernández, “56Gbaud DP-QPSK receiver module with a monolithic integrated PBS and 90° hybrid InP chip,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.

Baier, M. F.

M. F. Baier, F. M. Soares, W. Passenberg, T. Gaertner, M. Moehrle, and N. Grote, “Polarization beam splitter building block for InP based generic photonic integrated circuits,” 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.
[Crossref]

Barwicz, T.

W. D. Sacher, T. Barwicz, B. J. Taylor, and J. K. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22(4), 3777–3786 (2014).
[Crossref] [PubMed]

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Bowers, J. E.

Brunetti, G.

F. Dell’Olio, D. Conteduca, G. Brunetti, M. N. Armenise, and C. Ciminelli, “Novel CMOS-compatible athermal and polarization-insensitive ring resonator as photonic notch filter,” IEEE Photonics J. 10(6), 1–11 (2018).
[Crossref]

Buhl, L. L.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011).
[Crossref]

Butrie, T.

Chakravarty, S.

C.-J. Chung, J. Midkiff, K. M. Yoo, A. Rostamian, J. Guo, R. T. Chen, and S. Chakravarty, “InP-based polarization rotator-splitter for mid-infrared photonic integration circuits,” AIP Adv. 9(1), 015303 (2019).
[Crossref]

Chandrasekhar, S.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011).
[Crossref]

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic silicon coherent receiver,” J. Lightwave Technol. 28(4), 520–528 (2010).
[Crossref]

Chen, R. T.

C.-J. Chung, J. Midkiff, K. M. Yoo, A. Rostamian, J. Guo, R. T. Chen, and S. Chakravarty, “InP-based polarization rotator-splitter for mid-infrared photonic integration circuits,” AIP Adv. 9(1), 015303 (2019).
[Crossref]

Chen, W.

Chen, Y. K.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011).
[Crossref]

Chen, Y.-K.

Chu, T.

Chung, C.-J.

C.-J. Chung, J. Midkiff, K. M. Yoo, A. Rostamian, J. Guo, R. T. Chen, and S. Chakravarty, “InP-based polarization rotator-splitter for mid-infrared photonic integration circuits,” AIP Adv. 9(1), 015303 (2019).
[Crossref]

Ciminelli, C.

F. Dell’Olio, D. Conteduca, G. Brunetti, M. N. Armenise, and C. Ciminelli, “Novel CMOS-compatible athermal and polarization-insensitive ring resonator as photonic notch filter,” IEEE Photonics J. 10(6), 1–11 (2018).
[Crossref]

Conteduca, D.

F. Dell’Olio, D. Conteduca, G. Brunetti, M. N. Armenise, and C. Ciminelli, “Novel CMOS-compatible athermal and polarization-insensitive ring resonator as photonic notch filter,” IEEE Photonics J. 10(6), 1–11 (2018).
[Crossref]

Dai, D.

Dai, X.

de Laat, W. J. M.

Dell’Olio, F.

F. Dell’Olio, D. Conteduca, G. Brunetti, M. N. Armenise, and C. Ciminelli, “Novel CMOS-compatible athermal and polarization-insensitive ring resonator as photonic notch filter,” IEEE Photonics J. 10(6), 1–11 (2018).
[Crossref]

Dentai, A.

Doerr, C. R.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011).
[Crossref]

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic silicon coherent receiver,” J. Lightwave Technol. 28(4), 520–528 (2010).
[Crossref]

Dominic, V.

Donegan, J. F.

Earnshaw, M. P.

Fidorra, F.

R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, and M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28(5), 565–573 (1996).
[Crossref]

Fukuda, H.

Gaertner, T.

M. F. Baier, F. M. Soares, W. Passenberg, T. Gaertner, M. Moehrle, and N. Grote, “Polarization beam splitter building block for InP based generic photonic integrated circuits,” 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.
[Crossref]

Gan, F.

Gill, D. M.

Goldfarb, G.

Grote, N.

M. F. Baier, F. M. Soares, W. Passenberg, T. Gaertner, M. Moehrle, and N. Grote, “Polarization beam splitter building block for InP based generic photonic integrated circuits,” 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.
[Crossref]

Guo, D.

Guo, J.

C.-J. Chung, J. Midkiff, K. M. Yoo, A. Rostamian, J. Guo, R. T. Chen, and S. Chakravarty, “InP-based polarization rotator-splitter for mid-infrared photonic integration circuits,” AIP Adv. 9(1), 015303 (2019).
[Crossref]

Guo, W. H.

Halir, R.

Hamacher, M.

R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, and M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28(5), 565–573 (1996).
[Crossref]

Hanfoug, R.

Headley, W. R.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[Crossref]

Heidrich, H.

R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, and M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28(5), 565–573 (1996).
[Crossref]

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
[Crossref]

Houtsma, V.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011).
[Crossref]

Howe, S.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[Crossref]

Hu, T.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011).
[Crossref]

Huang, Z.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Itabashi, S.

Janiak, K.

Kaiser, R.

R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, and M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28(5), 565–573 (1996).
[Crossref]

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Kato, M.

Kazarinov, R. F.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
[Crossref]

Kish, F.

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
[Crossref]

Klötzer, R.

R. Zhang, P. Runge, G. Zhou, R. Klötzer, D. Pech, H.-G. Bach, D. Pérez-Galacho, A. Ortega-Murnox, R. Halir, and I. Molina-Fernández, “56Gbaud DP-QPSK receiver module with a monolithic integrated PBS and 90° hybrid InP chip,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.

Koike-Akino, T.

Kojima, K.

Kuntz, M.

Lal, V.

Lambert, D.

Li, W.

Little, B.

Liu, A.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[Crossref]

Liu, C.

Liu, H. C.

Lu, Q.

Malendevich, R.

Mertens, K.

K. Mertens, M. Sennewald, and H. J. Schmitt, “Polarization conversion by hybrid modes: Theory and applications,” Radio Sci. 31(6), 1773–1779 (1996).
[Crossref]

K. Mertens, B. Scholl, and H. J. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol. 13(10), 2087–2092 (1995).
[Crossref]

Midkiff, J.

C.-J. Chung, J. Midkiff, K. M. Yoo, A. Rostamian, J. Guo, R. T. Chen, and S. Chakravarty, “InP-based polarization rotator-splitter for mid-infrared photonic integration circuits,” AIP Adv. 9(1), 015303 (2019).
[Crossref]

Moehrle, M.

M. F. Baier, F. M. Soares, W. Passenberg, T. Gaertner, M. Moehrle, and N. Grote, “Polarization beam splitter building block for InP based generic photonic integrated circuits,” 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.
[Crossref]

Molina-Fernandez, I.

Molina-Fernández, I.

R. Zhang, P. Runge, G. Zhou, R. Klötzer, D. Pech, H.-G. Bach, D. Pérez-Galacho, A. Ortega-Murnox, R. Halir, and I. Molina-Fernández, “56Gbaud DP-QPSK receiver module with a monolithic integrated PBS and 90° hybrid InP chip,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.

Molina-Fernández, Í.

Nagarajan, R.

Neilson, D. T.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011).
[Crossref]

Nilsson, A.

Nishikawa, S.

Niu, B.

Oei, Y.-S.

Orlowsky, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
[Crossref]

Ortega-Monux, A.

Ortega-Moñux, A.

Ortega-Murnox, A.

R. Zhang, P. Runge, G. Zhou, R. Klötzer, D. Pech, H.-G. Bach, D. Pérez-Galacho, A. Ortega-Murnox, R. Halir, and I. Molina-Fernández, “56Gbaud DP-QPSK receiver module with a monolithic integrated PBS and 90° hybrid InP chip,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.

Paniccia, M.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[Crossref]

Parsons, K.

Passenberg, W.

M. F. Baier, F. M. Soares, W. Passenberg, T. Gaertner, M. Moehrle, and N. Grote, “Polarization beam splitter building block for InP based generic photonic integrated circuits,” 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.
[Crossref]

Patel, D.

Pech, D.

R. Zhang, P. Runge, G. Zhou, R. Klötzer, D. Pech, H.-G. Bach, D. Pérez-Galacho, A. Ortega-Murnox, R. Halir, and I. Molina-Fernández, “56Gbaud DP-QPSK receiver module with a monolithic integrated PBS and 90° hybrid InP chip,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.

Pérez-Galacho, D.

Plant, D. V.

Pleumeekers, J.

Poon, J. K.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Qi, M.

Qiu, J.

Raburn, M.

Rahn, J.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Rasras, M.

Reed, G. T.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[Crossref]

Reffle, M.

Romagnoli, M.

Rostamian, A.

C.-J. Chung, J. Midkiff, K. M. Yoo, A. Rostamian, J. Guo, R. T. Chen, and S. Chakravarty, “InP-based polarization rotator-splitter for mid-infrared photonic integration circuits,” AIP Adv. 9(1), 015303 (2019).
[Crossref]

Runge, P.

Sacher, W. D.

Sauer, N. J.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011).
[Crossref]

Schmitt, H. J.

K. Mertens, M. Sennewald, and H. J. Schmitt, “Polarization conversion by hybrid modes: Theory and applications,” Radio Sci. 31(6), 1773–1779 (1996).
[Crossref]

K. Mertens, B. Scholl, and H. J. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol. 13(10), 2087–2092 (1995).
[Crossref]

Scholl, B.

K. Mertens, B. Scholl, and H. J. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol. 13(10), 2087–2092 (1995).
[Crossref]

Sennewald, M.

K. Mertens, M. Sennewald, and H. J. Schmitt, “Polarization conversion by hybrid modes: Theory and applications,” Radio Sci. 31(6), 1773–1779 (1996).
[Crossref]

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
[Crossref]

Sheng, Z.

Shi, Y.

H. Xu, D. Dai, and Y. Shi, “Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials,” Laser Photonics Rev. 13(4), 1800349 (2019).
[Crossref]

Shinojima, H.

Smit, M. K.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Soares, F. M.

M. F. Baier, F. M. Soares, W. Passenberg, T. Gaertner, M. Moehrle, and N. Grote, “Polarization beam splitter building block for InP based generic photonic integrated circuits,” 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.
[Crossref]

Socci, L.

L. Socci, V. Sorianello, and M. Romagnoli, “300 nm bandwidth adiabatic SOI polarization splitter-rotators exploiting continuous symmetry breaking,” Opt. Express 23(15), 19261–19271 (2015).
[Crossref] [PubMed]

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Sorianello, V.

Steffan, A. G.

Sun, X.

Tang, J.

Taylor, B.

Taylor, B. J.

Tian, S.

Tian, Y.

Trommer, D.

R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, and M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28(5), 565–573 (1996).
[Crossref]

Tsai, H. S.

Tsuchizawa, T.

van de Moosdijk, M. J. E.

van der Tol, J. J. G. M.

van Dijk, P. W. L.

Wang, B.

Wang, J.

Wang, X.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Weimann, N.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011).
[Crossref]

Weiner, J. S.

Welch, D.

Winzer, P. J.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011).
[Crossref]

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic silicon coherent receiver,” J. Lightwave Technol. 28(4), 520–528 (2010).
[Crossref]

Wu, A.

Wu, H.

Wu, J.

Xu, H.

H. Xu, D. Dai, and Y. Shi, “Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials,” Laser Photonics Rev. 13(4), 1800349 (2019).
[Crossref]

Yagyu, E.

Yamada, K.

Yariv, A.

Yoo, K. M.

C.-J. Chung, J. Midkiff, K. M. Yoo, A. Rostamian, J. Guo, R. T. Chen, and S. Chakravarty, “InP-based polarization rotator-splitter for mid-infrared photonic integration circuits,” AIP Adv. 9(1), 015303 (2019).
[Crossref]

Yuan, W.

Zhang, J.

Zhang, L.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011).
[Crossref]

Zhang, M.

Zhang, R.

Zhou, G.

D. Pérez-Galacho, R. Zhang, A. Ortega-Monux, R. Halir, C. Alonso-Ramos, P. Runge, K. Janiak, G. Zhou, H.-G. Bach, A. G. Steffan, and I. Molina-Fernandez, “Integrated polarization beam splitter for 100/400 GE polarization multiplexed coherent optical communications,” J. Lightwave Technol. 32(3), 361–368 (2014).
[Crossref]

R. Zhang, P. Runge, G. Zhou, R. Klötzer, D. Pech, H.-G. Bach, D. Pérez-Galacho, A. Ortega-Murnox, R. Halir, and I. Molina-Fernández, “56Gbaud DP-QPSK receiver module with a monolithic integrated PBS and 90° hybrid InP chip,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.

Zou, S.

AIP Adv. (1)

C.-J. Chung, J. Midkiff, K. M. Yoo, A. Rostamian, J. Guo, R. T. Chen, and S. Chakravarty, “InP-based polarization rotator-splitter for mid-infrared photonic integration circuits,” AIP Adv. 9(1), 015303 (2019).
[Crossref]

Appl. Phys. Lett. (1)

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
[Crossref]

IEEE Photonics J. (1)

F. Dell’Olio, D. Conteduca, G. Brunetti, M. N. Armenise, and C. Ciminelli, “Novel CMOS-compatible athermal and polarization-insensitive ring resonator as photonic notch filter,” IEEE Photonics J. 10(6), 1–11 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011).
[Crossref]

J. Lightwave Technol. (5)

Laser Photonics Rev. (1)

H. Xu, D. Dai, and Y. Shi, “Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials,” Laser Photonics Rev. 13(4), 1800349 (2019).
[Crossref]

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Opt. Express (10)

W. D. Sacher, T. Barwicz, B. J. Taylor, and J. K. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22(4), 3777–3786 (2014).
[Crossref] [PubMed]

J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
[Crossref] [PubMed]

L. Socci, V. Sorianello, and M. Romagnoli, “300 nm bandwidth adiabatic SOI polarization splitter-rotators exploiting continuous symmetry breaking,” Opt. Express 23(15), 19261–19271 (2015).
[Crossref] [PubMed]

D. Dai and M. Zhang, “Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls,” Opt. Express 23(25), 32452–32464 (2015).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref] [PubMed]

W. Yuan, K. Kojima, B. Wang, T. Koike-Akino, K. Parsons, S. Nishikawa, and E. Yagyu, “Mode-evolution-based polarization rotator-splitter design via simple fabrication process,” Opt. Express 20(9), 10163–10169 (2012).
[Crossref] [PubMed]

D. Pérez-Galacho, R. Halir, A. Ortega-Moñux, C. Alonso-Ramos, R. Zhang, P. Runge, K. Janiak, H. G. Bach, A. G. Steffan, and Í. Molina-Fernández, “Integrated polarization beam splitter with relaxed fabrication tolerances,” Opt. Express 21(12), 14146–14151 (2013).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[Crossref] [PubMed]

N. Abadía, X. Dai, Q. Lu, W. H. Guo, D. Patel, D. V. Plant, and J. F. Donegan, “Highly fabrication tolerant InP based polarization beam splitter based on p-i-n structure,” Opt. Express 25(9), 10070–10077 (2017).
[Crossref] [PubMed]

Y. Tian, J. Qiu, C. Liu, S. Tian, Z. Huang, and J. Wu, “Compact polarization beam splitter with a high extinction ratio over S + C + L band,” Opt. Express 27(2), 999–1009 (2019).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, and M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28(5), 565–573 (1996).
[Crossref]

OSA Continuum (1)

Proc. IEEE (1)

D. Dai, “Advanced passive silicon photonic devices with asymmetric waveguide structures,” Proc. IEEE 106(12), 2117–2143 (2018).
[Crossref]

Radio Sci. (1)

K. Mertens, M. Sennewald, and H. J. Schmitt, “Polarization conversion by hybrid modes: Theory and applications,” Radio Sci. 31(6), 1773–1779 (1996).
[Crossref]

Other (7)

S. Keyvaninia, T. Beckerwerth, G. Zhou, M. Gruner, F. Ganzer, W. Ebert, S. Mutschall, A. Seeger, P. Runge, and M. Schell, “Novel photodetector chip for polarization diverse detection,” J. Lightw. Technol., doi: 10.1109/JLT.2019.2908247 .

FIMMWAVE/FIMMPROP, Photon Design Ltd, http:/www.photond.com .

R. Zhang, P. Runge, G. Zhou, R. Klötzer, D. Pech, H.-G. Bach, D. Pérez-Galacho, A. Ortega-Murnox, R. Halir, and I. Molina-Fernández, “56Gbaud DP-QPSK receiver module with a monolithic integrated PBS and 90° hybrid InP chip,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.

A. Beling, N. Ebel, A. Matiss, G. Unterbörsch, M. Nölle, J. Fischer, J. Hilt, L. Molle, C. Schubert, F. Verluise, and L. Fulop, “Fully-integrated polarization-diversity coherent receiver module for 100G DP-QPSK,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OML5.

T. Richter, M. Kroh, J. Wang, A. Theurer, C. Zawadzki, Z. Zhang, N. Keil, A. Steffan, and C. Schubert, “Integrated polarization-diversity coherent receiver on polymer PLC for QPSK and QAM signals,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW3G.1.
[Crossref]

M. F. Baier, F. M. Soares, W. Passenberg, T. Gaertner, M. Moehrle, and N. Grote, “Polarization beam splitter building block for InP based generic photonic integrated circuits,” 26th International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2014), pp. 1–2.
[Crossref]

S. Keyvaninia, P. Runge, F. Schröder, and M. Schell, “Novel concept for polarization splitting in InP Platforms”, European Conference on Integrated Optics (ECIO), Gent, Belgium, 24–26 April 2019.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Dispersion curves in the rib taper-waveguide of the mode-evolution-based polarization rotator. β is the propagation constant, W the rib-width along the propagation direction (z). The ridge height h1 is 120 nm, the waveguide height h2 is 320 nm. Wavelength is 1550 nm. S1 and S2 correspond to the coupled waveguide super-modes; the coloring along the lines indicate the mode polarization ratio ( γ x ), showing the conversion of TM0 to TE1.
Fig. 2
Fig. 2 (a) The difference in propagation constants at the waveguide width of highest hybridization of the first and second super-modes with 50% polarization ratio γ x as a function of the InGaAsP thickness at the wavelength of 1550 nm; (b) calculated electric field profiles for two hybrid super-modes S1 and S2 with an equal 50% polarization ratio ( γ x ) using h1 = 120 nm, h2 = 320 nm, at the wavelength of 1550 nm.
Fig. 3
Fig. 3 The schematic layout of the mode-evolution-based polarization rotator-splitter and geometries after optimization.
Fig. 4
Fig. 4 Simulated light propagation in the designed PRS when the TM0 and TE0 modes are launched at 1550nm.
Fig. 5
Fig. 5 Simulated PERport1,2 spectra when the TM0 and TE0 modes are launched at the input of the PRS for the width variation up to +/− 200 nm.
Fig. 6
Fig. 6 Microscopic pictures of the fabricated PRS.
Fig. 7
Fig. 7 Schematic measurement setup, solid black lines denote fiber connections, broken black lines denote free space propagation of the light, and the solid blue line denote electrical connection to a source measure unit (SMU).
Fig. 8
Fig. 8 Measured PERport1,2 spectrum when the TM0 and TE0 modes are launched at the input of the PRS for the width variation up to +/− 200 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

γ x = s | E x 2 | dx dy s | E x 2 | dx dy+ s | E y 2 | dx dy
A S1 ( z )= 1 2 ( ( 1-2δ/Δβ ) ( 1+2δ/Δβ ) ) e -j β S1 z
A S2 ( z )= 1 2 ( ( 1+2δ/Δβ ) ( 1-2δ/Δβ ) ) e -j β S2 z
PER Port1 =| 10log( P TE0,Port1 P TM0,Port1 ) |
PER Port2 =| 10log( P TE0,Port2 P TM0,Port2 ) |

Metrics