Abstract

Thin-film organic distributed feedback (DFB) lasers processed with elastomeric polymers allow fabrication of flexible and continuously tunable coherent light sources. So far, the realized laser devices fall short on broad continuous tuning range. We demonstrate that the addition of plasticizers to the polymer matrix and the minimization of the thickness of the laser can reduce mechanical impact and, thus, extend the wavelength tuning range to the full gain range of the active medium. A contact-transfer method is used to transfer gently the ultra-thin membrane DFB laser to a silicone support. A continuous tuning of the laser wavelength up to 77 nm in the orange-red spectral range of a single laser dye was achieved by mechanical stretching of the supporting film with a DFB membrane laser on top.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Continuously tunable distributed feedback polymer laser

Tianrui Zhai, Fengzhao Cao, Saisai Chu, Qihuang Gong, and Xinping Zhang
Opt. Express 26(4) 4491-4497 (2018)

Polymer lasers assembled by suspending membranes on a distributed feedback grating

Tianrui Zhai, Fei Tong, Yonglu Wang, Xiaofeng Wu, Songtao Li, Meng Wang, and Xinping Zhang
Opt. Express 24(19) 22028-22033 (2016)

Compact solid-state organic laser with fine and broadband wavelength tunability

Marie Taguchi, Youtaro Higase, and Kenichi Yamashita
Opt. Express 27(24) 35548-35554 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. Grivas, “Optically pumped planar waveguide lasers: part II: gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
    [Crossref]
  2. A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
    [Crossref]
  3. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
    [Crossref]
  4. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
    [Crossref]
  5. R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51(1), 16–34 (2013).
    [Crossref]
  6. X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
    [Crossref]
  7. D. Lupo, W. Clemens, S. Breitung, and K. Hecker, OE-A Roadmap for Organic and Printed Electronics (SpringerUS, 2013), pp. 1–26
  8. K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
    [Crossref]
  9. B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
    [Crossref]
  10. P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
    [Crossref]
  11. S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
    [Crossref]
  12. H. Hölscher, M. Worgull, S. Schauer, U. Lemmer, and X. Liu, “Shape-memory polymers as flexible resonator substrates for continuously tunable organic DFB lasers,” Opt. Mater. Express 5(3), 576–584 (2015).
    [Crossref]
  13. S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.
  14. E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
    [Crossref]
  15. M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40
  16. A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
    [Crossref]
  17. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
    [Crossref]
  18. M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
    [Crossref]
  19. Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
    [Crossref]
  20. R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
    [Crossref]
  21. X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
    [Crossref]
  22. T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
    [Crossref]
  23. M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, and U. Lemmer, “Intermediate high index layer for laser mode tuning in organic semiconductor lasers,” Opt. Express 18(6), 5890 (2010).
    [Crossref]
  24. S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
    [Crossref]
  25. H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
    [Crossref]
  26. M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
    [Crossref]
  27. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
    [Crossref]
  28. S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012).
    [Crossref]
  29. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
    [Crossref]
  30. I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20(5), 055024 (2010).
    [Crossref]
  31. S. Döring, T. Rabe, and J. Stumpe, “Output characteristics of organic distributed feedback lasers with varying grating heights,” Appl. Phys. Lett. 104(26), 263302 (2014).
    [Crossref]
  32. T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
    [Crossref]
  33. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
    [Crossref]
  34. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
    [Crossref]
  35. Y. Zhao and T. Ikeda, Smart Light-Responsive Materials (John Wiley & Sons, Inc., 2009).
  36. A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 163–182 (2014).
    [Crossref]
  37. S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
    [Crossref]
  38. S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
    [Crossref]
  39. L. M. Goldenberg, V. Lisinetskii, Y. Gritsai, J. Stumpe, and S. Schrader, “Second order DFB lasing using reusable grating inscribed in azobenzene-containing material,” Opt. Mater. Express 2(1), 11 (2012).
    [Crossref]
  40. L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
    [Crossref]
  41. T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
    [Crossref]
  42. E. M. Calzado, M. G. Ramírez, P. G. Boj, and M. A. D. García, “Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides,” Appl. Opt. 51(16), 3287 (2012).
    [Crossref]
  43. X.-F. Wei, E. Linde, and M. S. Hedenqvist, “Plasticiser loss from plastic or rubber products through diffusion and evaporation,” npj Mater. Degrad. 3(1), 18 (2019).
    [Crossref]
  44. K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
    [Crossref]
  45. L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
    [Crossref]
  46. G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
    [Crossref]
  47. W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
    [Crossref]
  48. V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
    [Crossref]
  49. Y. Higase, S. Morita, T. Fujii, S. Takahashi, K. Yamashita, and F. Sasaki, “High-gain and wide-band optical amplifications induced by a coupled excited state of organic dye molecules co-doped in polymer waveguide,” Opt. Lett. 43(8), 1714 (2018).
    [Crossref]
  50. L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
    [Crossref]
  51. A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
    [Crossref]

2019 (2)

X.-F. Wei, E. Linde, and M. S. Hedenqvist, “Plasticiser loss from plastic or rubber products through diffusion and evaporation,” npj Mater. Degrad. 3(1), 18 (2019).
[Crossref]

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

2018 (2)

Y. Higase, S. Morita, T. Fujii, S. Takahashi, K. Yamashita, and F. Sasaki, “High-gain and wide-band optical amplifications induced by a coupled excited state of organic dye molecules co-doped in polymer waveguide,” Opt. Lett. 43(8), 1714 (2018).
[Crossref]

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

2017 (1)

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

2016 (2)

C. Grivas, “Optically pumped planar waveguide lasers: part II: gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref]

2015 (3)

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

H. Hölscher, M. Worgull, S. Schauer, U. Lemmer, and X. Liu, “Shape-memory polymers as flexible resonator substrates for continuously tunable organic DFB lasers,” Opt. Mater. Express 5(3), 576–584 (2015).
[Crossref]

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

2014 (5)

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

S. Döring, T. Rabe, and J. Stumpe, “Output characteristics of organic distributed feedback lasers with varying grating heights,” Appl. Phys. Lett. 104(26), 263302 (2014).
[Crossref]

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

2013 (2)

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51(1), 16–34 (2013).
[Crossref]

2012 (7)

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref]

L. M. Goldenberg, V. Lisinetskii, Y. Gritsai, J. Stumpe, and S. Schrader, “Second order DFB lasing using reusable grating inscribed in azobenzene-containing material,” Opt. Mater. Express 2(1), 11 (2012).
[Crossref]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012).
[Crossref]

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

E. M. Calzado, M. G. Ramírez, P. G. Boj, and M. A. D. García, “Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides,” Appl. Opt. 51(16), 3287 (2012).
[Crossref]

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

2011 (2)

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

2010 (5)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20(5), 055024 (2010).
[Crossref]

M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, and U. Lemmer, “Intermediate high index layer for laser mode tuning in organic semiconductor lasers,” Opt. Express 18(6), 5890 (2010).
[Crossref]

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

2009 (2)

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
[Crossref]

2007 (1)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref]

2005 (1)

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[Crossref]

2004 (4)

L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

2003 (1)

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

2002 (1)

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

2001 (1)

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

1995 (3)

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

1971 (1)

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[Crossref]

A Burley, G.

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

Adachi, C.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Andrew, P.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Barbosa-Silva, R.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Barnes, W. L.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Batalla, E.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Becker, E.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Bencheikh, F.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Besser, H.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

Bettotti, P.

L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Boj, P. G.

E. M. Calzado, M. G. Ramírez, P. G. Boj, and M. A. D. García, “Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides,” Appl. Opt. 51(16), 3287 (2012).
[Crossref]

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Bradley, D. D. C.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Bräse, S.

Breitung, S.

D. Lupo, W. Clemens, S. Breitung, and K. Hecker, OE-A Roadmap for Organic and Printed Electronics (SpringerUS, 2013), pp. 1–26

Buller, J.

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

Byun, I.

I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20(5), 055024 (2010).
[Crossref]

Calle, M.

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

Calzado, E. M.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

E. M. Calzado, M. G. Ramírez, P. G. Boj, and M. A. D. García, “Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides,” Appl. Opt. 51(16), 3287 (2012).
[Crossref]

Cavicchioli, M.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Cazzanelli, M.

L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Cerdán, L.

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

Chen, L.

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

Chen, Y.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Choi, S. S.

M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

Choi, Y.

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

Christovan, L. M.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Clemens, W.

D. Lupo, W. Clemens, S. Breitung, and K. Hecker, OE-A Roadmap for Organic and Printed Electronics (SpringerUS, 2013), pp. 1–26

Costela, A.

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

Cunningham, B. T.

M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

D Dawson, M.

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

da Silva, R. R.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

de Abajo, J.

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

de Araújo, C. B.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

de Melo, L. S. A.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Dehm, S.

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

Denis, C.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

Díaz-García, M. A.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Dobbertin, T.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Dominguez, C. T.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Döring, S.

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

S. Döring, T. Rabe, and J. Stumpe, “Output characteristics of organic distributed feedback lasers with varying grating heights,” Appl. Phys. Lett. 104(26), 263302 (2014).
[Crossref]

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

dos Santos, M. V.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Dumarcher, V.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

Durán-Sampedro, G.

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

Eden, J. G.

M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

Feng, H.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Fiorini, C.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

Forberich, K.

Friend, R. H.

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

Fujihara, T.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Fujii, T.

García, M. A. D.

García-Moreno, I.

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

Gather, M. C.

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref]

Ge, C.

M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

Gerken, M.

Geyer, U.

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

Glackin, J. M. E.

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

Goldenberg, L. M.

Gombert, A.

Gomes, A. S. L.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Görrn, P.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

Goushi, K.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Gritsai, Y.

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers: part II: gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

Guilhabert, B.

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

Guttmann, M.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

Haase, A.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

Hara, M.

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[Crossref]

Haughey, A.-M.

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

Hecker, K.

D. Lupo, W. Clemens, S. Breitung, and K. Hecker, OE-A Roadmap for Organic and Printed Electronics (SpringerUS, 2013), pp. 1–26

Hedenqvist, M. S.

X.-F. Wei, E. Linde, and M. S. Hedenqvist, “Plasticiser loss from plastic or rubber products through diffusion and evaporation,” npj Mater. Degrad. 3(1), 18 (2019).
[Crossref]

Heliotis, G.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Heydari, E.

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

Higase, Y.

Hildebrandt, N.

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

Hinze, P.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Hölscher, H.

Hösel, M.

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51(1), 16–34 (2013).
[Crossref]

Huang, B.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Huang, W.

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

Huska, K.

Ikeda, T.

Y. Zhao and T. Ikeda, Smart Light-Responsive Materials (John Wiley & Sons, Inc., 2009).

Iskra, K. F.

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Isoshima, T.

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[Crossref]

J Skabara, P.

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

Jeon, H.

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

Jin, W.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Johannes, H. H.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Juan-y Seva, M.

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

Juarros, A.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Kang, H. S.

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref]

Karl, M.

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

Kaschke, J.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Kavc, T.

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Kern, W.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Kim, D. Y.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Kim, J.

I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20(5), 055024 (2010).
[Crossref]

Kim, S.

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

Klinkhammer, S.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012).
[Crossref]

M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, and U. Lemmer, “Intermediate high index layer for laser mode tuning in organic semiconductor lasers,” Opt. Express 18(6), 5890 (2010).
[Crossref]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

Koeber, S.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

Kofod, G.

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

Kollosche, M.

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

Koos, C.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

Kowalsky, W.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Kranzelbinder, G.

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Krebs, F. C.

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51(1), 16–34 (2013).
[Crossref]

Kröger, M.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Kronenberg, N. M.

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

Kuehne, A. J. C.

A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref]

Kulikovska, O.

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

Kumagai, M.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

Kumar, J.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

L Kanibolotsky, A.

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

Langer, G.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Laschewsky, A.

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

Laurand, N.

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

Lee, S.

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref]

Leheny, R. F.

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[Crossref]

Lehnhardt, M.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

Lemmer, U.

H. Hölscher, M. Worgull, S. Schauer, U. Lemmer, and X. Liu, “Shape-memory polymers as flexible resonator substrates for continuously tunable organic DFB lasers,” Opt. Mater. Express 5(3), 576–584 (2015).
[Crossref]

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012).
[Crossref]

M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, and U. Lemmer, “Intermediate high index layer for laser mode tuning in organic semiconductor lasers,” Opt. Express 18(6), 5890 (2010).
[Crossref]

T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

Li, L.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Linde, E.

X.-F. Wei, E. Linde, and M. S. Hedenqvist, “Plasticiser loss from plastic or rubber products through diffusion and evaporation,” npj Mater. Degrad. 3(1), 18 (2019).
[Crossref]

Lisinetskii, V.

Liu, X.

H. Hölscher, M. Worgull, S. Schauer, U. Lemmer, and X. Liu, “Shape-memory polymers as flexible resonator substrates for continuously tunable organic DFB lasers,” Opt. Mater. Express 5(3), 576–584 (2015).
[Crossref]

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012).
[Crossref]

Lu, M.

M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

Lupo, D.

D. Lupo, W. Clemens, S. Breitung, and K. Hecker, OE-A Roadmap for Organic and Printed Electronics (SpringerUS, 2013), pp. 1–26

Mappes, T.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012).
[Crossref]

T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

Matsushima, T.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Mechau, N.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Merino, S.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Mohr, J.

T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
[Crossref]

Morita, S.

Natansohn, A.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Navarro-Fuster, V.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Neger, T.

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Negro, L.

L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Nunzi, J.-M.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

Otaduy, D.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Pacifici, D.

L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Park, J.-K.

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref]

Pavesi, L.

L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Peng, C.

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

Petermann, K.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

Pfleging, W.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

Pogantsch, A.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Potscavage, W. J.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Priimagi, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Prinz, S.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

Pu, D.

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

Qin, C.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Quintana, J. A.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Rabe, T.

S. Döring, T. Rabe, and J. Stumpe, “Output characteristics of organic distributed feedback lasers with varying grating heights,” Appl. Phys. Lett. 104(26), 263302 (2014).
[Crossref]

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Raimond, P.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

Ramírez, M. G.

Retolaza, A.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Ribeiro, S. J. L.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Ribierre, J.-C.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Riedl, T.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Rocha, L.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

Rochon, P.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Rosenhauer, R.

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

Samuel, I. D. W.

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Sandanayaka, A. S. D.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Sasaki, F.

Schauer, S.

Schelb, M.

T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
[Crossref]

Schneider, D.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Schrader, S.

Schubert, M.

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

Seida, Y.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

Shaklee, K. L.

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[Crossref]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

Shen, S.

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

Shen, Y.

Shevchenko, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Shimizu, K.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

Shu, W.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Søndergaard, R. R.

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51(1), 16–34 (2013).
[Crossref]

Stroisch, M.

Stumpe, J.

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

S. Döring, T. Rabe, and J. Stumpe, “Output characteristics of organic distributed feedback lasers with varying grating heights,” Appl. Phys. Lett. 104(26), 263302 (2014).
[Crossref]

L. M. Goldenberg, V. Lisinetskii, Y. Gritsai, J. Stumpe, and S. Schrader, “Second order DFB lasing using reusable grating inscribed in azobenzene-containing material,” Opt. Mater. Express 2(1), 11 (2012).
[Crossref]

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

Sudau, K.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Suzuki, K.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

Takahashi, K.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

Takahashi, S.

Taniguchi, Y.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

Teiwes-Morin, C.

Terakawa, S.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Tetreault, N.

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

Toussaere, E.

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Tripathy, S. K.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Turnbull, G. A.

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Ubukata, T.

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[Crossref]

Valouch, S.

Vanderheiden, S.

Vannahme, C.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012).
[Crossref]

T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

Villalvilla, J. M.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Vragovic, I.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Wagner, C. J.

M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

Wagner, S.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

Wang, J.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Wegener, M.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Wei, G.

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

Wei, X.-F.

X.-F. Wei, E. Linde, and M. S. Hedenqvist, “Plasticiser loss from plastic or rubber products through diffusion and evaporation,” npj Mater. Degrad. 3(1), 18 (2019).
[Crossref]

Weimann, T.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Weinberger, M. R.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

Welland, M. E.

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

Wenger, B.

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

Wischerhoff, E.

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

Wissmann, M.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

Woggon, T.

M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, and U. Lemmer, “Intermediate high index layer for laser mode tuning in organic semiconductor lasers,” Opt. Express 18(6), 5890 (2010).
[Crossref]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

Worgull, M.

Xia, R.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Xu, H.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Yamashita, K.

Ye, Y.

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

Zhang, B.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Zhao, Y.

Y. Zhao and T. Ikeda, Smart Light-Responsive Materials (John Wiley & Sons, Inc., 2009).

Zojer, E.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

Adv. Funct. Mater. (1)

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Adv. Mater. (5)

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[Crossref]

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref]

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

Adv. Opt. Mater. (1)

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

Appl. Phys. Express (2)

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Appl. Phys. Lett. (6)

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[Crossref]

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

S. Döring, T. Rabe, and J. Stumpe, “Output characteristics of organic distributed feedback lasers with varying grating heights,” Appl. Phys. Lett. 104(26), 263302 (2014).
[Crossref]

Biosens. Bioelectron. (1)

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

Chem. Mater. (1)

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Chem. Rev. (2)

A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref]

Faraday Discuss. (1)

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

J. Appl. Phys. (3)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

J. Mater. Chem. (1)

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

J. Mater. Chem. C (1)

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

J. Micromech. Microeng. (1)

I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20(5), 055024 (2010).
[Crossref]

J. Phys. D: Appl. Phys. (1)

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

J. Polym. Sci., Part B: Polym. Phys. (2)

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51(1), 16–34 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

Lab Chip (1)

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

Microelectron. Eng. (1)

T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
[Crossref]

Micromachines (1)

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Nat. Commun. (1)

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

Nat. Photonics (1)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

npj Mater. Degrad. (1)

X.-F. Wei, E. Linde, and M. S. Hedenqvist, “Plasticiser loss from plastic or rubber products through diffusion and evaporation,” npj Mater. Degrad. 3(1), 18 (2019).
[Crossref]

Opt. Commun. (1)

L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (2)

Organic Photonics IV (1)

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers: part II: gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

Other (4)

D. Lupo, W. Clemens, S. Breitung, and K. Hecker, OE-A Roadmap for Organic and Printed Electronics (SpringerUS, 2013), pp. 1–26

M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

Y. Zhao and T. Ikeda, Smart Light-Responsive Materials (John Wiley & Sons, Inc., 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the sample preparation: Two-beam holographic lithography is used to inscribe master SRGs in a thin film containing azobenzene molecules. A replication cell is constructed by gluing the holographically written master SRG to a glass slide with 200 $\mu$m spacers. The cell is then filled with PDMS to replicate the grating structure to the PDMS surface. After thermal curing, the cell is opened to release the patterned PDMS substrate. Subsequently, a layer of the active laser medium is spincoated on the PDMS substrate, forming the DFB laser cavity. Direct-contact transfer method is then used to transport the ultra-thin membrane laser on the desired (stretchable) support material.
Fig. 2.
Fig. 2. (a) Photograph of master SRG, PDMS replica and transferred DFB membrane laser (b) 2D AFM map of the corresponding samples c) surface profile of the corresponding sinusoidal SRG.
Fig. 3.
Fig. 3. DFB membrane laser transferred to (a) PDMS substrate clamped into a mechanical stretching device, (b) 20 euro bill, (c) microscope slide.
Fig. 4.
Fig. 4. (a) Tensile tests show a decrease of Young’s modulus from 20 MPa to 6 MPa with increasing amount of DEGME from 0 wt-% to 20 wt-%. (b) Stress-strain diagram acquired by a cyclic tensile test shows a repeatable mechanical behavior of the material after an initial higher stress slope.
Fig. 5.
Fig. 5. (a) Spectra of fluorescence, ASE and lasing, and the chemical structures of the laser dyes used. Inset: laser emission at higher pump fluence with a narrow FWHM down to 0.2 nm, attesting single-mode operation. (b) Gain measurements for DCM2 and PM567 doped PVAc matrix show potential tuning range from 565 to 750 nm. (c) Characteristic double-fan-shaped emission of a DFB laser (PM567) with 1D grating. (d) Angle-resolved measurement shows a single mode emission. (e) Input-output characteristics yield slope efficiencies of 0.3% and 0.86%, and a lasing threshold of 250 nJ (32 $\mu$J/cm$^{2}$). (f) Lifetime measurement show a half-life from 35 min for DCM2 and 67 min for PM567 based lasers at a pumping energy of 25 $\mu$J and a repetition rate of 100 Hz.
Fig. 6.
Fig. 6. (a) Experimental arrangement for mechanical stretching with a micrometer screw for precise stretching control. (b) Image of the emission wavelength change from orange to red spectral range through stretching. (c) & (d) Continuous wavelength tuning in the range 569 - 618 nm (49 nm) for PVAc/PM567 and 615 - 692 nm (77 nm) for PVAc/DCM2 systems, correspondingly.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m λ l a s = 2 n e f f Λ
I ( λ , L ) = Ω ( λ ) g ( λ ) [ exp ( g ( λ ) L ) 1 ]

Metrics