Abstract

We present a compact integrated photonics interrogator for a ring-resonator (RR) ultrasound sensor, the so-called MediGator. The MediGator consists of a special light source and an InP Mach-Zehnder interferometer (MZI) with a 3 ×3 multi-mode interferometer. Miniaturization of the MZI to chip size enables high temperature stability and negligible signal drift. The light source has a −3 dB bandwidth of 1.5 nm, a power density of 9 dBm/nm and a tuning range of 5.7 nm, providing sufficient signal level and robust alignment for the RR sensor. The mathematical procedure of interrogation is presented, leading to the optimum MZI design. We measure the frequency response of the sensor using the MediGator, giving a resonance frequency of 0.995MHz. Further, high interrogation performance is demonstrated at the RR resonance frequency for an ultrasound pressure range of 1.47 − 442.4 Pa, which yields very good linearity between the pressure and the resulting modulation amplitude of the RR resonance wavelength. The measured signal time traces match well with calculated results. Linear fitting of the pressure data gives a sensor sensitivity of 77.2 fm/Pa. The MediGator provides a low detection limit, temperature robustness and a large measurement range for interrogating the RR ultrasound sensor.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer

Fellipe Grillo Peternella, Boling Ouyang, Roland Horsten, Michael Haverdings, Pim Kat, and Jacob Caro
Opt. Express 25(25) 31622-31639 (2017)

On-chip interrogator based on Fourier transform spectroscopy

Fellipe Grillo Peternella, Thomas Esselink, Bas Dorsman, Peter Harmsma, Roland C. Horsten, Thim Zuidwijk, H. Paul Urbach, and Aurèle L. C. Adam
Opt. Express 27(11) 15456-15473 (2019)

Miniature interrogator for multiplexed FBG strain sensors based on a thermally tunable microring resonator array

Fan Yang, Wenjia Zhang, Shuangxiang Zhao, Qingwen Liu, Jifang Tao, and Zuyuan He
Opt. Express 27(5) 6037-6046 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-oninsulator microring resonator coated with a porous ZnO film,” Opt. Express 18, 11859–11866 (2010).
    [Crossref] [PubMed]
  2. M. Boerkamp, T. van Leest, J. Heldens, A. Leinse, M. Hoekman, R. Heideman, and J. Caro, “On-chip optical trapping and Raman spectroscopy using a TripleX dual-waveguide trap,” Opt. Express 22, 30528–30537 (2014).
    [Crossref]
  3. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
    [Crossref] [PubMed]
  4. P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17, R93–R116 (2006).
    [Crossref]
  5. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18, 22215–22221 (2010).
    [Crossref] [PubMed]
  6. H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22, 3098–3104 (2014).
    [Crossref] [PubMed]
  7. B. Ouyang, Y. Li, M. Kruidhof, R. Horsten, K. W. van Dongen, and J. Caro, “On-chip silicon Mach-Zehnder interferometer sensor for ultrasound detection,” Opt. Lett. 44, 1928–1931 (2019).
    [Crossref] [PubMed]
  8. A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104, 021116 (2014).
    [Crossref]
  9. S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. De Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
    [Crossref] [PubMed]
  10. A. Maxwell, S.-W. Huang, T. Ling, J.-S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-frequency ultrasound detection and imaging,” IEEE J. Sel. Topics Quantum Electron. 14, 191–197 (2008).
    [Crossref] [PubMed]
  11. C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Review of imprinted polymer microrings as ultrasound detectors: Design, fabrication, and characterization,” IEEE Sensors J. 15, 3241–3248 (2015).
    [Crossref]
  12. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
    [Crossref]
  13. N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photon. Technol. Lett. 23, 1505–1507 (2011).
    [Crossref]
  14. F. G. Peternella, B. Ouyang, R. Horsten, M. Haverdings, P. Kat, and J. Caro, “Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer,” Opt. Express 25, 31622–31639 (2017).
    [Crossref] [PubMed]
  15. Y. E. Marin, T. Nannipieri, C. J. Oton, and F. Di Pasquale, “Current status and future trends of photonic-integrated FBG interrogators,” J. Lightw. Technol. 36, 946–953 (2018).
    [Crossref]
  16. K. Jansen, A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36, 597–599 (2011).
    [Crossref] [PubMed]
  17. W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE J. Sel. Topics Quantum Electron. 20, 101–110 (2013).
    [Crossref]
  18. ePIXfab, http://epixfab.eu/ , accessed on July 15, 2019.
  19. C. Castellan, A. Chalyan, M. Mancinelli, P. Guilleme, M. Borghi, F. Bosia, N. M. Pugno, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Tuning the strain-induced resonance shift in silicon racetrack resonators by their orientation,” Opt. Express 26, 4204–4218 (2018).
    [Crossref] [PubMed]
  20. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
    [Crossref]
  21. A. Escuer and S. Jarabo, and J. Álvarez, “Experimental validation of the improved analytical model for erbium-doped fibre lasers based on the energy conservation principle,” Appl. Phys. B 81, 831–840 (2005).
    [Crossref]
  22. SMART Photonics, https://smartphotonics.nl/ , accessed on July 15, 2019.
  23. F. W. J. Olver, “Bessel functions of integer order,” in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, M. Abramowitz and I. A. Stegun, eds. (Dover books on Mathematics, 1964).
  24. MATLAB R2017a, The MathWorks, Inc., Natick, Massachusetts, United States.
  25. EXALOS, “SLED Modules,” http://www.exalos.com/sled-modules/ , accessed on May 20, 2019.
  26. R. A. Smith and D. R. Bacon, “A multiple-frequency hydrophone calibration technique,” J. Acoust. Soc. Am. 87, 2231–2243 (1990).
    [Crossref] [PubMed]
  27. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2, 236–250 (1996).
    [Crossref]
  28. F. Horst, W. M. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-) multiplexing,” Opt. Express 21, 11652–11658 (2013).
    [Crossref] [PubMed]

2019 (1)

2018 (2)

2017 (1)

2015 (2)

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Review of imprinted polymer microrings as ultrasound detectors: Design, fabrication, and characterization,” IEEE Sensors J. 15, 3241–3248 (2015).
[Crossref]

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. De Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (2)

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE J. Sel. Topics Quantum Electron. 20, 101–110 (2013).
[Crossref]

F. Horst, W. M. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-) multiplexing,” Opt. Express 21, 11652–11658 (2013).
[Crossref] [PubMed]

2012 (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

2011 (2)

K. Jansen, A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36, 597–599 (2011).
[Crossref] [PubMed]

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photon. Technol. Lett. 23, 1505–1507 (2011).
[Crossref]

2010 (2)

2009 (1)

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

2008 (1)

A. Maxwell, S.-W. Huang, T. Ling, J.-S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-frequency ultrasound detection and imaging,” IEEE J. Sel. Topics Quantum Electron. 14, 191–197 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17, R93–R116 (2006).
[Crossref]

2005 (1)

A. Escuer and S. Jarabo, and J. Álvarez, “Experimental validation of the improved analytical model for erbium-doped fibre lasers based on the energy conservation principle,” Appl. Phys. B 81, 831–840 (2005).
[Crossref]

1996 (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2, 236–250 (1996).
[Crossref]

1990 (1)

R. A. Smith and D. R. Bacon, “A multiple-frequency hydrophone calibration technique,” J. Acoust. Soc. Am. 87, 2231–2243 (1990).
[Crossref] [PubMed]

Ahmed, Z.

Ashkenazi, S.

A. Maxwell, S.-W. Huang, T. Ling, J.-S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-frequency ultrasound detection and imaging,” IEEE J. Sel. Topics Quantum Electron. 14, 191–197 (2008).
[Crossref] [PubMed]

Assefa, S.

Bacon, D. R.

R. A. Smith and D. R. Bacon, “A multiple-frequency hydrophone calibration technique,” J. Acoust. Soc. Am. 87, 2231–2243 (1990).
[Crossref] [PubMed]

Bae, H. K.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photon. Technol. Lett. 23, 1505–1507 (2011).
[Crossref]

N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-oninsulator microring resonator coated with a porous ZnO film,” Opt. Express 18, 11859–11866 (2010).
[Crossref] [PubMed]

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

Bartolozzi, I.

Bernard, M.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

Boerkamp, M.

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photon. Technol. Lett. 23, 1505–1507 (2011).
[Crossref]

Borghi, M.

Bosia, F.

Caro, J.

Castellan, C.

Chalyan, A.

Chen, S.-L.

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Review of imprinted polymer microrings as ultrasound detectors: Design, fabrication, and characterization,” IEEE Sensors J. 15, 3241–3248 (2015).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Escuer, A.

A. Escuer and S. Jarabo, and J. Álvarez, “Experimental validation of the improved analytical model for erbium-doped fibre lasers based on the energy conservation principle,” Appl. Phys. B 81, 831–840 (2005).
[Crossref]

Estrada, H.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104, 021116 (2014).
[Crossref]

Fan, J.

Ghulinyan, M.

Green, W. M.

Guilleme, P.

Guo, L. J.

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Review of imprinted polymer microrings as ultrasound detectors: Design, fabrication, and characterization,” IEEE Sensors J. 15, 3241–3248 (2015).
[Crossref]

A. Maxwell, S.-W. Huang, T. Ling, J.-S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-frequency ultrasound detection and imaging,” IEEE J. Sel. Topics Quantum Electron. 14, 191–197 (2008).
[Crossref] [PubMed]

Hafezi, M.

Haverdings, M.

Heideman, R.

Heldens, J.

Hens, Z.

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photon. Technol. Lett. 23, 1505–1507 (2011).
[Crossref]

N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-oninsulator microring resonator coated with a porous ZnO film,” Opt. Express 18, 11859–11866 (2010).
[Crossref] [PubMed]

Heyn, P. De

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Hoekman, M.

Horst, F.

Horsten, R.

Huang, S.-W.

A. Maxwell, S.-W. Huang, T. Ling, J.-S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-frequency ultrasound detection and imaging,” IEEE J. Sel. Topics Quantum Electron. 14, 191–197 (2008).
[Crossref] [PubMed]

Jansen, K.

Jarabo, S.

A. Escuer and S. Jarabo, and J. Álvarez, “Experimental validation of the improved analytical model for erbium-doped fibre lasers based on the energy conservation principle,” Appl. Phys. B 81, 831–840 (2005).
[Crossref]

Jong, N. De

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. De Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Kat, P.

Kellnberger, S.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104, 021116 (2014).
[Crossref]

Kim, G.-D.

Kim, J.-S.

A. Maxwell, S.-W. Huang, T. Ling, J.-S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-frequency ultrasound detection and imaging,” IEEE J. Sel. Topics Quantum Electron. 14, 191–197 (2008).
[Crossref] [PubMed]

Kruidhof, M.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Lambeck, P. V.

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17, R93–R116 (2006).
[Crossref]

Lee, H.-S.

Lee, S.-S.

Lee, W.-G.

Leinders, S.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. De Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Leinders, S. M.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE J. Sel. Topics Quantum Electron. 20, 101–110 (2013).
[Crossref]

Leinse, A.

Li, Y.

Lim, B. T.

Ling, T.

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Review of imprinted polymer microrings as ultrasound detectors: Design, fabrication, and characterization,” IEEE Sensors J. 15, 3241–3248 (2015).
[Crossref]

A. Maxwell, S.-W. Huang, T. Ling, J.-S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-frequency ultrasound detection and imaging,” IEEE J. Sel. Topics Quantum Electron. 14, 191–197 (2008).
[Crossref] [PubMed]

Lommens, P.

Mancinelli, M.

Marin, Y. E.

Y. E. Marin, T. Nannipieri, C. J. Oton, and F. Di Pasquale, “Current status and future trends of photonic-integrated FBG interrogators,” J. Lightw. Technol. 36, 946–953 (2018).
[Crossref]

Maxwell, A.

A. Maxwell, S.-W. Huang, T. Ling, J.-S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-frequency ultrasound detection and imaging,” IEEE J. Sel. Topics Quantum Electron. 14, 191–197 (2008).
[Crossref] [PubMed]

Molera, J. G.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Muilwijk, P. M.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE J. Sel. Topics Quantum Electron. 20, 101–110 (2013).
[Crossref]

Nannipieri, T.

Y. E. Marin, T. Nannipieri, C. J. Oton, and F. Di Pasquale, “Current status and future trends of photonic-integrated FBG interrogators,” J. Lightw. Technol. 36, 946–953 (2018).
[Crossref]

Ntziachristos, V.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104, 021116 (2014).
[Crossref]

O’Brien, P.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. De Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Offrein, B. J.

Olver, F. W. J.

F. W. J. Olver, “Bessel functions of integer order,” in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, M. Abramowitz and I. A. Stegun, eds. (Dover books on Mathematics, 1964).

Omar, M.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104, 021116 (2014).
[Crossref]

Oosterhuis, J. W.

Oton, C. J.

Y. E. Marin, T. Nannipieri, C. J. Oton, and F. Di Pasquale, “Current status and future trends of photonic-integrated FBG interrogators,” J. Lightw. Technol. 36, 946–953 (2018).
[Crossref]

Ouyang, B.

Park, C.-H.

Pasquale, F. Di

Y. E. Marin, T. Nannipieri, C. J. Oton, and F. Di Pasquale, “Current status and future trends of photonic-integrated FBG interrogators,” J. Lightw. Technol. 36, 946–953 (2018).
[Crossref]

Pavesi, L.

Peternella, F. G.

Pozo, J.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. De Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE J. Sel. Topics Quantum Electron. 20, 101–110 (2013).
[Crossref]

Pucker, G.

Pugno, N. M.

Razansky, D.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104, 021116 (2014).
[Crossref]

Rosenthal, A.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104, 021116 (2014).
[Crossref]

Schacht, E.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

Shank, S. M.

Smit, M. K.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2, 236–250 (1996).
[Crossref]

Smith, R. A.

R. A. Smith and D. R. Bacon, “A multiple-frequency hydrophone calibration technique,” J. Acoust. Soc. Am. 87, 2231–2243 (1990).
[Crossref] [PubMed]

Snyder, B.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. De Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Strouse, G. F.

Taylor, J. M.

Urbach, H.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. De Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Urbach, H. P.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE J. Sel. Topics Quantum Electron. 20, 101–110 (2013).
[Crossref]

van Beusekom, H. M. M.

Van Dam, C.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2, 236–250 (1996).
[Crossref]

van den Dool, T. C.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE J. Sel. Topics Quantum Electron. 20, 101–110 (2013).
[Crossref]

van der Steen, A. F. W.

van Dongen, K. W.

van Leest, T.

Van Neer, P.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. De Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

van Soest, G.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Verweij, M.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. De Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Verweij, M. D.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE J. Sel. Topics Quantum Electron. 20, 101–110 (2013).
[Crossref]

Vlasov, Y. A.

Vos, K. De

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

Westerveld, W.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. De Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Westerveld, W. J.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE J. Sel. Topics Quantum Electron. 20, 101–110 (2013).
[Crossref]

Xu, H.

Yebo, N. A.

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photon. Technol. Lett. 23, 1505–1507 (2011).
[Crossref]

N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-oninsulator microring resonator coated with a porous ZnO film,” Opt. Express 18, 11859–11866 (2010).
[Crossref] [PubMed]

Yousefi, M.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE J. Sel. Topics Quantum Electron. 20, 101–110 (2013).
[Crossref]

Zhang, C.

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Review of imprinted polymer microrings as ultrasound detectors: Design, fabrication, and characterization,” IEEE Sensors J. 15, 3241–3248 (2015).
[Crossref]

Appl. Phys. B (1)

A. Escuer and S. Jarabo, and J. Álvarez, “Experimental validation of the improved analytical model for erbium-doped fibre lasers based on the energy conservation principle,” Appl. Phys. B 81, 831–840 (2005).
[Crossref]

Appl. Phys. Lett. (1)

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104, 021116 (2014).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (3)

A. Maxwell, S.-W. Huang, T. Ling, J.-S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-frequency ultrasound detection and imaging,” IEEE J. Sel. Topics Quantum Electron. 14, 191–197 (2008).
[Crossref] [PubMed]

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE J. Sel. Topics Quantum Electron. 20, 101–110 (2013).
[Crossref]

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2, 236–250 (1996).
[Crossref]

IEEE Photon. J. (1)

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photon. Technol. Lett. 23, 1505–1507 (2011).
[Crossref]

IEEE Sensors J. (1)

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Review of imprinted polymer microrings as ultrasound detectors: Design, fabrication, and characterization,” IEEE Sensors J. 15, 3241–3248 (2015).
[Crossref]

J. Acoust. Soc. Am. (1)

R. A. Smith and D. R. Bacon, “A multiple-frequency hydrophone calibration technique,” J. Acoust. Soc. Am. 87, 2231–2243 (1990).
[Crossref] [PubMed]

J. Lightw. Technol. (1)

Y. E. Marin, T. Nannipieri, C. J. Oton, and F. Di Pasquale, “Current status and future trends of photonic-integrated FBG interrogators,” J. Lightw. Technol. 36, 946–953 (2018).
[Crossref]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Meas. Sci. Technol. (1)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17, R93–R116 (2006).
[Crossref]

Opt. Express (8)

N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-oninsulator microring resonator coated with a porous ZnO film,” Opt. Express 18, 11859–11866 (2010).
[Crossref] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18, 22215–22221 (2010).
[Crossref] [PubMed]

F. Horst, W. M. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-) multiplexing,” Opt. Express 21, 11652–11658 (2013).
[Crossref] [PubMed]

M. Boerkamp, T. van Leest, J. Heldens, A. Leinse, M. Hoekman, R. Heideman, and J. Caro, “On-chip optical trapping and Raman spectroscopy using a TripleX dual-waveguide trap,” Opt. Express 22, 30528–30537 (2014).
[Crossref]

H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22, 3098–3104 (2014).
[Crossref] [PubMed]

C. Castellan, A. Chalyan, M. Mancinelli, P. Guilleme, M. Borghi, F. Bosia, N. M. Pugno, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Tuning the strain-induced resonance shift in silicon racetrack resonators by their orientation,” Opt. Express 26, 4204–4218 (2018).
[Crossref] [PubMed]

F. G. Peternella, B. Ouyang, R. Horsten, M. Haverdings, P. Kat, and J. Caro, “Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer,” Opt. Express 25, 31622–31639 (2017).
[Crossref] [PubMed]

Opt. Lett. (2)

Sci. Rep. (1)

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. De Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Other (5)

ePIXfab, http://epixfab.eu/ , accessed on July 15, 2019.

SMART Photonics, https://smartphotonics.nl/ , accessed on July 15, 2019.

F. W. J. Olver, “Bessel functions of integer order,” in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, M. Abramowitz and I. A. Stegun, eds. (Dover books on Mathematics, 1964).

MATLAB R2017a, The MathWorks, Inc., Natick, Massachusetts, United States.

EXALOS, “SLED Modules,” http://www.exalos.com/sled-modules/ , accessed on May 20, 2019.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the RR ultrasound sensor: a RR on a square membrane (blue). (b) Cross-section of the membrane region, showing the various layers and their thickness. Membrane thickness is 2.65 µm. A glass platelet seals the air cavity under the membrane. (c) Microscope image of the membrane with the RR, taken from below. Membrane size is 84 µm ×84 µm.
Fig. 2
Fig. 2 MediGator (left) and experimental setup (right). The MediGator comprises the tunable light source of high brightness (upper part) and the photonic integrated circuit of MZI and PDs (lower part). Each PD is connected to a TIA. (TEC, thermoelectric cooling; WDM, wavelength division multiplexer; FBG, fiber Bragg grating; PIC, photonic integrated circuit; PD, photodetector; TIA, trans-impedance amplifier; AWG, arbitrary waveform generator; MMI, multi-mode interferometer)
Fig. 3
Fig. 3 Calculated output signals of the MediGator, for the interrogation situation specified in the text. (a) Output signals Vi in the time domain. Signal V1 is dominated by the 2nd harmonic of the ultrasound frequency f0 due to the alignment of the RR resonance wavelength to a minimum of the MZI transmission at output 1. (b) Amplitude of the signals Vi as a function of the dimensionless ratio FSR/(πγr). The signal amplitude cannot be directly compared with the signal magnitude in (a) in view of the much weaker modulation amplitude.
Fig. 4
Fig. 4 (a) Transmission peak of the RR sensor. The red curve is a fit of Eq. (2) to the data points. (b) Emission spectra of the MediGator light source. Straining of the FBG results in the observed red shift of the spectra, i.e., the source is tunable. The spectra have a -3 dB bandwidth of 1.5 nm and a maximum power density of 9 dBm/nm. The tuning range shown is 5.7 nm. (c) MZI transmission spectra of the three outputs Vi. The continuous curves are fits of Eq. (5) to the experimental data, giving φi =0°, 121.1° and 242.7° (i = 1, 2, 3).
Fig. 5
Fig. 5 The normalized frequency response of the RR sensor, giving the resonance frequency of 0.995 MHz.
Fig. 6
Fig. 6 (a) Measured output signals Vi when interrogating the RR sensor. The applied pressure amplitude is 442.4 Pa. A strong 2nd harmonic is observed in V1. (b) Vx and Vy as a function of time, calculated from Vi in (a). (c) Fourier transform of the three Vi for a pressure amplitude of 1.47 Pa. For V2 and V3, spikes at the ultrasound frequency 0.995 MHz clearly stand out of the noise floor at this low pressure.
Fig. 7
Fig. 7 Amplitude of the resonance-wavelength modulation of the sensor as a function of the ultrasound pressure, measured with the MediGator. The inset zooms in on the low pressure range. The line is a linear fit to the MediGator data points. Its slope is the sensitivity, which amounts to 77.2 fm/Pa. For reference, results obtained with the modulation method are presented as well. The modulation method only agrees with the MediGator approach below 150 Pa. Above this value the modulation method increasingly underestimates the resonance-wavelength modulation.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

T drop ( θ ) = ( 1 r 2 ) a 1 2 r 2 a cos θ + ( r 2 a ) 2 ,
T drop ( λ ) ε 1 + ( λ λ r ) 2 ( γ r / 2 ) 2 .
ε = ( 1 r 2 ) 2 a ( 1 r 2 a ) 2 ,
γ r = λ r 2 ( 1 r 2 a ) π n g L r a .
T MZI , i ( λ ) = 1 3 [ p + q cos ( 2 π λ OPD + φ i + φ e ) ] 1 3 [ p + q cos ( 2 π FSR λ + φ i + φ e ) ] .
T drop ( λ , δ λ r ˜ ( t ) ) = ε 1 + ( λ λ r δ λ r ˜ ( t ) ) 2 ( γ r / 2 ) 2 .
V i ( δ λ r ˜ ( t ) ) = α P L S R p h G 0 T drop ( λ , δ λ r ˜ ( t ) ) T MZI , i ( λ ) d λ .
V i ( δ λ r ˜ ( t ) ) = π α P L S R p h G ε γ r 6 { p + q e π γ r FSR cos [ 2 π FSR ( λ r + δ λ r ˜ ( t ) ) + φ i + ψ e ] } .
V x ( t ) = 2 V 1 V 2 V 3 = π α P L S R p h G ε γ r q 2 e π γ r FSR cos [ 2 π FSR ( λ r + δ λ ˜ r ( t ) ) + ψ e ] ,
V y ( t ) = 3 ( V 3 V 2 ) = π α P L S R p h G ε γ r q 2 e π γ r FSR sin [ 2 π FSR ( λ r + δ λ ˜ r ( t ) ) + ψ e ] .
Φ ( t ) = tan 1 ( V y V x ) = Φ 0 sin ( 2 π f 0 t ) + Δ Φ .
S = | V i λ r | = π α P L S R p h G ε γ r q 6 2 π FSR e π γ r FSR | sin ( 2 π FSR λ r + φ i + ψ e ) | .

Metrics