Abstract

This study presents a novel method for signal demodulation for use with visible light communication systems composed of an image sensor as a receiver and light-emitting diode (LED) transmitters. Demodulation is a central challenge in the design of such a system, as the image captured at the image-sensor receiver is deteriorated by distance and noise. We propose a demodulation method that offers performance approaching that of the maximum-likelihood decoding (MLD) method and with significantly less complexity. The proposed method first applies the minimum mean square error (MMSE) method to each LED into reliable LEDs and unreliable LEDs according to the MMSE results and it demodulates the LEDs judged as reliable directly. Then, the MLD method is applied only to the unreliable LEDs to demodulate their signals. The results of numerical simulations and lab experiments are presented to evaluate the performance of this modified demodulation method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications

Chia-Wei Chen, Chi-Wai Chow, Yang Liu, and Chien-Hung Yeh
Opt. Express 25(20) 24362-24367 (2017)

Using logistic regression classification for mitigating high noise-ratio advisement light-panel in rolling-shutter based visible light communications

Yu-Cheng Chuang, Chi-Wai Chow, Yang Liu, Chien-Hung Yeh, Xin-Lan Liao, Kun-Hsien Lin, and Yi-Yuan Chen
Opt. Express 27(21) 29924-29929 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. Pang, T. Kwan, H. Liu, and C.H. Chan, “LED wireless,” IEEE Ind. Appl. Mag.,  8(1), 21–28 (2002).
    [Crossref]
  2. P. Daukantas, “Optical wireless communications: the new “Hot spot”?” Opt. Photonics News,  25(3), 34–41 (2014).
    [Crossref]
  3. L.U. Khan, “Visible light communication: applications, architecture, standardization and research challenges,” Digit. Commun. Networks,  3(2), 78–88 (2017).
    [Crossref]
  4. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Transactions on Consumer Electron.,  50(1), 100–107 (2004).
    [Crossref]
  5. T. Nagura, T. Yamazato, M. Katayama, T. Yendo, T. Fujii, and H. Okada, “Tracking an LED array transmitter for visible light communications in the driving situation,” in Proceedings of 7th International Symposium on Wireless Communication Systems, 765–769 (2010).
  6. S. Arai, Y. Shiraki, T. Yamazato, H. Okada, T. Fujii, and T. Yendo, “Multiple LED arrays acquisition for image-sensor-based I2V-VLC using block matching,” in Proceedings of IEEE 11th Consumer Communications and Networking Conference, 605–610 (2014).
  7. T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag.,  52(7), 88–97 (2014).
    [Crossref]
  8. I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics Journal,  6(5), 1–14 (2014).
    [Crossref]
  9. L. Zeng, D.C. O’Brien, H.L. Minh, G.E. Faulkner, K. Lee, D. Jung, Y. Oh, and E.T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. on Sel. Areas Commun.,  27(9), 1654–1662 (2009).
    [Crossref]
  10. S. Itoh, I. Takai, M.S.Z. Sarker, M. Hamai, M. Andoh, and S. Kawahito, “A CMOS image sensor for 10Mb/s 70 m-range LED-based spatial optical communication,” in Proceedings of IEEE International Solid-State Circuits Conference, 402–403 (2010).
  11. S. Arai, S. Mase, T. Yamazato, T. Endo, T. Fujii, M. Tanimoto, K. Kidono, Y. Kimura, and Y. Ninomiya, “Experimental on hierarchical transmission scheme for visible light communication using LED traffic light and high-speed camera,” in Proceedingsof IEEE 66th Vehicular Technology Conference, 2174–2178 (2007).
  12. S. Nishimoto, T. Yamazato, H. Okada, T. Fujii, T. Yendo, and S. Arai, “High-speed transmission of overlay coding for road-to-vehicle visible light communication using LED array and high-speed camera,” in Proceedings of 3rd IEEE GLOBECOM Workshop on Optical Wireless Communications, 1234–1238 (2012).
  13. Y. Amano, K. Kamakura, and T. Yamazato, “Alamouti-type coding for visible light communication based on direct detection using image sensor,” in Proceedings of IEEE GLOBECOM, 2430–2435 (2013).
  14. K. Ebihara, K. Kamakura, and T. Yamazato, “Layered transmission of space-time coded signals for image-sensor-based visible light communications,” J. Light. Technol.,  33(20), 4193–4206 (2015).
    [Crossref]
  15. S. Arai, H. Matushita, Y. Ohira, T. Yendo, D. He, and T. Yamazato, “Maximum likelihood decoding based on pseudo-captured image templates for image sensor communication,” Nonlinear Theory and Its Applications, IEICE,  10(2), 173–189 (2019).
    [Crossref]
  16. Y. Ohira, T. Yendo, and S. Arai, “Development of low-complexity MLE method for image-sensor-based visible light communication,” in Proceedings of IEEE Vehicular Networking Conference, 1–4 (2016).
  17. A.K. Boyat and B.K. Joshi, “A review paper: noise models in digital image processing,” Signal Image Process. An Int. J.,  6(2), 63–75 (2015).
    [Crossref]
  18. A. Paulraj, R. Nabar, and D. Gore, “Introduction to space-time wireless communications,” UK Cambridge University Press, (2003).
  19. T. Nguyen, A. Islam, T. Hossan, and Y.M. Jang, “Current status and performance analysis of optical camera communication technologies for 5G networks,” IEEE Access,  5, 4574–4594 (2017).
    [Crossref]

2019 (1)

S. Arai, H. Matushita, Y. Ohira, T. Yendo, D. He, and T. Yamazato, “Maximum likelihood decoding based on pseudo-captured image templates for image sensor communication,” Nonlinear Theory and Its Applications, IEICE,  10(2), 173–189 (2019).
[Crossref]

2017 (2)

L.U. Khan, “Visible light communication: applications, architecture, standardization and research challenges,” Digit. Commun. Networks,  3(2), 78–88 (2017).
[Crossref]

T. Nguyen, A. Islam, T. Hossan, and Y.M. Jang, “Current status and performance analysis of optical camera communication technologies for 5G networks,” IEEE Access,  5, 4574–4594 (2017).
[Crossref]

2015 (2)

K. Ebihara, K. Kamakura, and T. Yamazato, “Layered transmission of space-time coded signals for image-sensor-based visible light communications,” J. Light. Technol.,  33(20), 4193–4206 (2015).
[Crossref]

A.K. Boyat and B.K. Joshi, “A review paper: noise models in digital image processing,” Signal Image Process. An Int. J.,  6(2), 63–75 (2015).
[Crossref]

2014 (3)

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag.,  52(7), 88–97 (2014).
[Crossref]

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics Journal,  6(5), 1–14 (2014).
[Crossref]

P. Daukantas, “Optical wireless communications: the new “Hot spot”?” Opt. Photonics News,  25(3), 34–41 (2014).
[Crossref]

2009 (1)

L. Zeng, D.C. O’Brien, H.L. Minh, G.E. Faulkner, K. Lee, D. Jung, Y. Oh, and E.T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. on Sel. Areas Commun.,  27(9), 1654–1662 (2009).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Transactions on Consumer Electron.,  50(1), 100–107 (2004).
[Crossref]

2002 (1)

G. Pang, T. Kwan, H. Liu, and C.H. Chan, “LED wireless,” IEEE Ind. Appl. Mag.,  8(1), 21–28 (2002).
[Crossref]

Amano, Y.

Y. Amano, K. Kamakura, and T. Yamazato, “Alamouti-type coding for visible light communication based on direct detection using image sensor,” in Proceedings of IEEE GLOBECOM, 2430–2435 (2013).

Andoh, M.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag.,  52(7), 88–97 (2014).
[Crossref]

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics Journal,  6(5), 1–14 (2014).
[Crossref]

S. Itoh, I. Takai, M.S.Z. Sarker, M. Hamai, M. Andoh, and S. Kawahito, “A CMOS image sensor for 10Mb/s 70 m-range LED-based spatial optical communication,” in Proceedings of IEEE International Solid-State Circuits Conference, 402–403 (2010).

Arai, S.

S. Arai, H. Matushita, Y. Ohira, T. Yendo, D. He, and T. Yamazato, “Maximum likelihood decoding based on pseudo-captured image templates for image sensor communication,” Nonlinear Theory and Its Applications, IEICE,  10(2), 173–189 (2019).
[Crossref]

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag.,  52(7), 88–97 (2014).
[Crossref]

S. Arai, Y. Shiraki, T. Yamazato, H. Okada, T. Fujii, and T. Yendo, “Multiple LED arrays acquisition for image-sensor-based I2V-VLC using block matching,” in Proceedings of IEEE 11th Consumer Communications and Networking Conference, 605–610 (2014).

S. Arai, S. Mase, T. Yamazato, T. Endo, T. Fujii, M. Tanimoto, K. Kidono, Y. Kimura, and Y. Ninomiya, “Experimental on hierarchical transmission scheme for visible light communication using LED traffic light and high-speed camera,” in Proceedingsof IEEE 66th Vehicular Technology Conference, 2174–2178 (2007).

Y. Ohira, T. Yendo, and S. Arai, “Development of low-complexity MLE method for image-sensor-based visible light communication,” in Proceedings of IEEE Vehicular Networking Conference, 1–4 (2016).

S. Nishimoto, T. Yamazato, H. Okada, T. Fujii, T. Yendo, and S. Arai, “High-speed transmission of overlay coding for road-to-vehicle visible light communication using LED array and high-speed camera,” in Proceedings of 3rd IEEE GLOBECOM Workshop on Optical Wireless Communications, 1234–1238 (2012).

Boyat, A.K.

A.K. Boyat and B.K. Joshi, “A review paper: noise models in digital image processing,” Signal Image Process. An Int. J.,  6(2), 63–75 (2015).
[Crossref]

Chan, C.H.

G. Pang, T. Kwan, H. Liu, and C.H. Chan, “LED wireless,” IEEE Ind. Appl. Mag.,  8(1), 21–28 (2002).
[Crossref]

Daukantas, P.

P. Daukantas, “Optical wireless communications: the new “Hot spot”?” Opt. Photonics News,  25(3), 34–41 (2014).
[Crossref]

Ebihara, K.

K. Ebihara, K. Kamakura, and T. Yamazato, “Layered transmission of space-time coded signals for image-sensor-based visible light communications,” J. Light. Technol.,  33(20), 4193–4206 (2015).
[Crossref]

Endo, T.

S. Arai, S. Mase, T. Yamazato, T. Endo, T. Fujii, M. Tanimoto, K. Kidono, Y. Kimura, and Y. Ninomiya, “Experimental on hierarchical transmission scheme for visible light communication using LED traffic light and high-speed camera,” in Proceedingsof IEEE 66th Vehicular Technology Conference, 2174–2178 (2007).

Faulkner, G.E.

L. Zeng, D.C. O’Brien, H.L. Minh, G.E. Faulkner, K. Lee, D. Jung, Y. Oh, and E.T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. on Sel. Areas Commun.,  27(9), 1654–1662 (2009).
[Crossref]

Fujii, T.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag.,  52(7), 88–97 (2014).
[Crossref]

S. Arai, Y. Shiraki, T. Yamazato, H. Okada, T. Fujii, and T. Yendo, “Multiple LED arrays acquisition for image-sensor-based I2V-VLC using block matching,” in Proceedings of IEEE 11th Consumer Communications and Networking Conference, 605–610 (2014).

T. Nagura, T. Yamazato, M. Katayama, T. Yendo, T. Fujii, and H. Okada, “Tracking an LED array transmitter for visible light communications in the driving situation,” in Proceedings of 7th International Symposium on Wireless Communication Systems, 765–769 (2010).

S. Arai, S. Mase, T. Yamazato, T. Endo, T. Fujii, M. Tanimoto, K. Kidono, Y. Kimura, and Y. Ninomiya, “Experimental on hierarchical transmission scheme for visible light communication using LED traffic light and high-speed camera,” in Proceedingsof IEEE 66th Vehicular Technology Conference, 2174–2178 (2007).

S. Nishimoto, T. Yamazato, H. Okada, T. Fujii, T. Yendo, and S. Arai, “High-speed transmission of overlay coding for road-to-vehicle visible light communication using LED array and high-speed camera,” in Proceedings of 3rd IEEE GLOBECOM Workshop on Optical Wireless Communications, 1234–1238 (2012).

Gore, D.

A. Paulraj, R. Nabar, and D. Gore, “Introduction to space-time wireless communications,” UK Cambridge University Press, (2003).

Hamai, M.

S. Itoh, I. Takai, M.S.Z. Sarker, M. Hamai, M. Andoh, and S. Kawahito, “A CMOS image sensor for 10Mb/s 70 m-range LED-based spatial optical communication,” in Proceedings of IEEE International Solid-State Circuits Conference, 402–403 (2010).

Harada, T.

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics Journal,  6(5), 1–14 (2014).
[Crossref]

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag.,  52(7), 88–97 (2014).
[Crossref]

He, D.

S. Arai, H. Matushita, Y. Ohira, T. Yendo, D. He, and T. Yamazato, “Maximum likelihood decoding based on pseudo-captured image templates for image sensor communication,” Nonlinear Theory and Its Applications, IEICE,  10(2), 173–189 (2019).
[Crossref]

Hossan, T.

T. Nguyen, A. Islam, T. Hossan, and Y.M. Jang, “Current status and performance analysis of optical camera communication technologies for 5G networks,” IEEE Access,  5, 4574–4594 (2017).
[Crossref]

Islam, A.

T. Nguyen, A. Islam, T. Hossan, and Y.M. Jang, “Current status and performance analysis of optical camera communication technologies for 5G networks,” IEEE Access,  5, 4574–4594 (2017).
[Crossref]

Itoh, S.

S. Itoh, I. Takai, M.S.Z. Sarker, M. Hamai, M. Andoh, and S. Kawahito, “A CMOS image sensor for 10Mb/s 70 m-range LED-based spatial optical communication,” in Proceedings of IEEE International Solid-State Circuits Conference, 402–403 (2010).

Jang, Y.M.

T. Nguyen, A. Islam, T. Hossan, and Y.M. Jang, “Current status and performance analysis of optical camera communication technologies for 5G networks,” IEEE Access,  5, 4574–4594 (2017).
[Crossref]

Joshi, B.K.

A.K. Boyat and B.K. Joshi, “A review paper: noise models in digital image processing,” Signal Image Process. An Int. J.,  6(2), 63–75 (2015).
[Crossref]

Jung, D.

L. Zeng, D.C. O’Brien, H.L. Minh, G.E. Faulkner, K. Lee, D. Jung, Y. Oh, and E.T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. on Sel. Areas Commun.,  27(9), 1654–1662 (2009).
[Crossref]

Kagawa, K.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag.,  52(7), 88–97 (2014).
[Crossref]

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics Journal,  6(5), 1–14 (2014).
[Crossref]

Kamakura, K.

K. Ebihara, K. Kamakura, and T. Yamazato, “Layered transmission of space-time coded signals for image-sensor-based visible light communications,” J. Light. Technol.,  33(20), 4193–4206 (2015).
[Crossref]

Y. Amano, K. Kamakura, and T. Yamazato, “Alamouti-type coding for visible light communication based on direct detection using image sensor,” in Proceedings of IEEE GLOBECOM, 2430–2435 (2013).

Katayama, M.

T. Nagura, T. Yamazato, M. Katayama, T. Yendo, T. Fujii, and H. Okada, “Tracking an LED array transmitter for visible light communications in the driving situation,” in Proceedings of 7th International Symposium on Wireless Communication Systems, 765–769 (2010).

Kawahito, S.

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics Journal,  6(5), 1–14 (2014).
[Crossref]

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag.,  52(7), 88–97 (2014).
[Crossref]

S. Itoh, I. Takai, M.S.Z. Sarker, M. Hamai, M. Andoh, and S. Kawahito, “A CMOS image sensor for 10Mb/s 70 m-range LED-based spatial optical communication,” in Proceedings of IEEE International Solid-State Circuits Conference, 402–403 (2010).

Khan, L.U.

L.U. Khan, “Visible light communication: applications, architecture, standardization and research challenges,” Digit. Commun. Networks,  3(2), 78–88 (2017).
[Crossref]

Kidono, K.

S. Arai, S. Mase, T. Yamazato, T. Endo, T. Fujii, M. Tanimoto, K. Kidono, Y. Kimura, and Y. Ninomiya, “Experimental on hierarchical transmission scheme for visible light communication using LED traffic light and high-speed camera,” in Proceedingsof IEEE 66th Vehicular Technology Conference, 2174–2178 (2007).

Kimura, Y.

S. Arai, S. Mase, T. Yamazato, T. Endo, T. Fujii, M. Tanimoto, K. Kidono, Y. Kimura, and Y. Ninomiya, “Experimental on hierarchical transmission scheme for visible light communication using LED traffic light and high-speed camera,” in Proceedingsof IEEE 66th Vehicular Technology Conference, 2174–2178 (2007).

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Transactions on Consumer Electron.,  50(1), 100–107 (2004).
[Crossref]

Kwan, T.

G. Pang, T. Kwan, H. Liu, and C.H. Chan, “LED wireless,” IEEE Ind. Appl. Mag.,  8(1), 21–28 (2002).
[Crossref]

Lee, K.

L. Zeng, D.C. O’Brien, H.L. Minh, G.E. Faulkner, K. Lee, D. Jung, Y. Oh, and E.T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. on Sel. Areas Commun.,  27(9), 1654–1662 (2009).
[Crossref]

Liu, H.

G. Pang, T. Kwan, H. Liu, and C.H. Chan, “LED wireless,” IEEE Ind. Appl. Mag.,  8(1), 21–28 (2002).
[Crossref]

Mase, S.

S. Arai, S. Mase, T. Yamazato, T. Endo, T. Fujii, M. Tanimoto, K. Kidono, Y. Kimura, and Y. Ninomiya, “Experimental on hierarchical transmission scheme for visible light communication using LED traffic light and high-speed camera,” in Proceedingsof IEEE 66th Vehicular Technology Conference, 2174–2178 (2007).

Matushita, H.

S. Arai, H. Matushita, Y. Ohira, T. Yendo, D. He, and T. Yamazato, “Maximum likelihood decoding based on pseudo-captured image templates for image sensor communication,” Nonlinear Theory and Its Applications, IEICE,  10(2), 173–189 (2019).
[Crossref]

Minh, H.L.

L. Zeng, D.C. O’Brien, H.L. Minh, G.E. Faulkner, K. Lee, D. Jung, Y. Oh, and E.T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. on Sel. Areas Commun.,  27(9), 1654–1662 (2009).
[Crossref]

Nabar, R.

A. Paulraj, R. Nabar, and D. Gore, “Introduction to space-time wireless communications,” UK Cambridge University Press, (2003).

Nagura, T.

T. Nagura, T. Yamazato, M. Katayama, T. Yendo, T. Fujii, and H. Okada, “Tracking an LED array transmitter for visible light communications in the driving situation,” in Proceedings of 7th International Symposium on Wireless Communication Systems, 765–769 (2010).

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Transactions on Consumer Electron.,  50(1), 100–107 (2004).
[Crossref]

Nguyen, T.

T. Nguyen, A. Islam, T. Hossan, and Y.M. Jang, “Current status and performance analysis of optical camera communication technologies for 5G networks,” IEEE Access,  5, 4574–4594 (2017).
[Crossref]

Ninomiya, Y.

S. Arai, S. Mase, T. Yamazato, T. Endo, T. Fujii, M. Tanimoto, K. Kidono, Y. Kimura, and Y. Ninomiya, “Experimental on hierarchical transmission scheme for visible light communication using LED traffic light and high-speed camera,” in Proceedingsof IEEE 66th Vehicular Technology Conference, 2174–2178 (2007).

Nishimoto, S.

S. Nishimoto, T. Yamazato, H. Okada, T. Fujii, T. Yendo, and S. Arai, “High-speed transmission of overlay coding for road-to-vehicle visible light communication using LED array and high-speed camera,” in Proceedings of 3rd IEEE GLOBECOM Workshop on Optical Wireless Communications, 1234–1238 (2012).

O’Brien, D.C.

L. Zeng, D.C. O’Brien, H.L. Minh, G.E. Faulkner, K. Lee, D. Jung, Y. Oh, and E.T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. on Sel. Areas Commun.,  27(9), 1654–1662 (2009).
[Crossref]

Oh, Y.

L. Zeng, D.C. O’Brien, H.L. Minh, G.E. Faulkner, K. Lee, D. Jung, Y. Oh, and E.T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. on Sel. Areas Commun.,  27(9), 1654–1662 (2009).
[Crossref]

Ohira, Y.

S. Arai, H. Matushita, Y. Ohira, T. Yendo, D. He, and T. Yamazato, “Maximum likelihood decoding based on pseudo-captured image templates for image sensor communication,” Nonlinear Theory and Its Applications, IEICE,  10(2), 173–189 (2019).
[Crossref]

Y. Ohira, T. Yendo, and S. Arai, “Development of low-complexity MLE method for image-sensor-based visible light communication,” in Proceedings of IEEE Vehicular Networking Conference, 1–4 (2016).

Okada, H.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag.,  52(7), 88–97 (2014).
[Crossref]

T. Nagura, T. Yamazato, M. Katayama, T. Yendo, T. Fujii, and H. Okada, “Tracking an LED array transmitter for visible light communications in the driving situation,” in Proceedings of 7th International Symposium on Wireless Communication Systems, 765–769 (2010).

S. Arai, Y. Shiraki, T. Yamazato, H. Okada, T. Fujii, and T. Yendo, “Multiple LED arrays acquisition for image-sensor-based I2V-VLC using block matching,” in Proceedings of IEEE 11th Consumer Communications and Networking Conference, 605–610 (2014).

S. Nishimoto, T. Yamazato, H. Okada, T. Fujii, T. Yendo, and S. Arai, “High-speed transmission of overlay coding for road-to-vehicle visible light communication using LED array and high-speed camera,” in Proceedings of 3rd IEEE GLOBECOM Workshop on Optical Wireless Communications, 1234–1238 (2012).

Pang, G.

G. Pang, T. Kwan, H. Liu, and C.H. Chan, “LED wireless,” IEEE Ind. Appl. Mag.,  8(1), 21–28 (2002).
[Crossref]

Paulraj, A.

A. Paulraj, R. Nabar, and D. Gore, “Introduction to space-time wireless communications,” UK Cambridge University Press, (2003).

Sarker, M.S.Z.

S. Itoh, I. Takai, M.S.Z. Sarker, M. Hamai, M. Andoh, and S. Kawahito, “A CMOS image sensor for 10Mb/s 70 m-range LED-based spatial optical communication,” in Proceedings of IEEE International Solid-State Circuits Conference, 402–403 (2010).

Shiraki, Y.

S. Arai, Y. Shiraki, T. Yamazato, H. Okada, T. Fujii, and T. Yendo, “Multiple LED arrays acquisition for image-sensor-based I2V-VLC using block matching,” in Proceedings of IEEE 11th Consumer Communications and Networking Conference, 605–610 (2014).

Takai, I.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag.,  52(7), 88–97 (2014).
[Crossref]

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics Journal,  6(5), 1–14 (2014).
[Crossref]

S. Itoh, I. Takai, M.S.Z. Sarker, M. Hamai, M. Andoh, and S. Kawahito, “A CMOS image sensor for 10Mb/s 70 m-range LED-based spatial optical communication,” in Proceedings of IEEE International Solid-State Circuits Conference, 402–403 (2010).

Tanimoto, M.

S. Arai, S. Mase, T. Yamazato, T. Endo, T. Fujii, M. Tanimoto, K. Kidono, Y. Kimura, and Y. Ninomiya, “Experimental on hierarchical transmission scheme for visible light communication using LED traffic light and high-speed camera,” in Proceedingsof IEEE 66th Vehicular Technology Conference, 2174–2178 (2007).

Won, E.T.

L. Zeng, D.C. O’Brien, H.L. Minh, G.E. Faulkner, K. Lee, D. Jung, Y. Oh, and E.T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. on Sel. Areas Commun.,  27(9), 1654–1662 (2009).
[Crossref]

Yamazato, T.

S. Arai, H. Matushita, Y. Ohira, T. Yendo, D. He, and T. Yamazato, “Maximum likelihood decoding based on pseudo-captured image templates for image sensor communication,” Nonlinear Theory and Its Applications, IEICE,  10(2), 173–189 (2019).
[Crossref]

K. Ebihara, K. Kamakura, and T. Yamazato, “Layered transmission of space-time coded signals for image-sensor-based visible light communications,” J. Light. Technol.,  33(20), 4193–4206 (2015).
[Crossref]

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag.,  52(7), 88–97 (2014).
[Crossref]

S. Arai, Y. Shiraki, T. Yamazato, H. Okada, T. Fujii, and T. Yendo, “Multiple LED arrays acquisition for image-sensor-based I2V-VLC using block matching,” in Proceedings of IEEE 11th Consumer Communications and Networking Conference, 605–610 (2014).

T. Nagura, T. Yamazato, M. Katayama, T. Yendo, T. Fujii, and H. Okada, “Tracking an LED array transmitter for visible light communications in the driving situation,” in Proceedings of 7th International Symposium on Wireless Communication Systems, 765–769 (2010).

Y. Amano, K. Kamakura, and T. Yamazato, “Alamouti-type coding for visible light communication based on direct detection using image sensor,” in Proceedings of IEEE GLOBECOM, 2430–2435 (2013).

S. Nishimoto, T. Yamazato, H. Okada, T. Fujii, T. Yendo, and S. Arai, “High-speed transmission of overlay coding for road-to-vehicle visible light communication using LED array and high-speed camera,” in Proceedings of 3rd IEEE GLOBECOM Workshop on Optical Wireless Communications, 1234–1238 (2012).

S. Arai, S. Mase, T. Yamazato, T. Endo, T. Fujii, M. Tanimoto, K. Kidono, Y. Kimura, and Y. Ninomiya, “Experimental on hierarchical transmission scheme for visible light communication using LED traffic light and high-speed camera,” in Proceedingsof IEEE 66th Vehicular Technology Conference, 2174–2178 (2007).

Yasutomi, K.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag.,  52(7), 88–97 (2014).
[Crossref]

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics Journal,  6(5), 1–14 (2014).
[Crossref]

Yendo, T.

S. Arai, H. Matushita, Y. Ohira, T. Yendo, D. He, and T. Yamazato, “Maximum likelihood decoding based on pseudo-captured image templates for image sensor communication,” Nonlinear Theory and Its Applications, IEICE,  10(2), 173–189 (2019).
[Crossref]

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag.,  52(7), 88–97 (2014).
[Crossref]

S. Arai, Y. Shiraki, T. Yamazato, H. Okada, T. Fujii, and T. Yendo, “Multiple LED arrays acquisition for image-sensor-based I2V-VLC using block matching,” in Proceedings of IEEE 11th Consumer Communications and Networking Conference, 605–610 (2014).

T. Nagura, T. Yamazato, M. Katayama, T. Yendo, T. Fujii, and H. Okada, “Tracking an LED array transmitter for visible light communications in the driving situation,” in Proceedings of 7th International Symposium on Wireless Communication Systems, 765–769 (2010).

S. Nishimoto, T. Yamazato, H. Okada, T. Fujii, T. Yendo, and S. Arai, “High-speed transmission of overlay coding for road-to-vehicle visible light communication using LED array and high-speed camera,” in Proceedings of 3rd IEEE GLOBECOM Workshop on Optical Wireless Communications, 1234–1238 (2012).

Y. Ohira, T. Yendo, and S. Arai, “Development of low-complexity MLE method for image-sensor-based visible light communication,” in Proceedings of IEEE Vehicular Networking Conference, 1–4 (2016).

Zeng, L.

L. Zeng, D.C. O’Brien, H.L. Minh, G.E. Faulkner, K. Lee, D. Jung, Y. Oh, and E.T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. on Sel. Areas Commun.,  27(9), 1654–1662 (2009).
[Crossref]

Digit. Commun. Networks (1)

L.U. Khan, “Visible light communication: applications, architecture, standardization and research challenges,” Digit. Commun. Networks,  3(2), 78–88 (2017).
[Crossref]

IEEE Access (1)

T. Nguyen, A. Islam, T. Hossan, and Y.M. Jang, “Current status and performance analysis of optical camera communication technologies for 5G networks,” IEEE Access,  5, 4574–4594 (2017).
[Crossref]

IEEE Commun. Mag. (1)

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag.,  52(7), 88–97 (2014).
[Crossref]

IEEE Ind. Appl. Mag. (1)

G. Pang, T. Kwan, H. Liu, and C.H. Chan, “LED wireless,” IEEE Ind. Appl. Mag.,  8(1), 21–28 (2002).
[Crossref]

IEEE J. on Sel. Areas Commun. (1)

L. Zeng, D.C. O’Brien, H.L. Minh, G.E. Faulkner, K. Lee, D. Jung, Y. Oh, and E.T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. on Sel. Areas Commun.,  27(9), 1654–1662 (2009).
[Crossref]

IEEE Photonics Journal (1)

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics Journal,  6(5), 1–14 (2014).
[Crossref]

IEEE Transactions on Consumer Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Transactions on Consumer Electron.,  50(1), 100–107 (2004).
[Crossref]

J. Light. Technol. (1)

K. Ebihara, K. Kamakura, and T. Yamazato, “Layered transmission of space-time coded signals for image-sensor-based visible light communications,” J. Light. Technol.,  33(20), 4193–4206 (2015).
[Crossref]

Nonlinear Theory and Its Applications, IEICE (1)

S. Arai, H. Matushita, Y. Ohira, T. Yendo, D. He, and T. Yamazato, “Maximum likelihood decoding based on pseudo-captured image templates for image sensor communication,” Nonlinear Theory and Its Applications, IEICE,  10(2), 173–189 (2019).
[Crossref]

Opt. Photonics News (1)

P. Daukantas, “Optical wireless communications: the new “Hot spot”?” Opt. Photonics News,  25(3), 34–41 (2014).
[Crossref]

Signal Image Process. An Int. J. (1)

A.K. Boyat and B.K. Joshi, “A review paper: noise models in digital image processing,” Signal Image Process. An Int. J.,  6(2), 63–75 (2015).
[Crossref]

Other (8)

A. Paulraj, R. Nabar, and D. Gore, “Introduction to space-time wireless communications,” UK Cambridge University Press, (2003).

Y. Ohira, T. Yendo, and S. Arai, “Development of low-complexity MLE method for image-sensor-based visible light communication,” in Proceedings of IEEE Vehicular Networking Conference, 1–4 (2016).

S. Itoh, I. Takai, M.S.Z. Sarker, M. Hamai, M. Andoh, and S. Kawahito, “A CMOS image sensor for 10Mb/s 70 m-range LED-based spatial optical communication,” in Proceedings of IEEE International Solid-State Circuits Conference, 402–403 (2010).

S. Arai, S. Mase, T. Yamazato, T. Endo, T. Fujii, M. Tanimoto, K. Kidono, Y. Kimura, and Y. Ninomiya, “Experimental on hierarchical transmission scheme for visible light communication using LED traffic light and high-speed camera,” in Proceedingsof IEEE 66th Vehicular Technology Conference, 2174–2178 (2007).

S. Nishimoto, T. Yamazato, H. Okada, T. Fujii, T. Yendo, and S. Arai, “High-speed transmission of overlay coding for road-to-vehicle visible light communication using LED array and high-speed camera,” in Proceedings of 3rd IEEE GLOBECOM Workshop on Optical Wireless Communications, 1234–1238 (2012).

Y. Amano, K. Kamakura, and T. Yamazato, “Alamouti-type coding for visible light communication based on direct detection using image sensor,” in Proceedings of IEEE GLOBECOM, 2430–2435 (2013).

T. Nagura, T. Yamazato, M. Katayama, T. Yendo, T. Fujii, and H. Okada, “Tracking an LED array transmitter for visible light communications in the driving situation,” in Proceedings of 7th International Symposium on Wireless Communication Systems, 765–769 (2010).

S. Arai, Y. Shiraki, T. Yamazato, H. Okada, T. Fujii, and T. Yendo, “Multiple LED arrays acquisition for image-sensor-based I2V-VLC using block matching,” in Proceedings of IEEE 11th Consumer Communications and Networking Conference, 605–610 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 ISC for infrastructure-to-vehicle communication. The quality of an image captured at a long distance will be deteriorated.
Fig. 2
Fig. 2 System model of ISC.
Fig. 3
Fig. 3 Process example of the Proposed method with the first method.
Fig. 4
Fig. 4 Simulation results: (a) BER performance of the proposed method, MLD method and MMSE method plotted against SNR. (b) BER performance of the proposed method with expected numbers of unreliable LEDs, MLD and MMSE plotted against SNR.
Fig. 5
Fig. 5 Experimental equipment: High-speed image sensor, LED array transmitter.
Fig. 6
Fig. 6 LED transmitter, corresponding signal pattern, and actual captured images at four different SNRs [dB].
Fig. 7
Fig. 7 Experimental results: (a) BER performance of the proposed method with thresholding MMSE, MLD, and MMSE alone plotted against SNR. (b) BER performance of the proposed method with predetermined-unreliability MMSE, MLD, and MMSE alone, plotted against SNR.

Tables (7)

Tables Icon

Table 1 Simulation Parameters

Tables Icon

Table 2 Complexity Performance with Thresholding MMSE

Tables Icon

Table 3 Complexity Performance with Expected-unreliability MMSE

Tables Icon

Table. 4 Equipment Specifications

Tables Icon

Table 5 Experimental Parameters

Tables Icon

Table 6 Complexity Performance Gained with The Proposed Method

Tables Icon

Table 7 Actual Processing Time of The Proposed Method [ms]

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

y = [ y 1 , , y M × N ] T = Hx + n .
x ˜ = ( H T H ) 1 H T y = W y .
W mmse = ( H T H + ρ 1 I N t ) 1 H T .
x ˜ = ( H T H + ρ 1 I N t ) 1 H T Hx + n = W mmse y .
y ˜ = Hx .
H g ( p , q ) = 1 2 π σ g 2 exp  ( p 2 + q 2 2 σ g 2 ) .
N r a t i o = N i 2 4 × 4 .
y = Hx .
y 1 = h 1 x = x T h 1 T
y 1 = X h 1 T
y n = ( x 1 ( 1 ) x i ( 1 ) 1 x 1 ( 2 ) x i ( 2 ) 1 x 1 ( k ) x i ( k ) 1 ) ( h n 1 h n 2 h n   i + 1 ) = X   ' h n   ' T
L = X   '
h n   ' ¯ = L + y n

Metrics