Abstract

In this contribution, we demonstrate how an optical frequency comb can be used to enhance the functionality of an integrated photonic biosensor platform. We show that if an optical frequency comb is used to sample the spectral response of a Mach-Zehnder interferometer and if the line spacing is arranged to sample the periodic response at 120° intervals, then it is possible to combine these samples into a single measurement of the interferometer phase. This phase measurement approach is accurate, independent of the bias of the interferometer and robust against intensity fluctuations that are common to each of the comb lines. We demonstrate this approach with a simple silicon photonic interferometric refractive index sensor and show that the benefits of our approach can be obtained without degrading the lower limit of detection of 3.70×10−7 RIU.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor

Ryo Oe, Shuji Taue, Takeo Minamikawa, Kosuke Nagai, Kyuki Shibuya, Takahiko Mizuno, Masatomo Yamagiwa, Yasuhiro Mizutani, Hirotsugu Yamamoto, Tetsuo Iwata, Hideki Fukano, Yoshiaki Nakajima, Kaoru Minoshima, and Takeshi Yasui
Opt. Express 26(15) 19694-19706 (2018)

Refractive index sensing with temperature compensation by a multimode-interference fiber-based optical frequency comb sensing cavity

Ryo Oe, Takeo Minamikawa, Shuji Taue, Hidenori Koresawa, Takahiko Mizuno, Masatomo Yamagiwa, Yasuhiro Mizutani, Hirotsugu Yamamoto, Tetsuo Iwata, and Takeshi Yasui
Opt. Express 27(15) 21463-21476 (2019)

Integrated photonics interferometric interrogator for a ring-resonator ultrasound sensor

Boling Ouyang, Michael Haverdings, Roland Horsten, Marten Kruidhof, Pim Kat, and Jacob Caro
Opt. Express 27(16) 23408-23421 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [Crossref]
  2. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332(6029), 555–559 (2011).
    [Crossref]
  3. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
    [Crossref]
  4. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref]
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [Crossref]
  6. D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
    [Crossref]
  7. A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
    [Crossref]
  8. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
    [Crossref]
  9. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  10. L. Y. Yeo, H. C. Chang, P. P. Y. Chan, and J. R. Friend, “Microfluidic Devices for Bioapplications,” Small 7(1), 12–48 (2011).
    [Crossref]
  11. A. Densmore, M. Vachon, D. X. Xu, S. Janz, R. Ma, Y. H. Li, G. Lopinski, A. Delage, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett. 34(23), 3598–3600 (2009).
    [Crossref]
  12. A. B. Gonzalez-Guerrero, J. Maldonado, S. Herranz, and L. M. Lechuga, “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics,” Anal. Methods 8(48), 8380–8394 (2016).
    [Crossref]
  13. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  14. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref]
  15. A. Fernandez Gavela, D. Grajales Garcia, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors 16(3), 285 (2016).
    [Crossref]
  16. Í Molina-Fernández, J. Leuermann, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and R. Halir, “Fundamental limit of detection of photonic biosensors with coherent phase read-out,” Opt. Express 27(9), 12616–12629 (2019).
    [Crossref]
  17. J. G. Wanguemert-Perez, A. Hadij-ElHouati, A. Sanchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Monux, R. Halir, and I. Molina-Fernandez, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
    [Crossref]
  18. A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
    [Crossref]
  19. A. Tavousi, M. R. Rakhshani, and M. A. Mansouri-Birjandi, “High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators,” Opt. Commun. 429, 166–174 (2018).
    [Crossref]
  20. P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
    [Crossref]
  21. C. S. Huertas, D. Farina, and L. M. Lechuga, “Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor,” ACS Sens. 1(6), 748–756 (2016).
    [Crossref]
  22. J. P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discovery 15(10), 679–698 (2016).
    [Crossref]
  23. B. Chocarro-Ruiz, A. Fernandez-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
    [Crossref]
  24. E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon Photonic Biosensors Using Label-Free Detection,” Sensors 18(10), 3519 (2018).
    [Crossref]
  25. S. Zhang, A. Garcia-D’Angeli, J. P. Brennan, and Q. Huo, “Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general,” Analyst 139(2), 439–445 (2014).
    [Crossref]
  26. J. H. Wade, A. T. Alsop, N. R. Vertin, H. W. Yang, M. D. Johnson, and R. C. Bailey, “Rapid, Multiplexed Phosphoprotein Profiling Using Silicon Photonic Sensor Arrays,” ACS Cent. Sci. 1(7), 374–382 (2015).
    [Crossref]
  27. K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Advances in Optical Technologies 2008, 1–6 (2008).
    [Crossref]
  28. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators, B 61(1-3), 100–127 (1999).
    [Crossref]
  29. Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
    [Crossref]
  30. S. Dante, D. Duval, B. Sepulveda, A. B. Gonzalez-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20(7), 7195–7205 (2012).
    [Crossref]
  31. R. J. J. van Gulik, B. M. de Boer, and P. J. Harmsma, “Refractive Index Sensing Using a Three-Port Interferometer and Comparison With Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 23(2), 433–439 (2017).
    [Crossref]
  32. P. J. Reyes-Iglesias, I. Molina-Fernandez, A. Moscoso-Martir, and A. Ortega-Monux, “High-performance monolithically integrated 120 degrees downconverter with relaxed hardware constraints,” Opt. Express 20(5), 5725–5741 (2012).
    [Crossref]
  33. R. Halir, L. Vivien, X. Le Roux, D. X. Xu, and P. Cheben, “Direct and Sensitive Phase Readout for Integrated Waveguide Sensors,” IEEE Photonics J. 5(4), 6800906 (2013).
    [Crossref]
  34. C. Szydzik, A. F. Gavela, S. Herranz, J. Roccisano, M. Knoerzer, P. Thurgood, K. Khoshmanesh, A. Mitchell, and L. M. Lechuga, “An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics,” Lab Chip 17(16), 2793–2804 (2017).
    [Crossref]
  35. J. E. Saunders, C. Sanders, H. Chen, and H. P. Loock, “Refractive indices of common solvents and solutions at 1550 nm,” Appl. Opt. 55(4), 947–953 (2016).
    [Crossref]

2019 (3)

Í Molina-Fernández, J. Leuermann, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and R. Halir, “Fundamental limit of detection of photonic biosensors with coherent phase read-out,” Opt. Express 27(9), 12616–12629 (2019).
[Crossref]

J. G. Wanguemert-Perez, A. Hadij-ElHouati, A. Sanchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Monux, R. Halir, and I. Molina-Fernandez, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
[Crossref]

2018 (3)

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon Photonic Biosensors Using Label-Free Detection,” Sensors 18(10), 3519 (2018).
[Crossref]

A. Tavousi, M. R. Rakhshani, and M. A. Mansouri-Birjandi, “High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators,” Opt. Commun. 429, 166–174 (2018).
[Crossref]

P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
[Crossref]

2017 (4)

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
[Crossref]

B. Chocarro-Ruiz, A. Fernandez-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref]

R. J. J. van Gulik, B. M. de Boer, and P. J. Harmsma, “Refractive Index Sensing Using a Three-Port Interferometer and Comparison With Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 23(2), 433–439 (2017).
[Crossref]

C. Szydzik, A. F. Gavela, S. Herranz, J. Roccisano, M. Knoerzer, P. Thurgood, K. Khoshmanesh, A. Mitchell, and L. M. Lechuga, “An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics,” Lab Chip 17(16), 2793–2804 (2017).
[Crossref]

2016 (6)

J. E. Saunders, C. Sanders, H. Chen, and H. P. Loock, “Refractive indices of common solvents and solutions at 1550 nm,” Appl. Opt. 55(4), 947–953 (2016).
[Crossref]

A. Fernandez Gavela, D. Grajales Garcia, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors 16(3), 285 (2016).
[Crossref]

C. S. Huertas, D. Farina, and L. M. Lechuga, “Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor,” ACS Sens. 1(6), 748–756 (2016).
[Crossref]

J. P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discovery 15(10), 679–698 (2016).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

A. B. Gonzalez-Guerrero, J. Maldonado, S. Herranz, and L. M. Lechuga, “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics,” Anal. Methods 8(48), 8380–8394 (2016).
[Crossref]

2015 (1)

J. H. Wade, A. T. Alsop, N. R. Vertin, H. W. Yang, M. D. Johnson, and R. C. Bailey, “Rapid, Multiplexed Phosphoprotein Profiling Using Silicon Photonic Sensor Arrays,” ACS Cent. Sci. 1(7), 374–382 (2015).
[Crossref]

2014 (2)

S. Zhang, A. Garcia-D’Angeli, J. P. Brennan, and Q. Huo, “Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general,” Analyst 139(2), 439–445 (2014).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

2013 (2)

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

R. Halir, L. Vivien, X. Le Roux, D. X. Xu, and P. Cheben, “Direct and Sensitive Phase Readout for Integrated Waveguide Sensors,” IEEE Photonics J. 5(4), 6800906 (2013).
[Crossref]

2012 (2)

2011 (2)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332(6029), 555–559 (2011).
[Crossref]

L. Y. Yeo, H. C. Chang, P. P. Y. Chan, and J. R. Friend, “Microfluidic Devices for Bioapplications,” Small 7(1), 12–48 (2011).
[Crossref]

2010 (3)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref]

2009 (1)

2008 (1)

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Advances in Optical Technologies 2008, 1–6 (2008).
[Crossref]

2007 (1)

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

2000 (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

1999 (1)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators, B 61(1-3), 100–127 (1999).
[Crossref]

Alsop, A. T.

J. H. Wade, A. T. Alsop, N. R. Vertin, H. W. Yang, M. D. Johnson, and R. C. Bailey, “Rapid, Multiplexed Phosphoprotein Profiling Using Silicon Photonic Sensor Arrays,” ACS Cent. Sci. 1(7), 374–382 (2015).
[Crossref]

Anton, B.

P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
[Crossref]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Baets, R.

Bailey, R. C.

J. H. Wade, A. T. Alsop, N. R. Vertin, H. W. Yang, M. D. Johnson, and R. C. Bailey, “Rapid, Multiplexed Phosphoprotein Profiling Using Silicon Photonic Sensor Arrays,” ACS Cent. Sci. 1(7), 374–382 (2015).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref]

Bartolozzi, I.

Becker, H.

P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
[Crossref]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Bienstman, P.

P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref]

Bockstaele, R.

P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
[Crossref]

Bowman, A. L.

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref]

Brasch, V.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Brennan, J. P.

S. Zhang, A. Garcia-D’Angeli, J. P. Brennan, and Q. Huo, “Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general,” Analyst 139(2), 439–445 (2014).
[Crossref]

Carrascosa, L. G.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Advances in Optical Technologies 2008, 1–6 (2008).
[Crossref]

Chan, P. P. Y.

L. Y. Yeo, H. C. Chang, P. P. Y. Chan, and J. R. Friend, “Microfluidic Devices for Bioapplications,” Small 7(1), 12–48 (2011).
[Crossref]

Chang, H. C.

L. Y. Yeo, H. C. Chang, P. P. Y. Chan, and J. R. Friend, “Microfluidic Devices for Bioapplications,” Small 7(1), 12–48 (2011).
[Crossref]

Cheben, P.

J. G. Wanguemert-Perez, A. Hadij-ElHouati, A. Sanchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Monux, R. Halir, and I. Molina-Fernandez, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

R. Halir, L. Vivien, X. Le Roux, D. X. Xu, and P. Cheben, “Direct and Sensitive Phase Readout for Integrated Waveguide Sensors,” IEEE Photonics J. 5(4), 6800906 (2013).
[Crossref]

A. Densmore, M. Vachon, D. X. Xu, S. Janz, R. Ma, Y. H. Li, G. Lopinski, A. Delage, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett. 34(23), 3598–3600 (2009).
[Crossref]

Chen, H.

Cheung, K. C.

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon Photonic Biosensors Using Label-Free Detection,” Sensors 18(10), 3519 (2018).
[Crossref]

Chocarro-Ruiz, B.

B. Chocarro-Ruiz, A. Fernandez-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref]

Chrostowski, L.

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon Photonic Biosensors Using Label-Free Detection,” Sensors 18(10), 3519 (2018).
[Crossref]

Chung, C. W.

J. P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discovery 15(10), 679–698 (2016).
[Crossref]

Coddington, I.

Cole, D. C.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
[Crossref]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

Danielson, U. H.

J. P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discovery 15(10), 679–698 (2016).
[Crossref]

Dante, S.

de Boer, B. M.

R. J. J. van Gulik, B. M. de Boer, and P. J. Harmsma, “Refractive Index Sensing Using a Three-Port Interferometer and Comparison With Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 23(2), 433–439 (2017).
[Crossref]

De Vos, K.

Del’Haye, P.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
[Crossref]

Delage, A.

Densmore, A.

Di Pasquale, F.

Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
[Crossref]

Diddams, S. A.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332(6029), 555–559 (2011).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

Domínguez, C.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Advances in Optical Technologies 2008, 1–6 (2008).
[Crossref]

Duval, D.

Egner, U.

J. P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discovery 15(10), 679–698 (2016).
[Crossref]

Elamin, A. A.

P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
[Crossref]

Farina, D.

C. S. Huertas, D. Farina, and L. M. Lechuga, “Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor,” ACS Sens. 1(6), 748–756 (2016).
[Crossref]

Fernandez Gavela, A.

A. Fernandez Gavela, D. Grajales Garcia, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors 16(3), 285 (2016).
[Crossref]

Fernandez-Gavela, A.

B. Chocarro-Ruiz, A. Fernandez-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref]

Freude, W.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Friend, J. R.

L. Y. Yeo, H. C. Chang, P. P. Y. Chan, and J. R. Friend, “Microfluidic Devices for Bioapplications,” Small 7(1), 12–48 (2011).
[Crossref]

Garcia-D’Angeli, A.

S. Zhang, A. Garcia-D’Angeli, J. P. Brennan, and Q. Huo, “Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general,” Analyst 139(2), 439–445 (2014).
[Crossref]

Gavela, A. F.

C. Szydzik, A. F. Gavela, S. Herranz, J. Roccisano, M. Knoerzer, P. Thurgood, K. Khoshmanesh, A. Mitchell, and L. M. Lechuga, “An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics,” Lab Chip 17(16), 2793–2804 (2017).
[Crossref]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gonzalez-Guerrero, A. B.

A. B. Gonzalez-Guerrero, J. Maldonado, S. Herranz, and L. M. Lechuga, “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics,” Anal. Methods 8(48), 8380–8394 (2016).
[Crossref]

S. Dante, D. Duval, B. Sepulveda, A. B. Gonzalez-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20(7), 7195–7205 (2012).
[Crossref]

Grajales Garcia, D.

A. Fernandez Gavela, D. Grajales Garcia, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors 16(3), 285 (2016).
[Crossref]

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Hadij-ElHouati, A.

J. G. Wanguemert-Perez, A. Hadij-ElHouati, A. Sanchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Monux, R. Halir, and I. Molina-Fernandez, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

Halir, R.

Í Molina-Fernández, J. Leuermann, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and R. Halir, “Fundamental limit of detection of photonic biosensors with coherent phase read-out,” Opt. Express 27(9), 12616–12629 (2019).
[Crossref]

J. G. Wanguemert-Perez, A. Hadij-ElHouati, A. Sanchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Monux, R. Halir, and I. Molina-Fernandez, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

R. Halir, L. Vivien, X. Le Roux, D. X. Xu, and P. Cheben, “Direct and Sensitive Phase Readout for Integrated Waveguide Sensors,” IEEE Photonics J. 5(4), 6800906 (2013).
[Crossref]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

Hansch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Harmsma, P. J.

R. J. J. van Gulik, B. M. de Boer, and P. J. Harmsma, “Refractive Index Sensing Using a Three-Port Interferometer and Comparison With Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 23(2), 433–439 (2017).
[Crossref]

Hartinger, K.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Heideman, R. G.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators, B 61(1-3), 100–127 (1999).
[Crossref]

Hennig, M.

J. P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discovery 15(10), 679–698 (2016).
[Crossref]

Herr, T.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Herranz, S.

B. Chocarro-Ruiz, A. Fernandez-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref]

C. Szydzik, A. F. Gavela, S. Herranz, J. Roccisano, M. Knoerzer, P. Thurgood, K. Khoshmanesh, A. Mitchell, and L. M. Lechuga, “An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics,” Lab Chip 17(16), 2793–2804 (2017).
[Crossref]

A. B. Gonzalez-Guerrero, J. Maldonado, S. Herranz, and L. M. Lechuga, “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics,” Anal. Methods 8(48), 8380–8394 (2016).
[Crossref]

Hillerkuss, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Holzwarth, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332(6029), 555–559 (2011).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Hubbard, R. E.

J. P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discovery 15(10), 679–698 (2016).
[Crossref]

Huertas, C. S.

C. S. Huertas, D. Farina, and L. M. Lechuga, “Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor,” ACS Sens. 1(6), 748–756 (2016).
[Crossref]

Huo, Q.

S. Zhang, A. Garcia-D’Angeli, J. P. Brennan, and Q. Huo, “Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general,” Analyst 139(2), 439–445 (2014).
[Crossref]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Janz, S.

Jeon, H.

Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
[Crossref]

Jeong, Y.

Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
[Crossref]

Johnson, M. D.

J. H. Wade, A. T. Alsop, N. R. Vertin, H. W. Yang, M. D. Johnson, and R. C. Bailey, “Rapid, Multiplexed Phosphoprotein Profiling Using Silicon Photonic Sensor Arrays,” ACS Cent. Sci. 1(7), 374–382 (2015).
[Crossref]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

Khoshmanesh, K.

C. Szydzik, A. F. Gavela, S. Herranz, J. Roccisano, M. Knoerzer, P. Thurgood, K. Khoshmanesh, A. Mitchell, and L. M. Lechuga, “An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics,” Lab Chip 17(16), 2793–2804 (2017).
[Crossref]

Kim, S.

Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
[Crossref]

Kippenberg, T. J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Knoerzer, M.

C. Szydzik, A. F. Gavela, S. Herranz, J. Roccisano, M. Knoerzer, P. Thurgood, K. Khoshmanesh, A. Mitchell, and L. M. Lechuga, “An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics,” Lab Chip 17(16), 2793–2804 (2017).
[Crossref]

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Koos, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Lamb, E. S.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
[Crossref]

Lambeck, P. V.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators, B 61(1-3), 100–127 (1999).
[Crossref]

Lapointe, J.

Lauermann, M.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Le Roux, X.

R. Halir, L. Vivien, X. Le Roux, D. X. Xu, and P. Cheben, “Direct and Sensitive Phase Readout for Integrated Waveguide Sensors,” IEEE Photonics J. 5(4), 6800906 (2013).
[Crossref]

Leaird, D. E.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

Lechuga, L. M.

P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
[Crossref]

B. Chocarro-Ruiz, A. Fernandez-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref]

C. Szydzik, A. F. Gavela, S. Herranz, J. Roccisano, M. Knoerzer, P. Thurgood, K. Khoshmanesh, A. Mitchell, and L. M. Lechuga, “An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics,” Lab Chip 17(16), 2793–2804 (2017).
[Crossref]

C. S. Huertas, D. Farina, and L. M. Lechuga, “Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor,” ACS Sens. 1(6), 748–756 (2016).
[Crossref]

A. B. Gonzalez-Guerrero, J. Maldonado, S. Herranz, and L. M. Lechuga, “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics,” Anal. Methods 8(48), 8380–8394 (2016).
[Crossref]

A. Fernandez Gavela, D. Grajales Garcia, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors 16(3), 285 (2016).
[Crossref]

S. Dante, D. Duval, B. Sepulveda, A. B. Gonzalez-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20(7), 7195–7205 (2012).
[Crossref]

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Advances in Optical Technologies 2008, 1–6 (2008).
[Crossref]

Leuermann, J.

Í Molina-Fernández, J. Leuermann, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and R. Halir, “Fundamental limit of detection of photonic biosensors with coherent phase read-out,” Opt. Express 27(9), 12616–12629 (2019).
[Crossref]

J. G. Wanguemert-Perez, A. Hadij-ElHouati, A. Sanchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Monux, R. Halir, and I. Molina-Fernandez, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

Leuthold, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Li, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Li, Y. H.

Liu, Q. Y.

Loock, H. P.

Lopinski, G.

Luan, E.

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon Photonic Biosensors Using Label-Free Detection,” Sensors 18(10), 3519 (2018).
[Crossref]

Luchansky, M. S.

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref]

Luebbert, C. C.

Ma, R.

Maldonado, J.

A. B. Gonzalez-Guerrero, J. Maldonado, S. Herranz, and L. M. Lechuga, “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics,” Anal. Methods 8(48), 8380–8394 (2016).
[Crossref]

Mansouri-Birjandi, M. A.

A. Tavousi, M. R. Rakhshani, and M. A. Mansouri-Birjandi, “High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators,” Opt. Commun. 429, 166–174 (2018).
[Crossref]

Marin, Y. E.

Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
[Crossref]

Martens, D.

P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
[Crossref]

Metcalf, A. J.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

Minunni, M.

Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
[Crossref]

Mitchell, A.

C. Szydzik, A. F. Gavela, S. Herranz, J. Roccisano, M. Knoerzer, P. Thurgood, K. Khoshmanesh, A. Mitchell, and L. M. Lechuga, “An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics,” Lab Chip 17(16), 2793–2804 (2017).
[Crossref]

Molina-Fernandez, I.

J. G. Wanguemert-Perez, A. Hadij-ElHouati, A. Sanchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Monux, R. Halir, and I. Molina-Fernandez, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

P. J. Reyes-Iglesias, I. Molina-Fernandez, A. Moscoso-Martir, and A. Ortega-Monux, “High-performance monolithically integrated 120 degrees downconverter with relaxed hardware constraints,” Opt. Express 20(5), 5725–5741 (2012).
[Crossref]

Molina-Fernández, Í

Moscoso-Martir, A.

Nar, H.

J. P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discovery 15(10), 679–698 (2016).
[Crossref]

Newbury, N.

Nottola, A.

Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
[Crossref]

Ortega-Monux, A.

J. G. Wanguemert-Perez, A. Hadij-ElHouati, A. Sanchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Monux, R. Halir, and I. Molina-Fernandez, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

P. J. Reyes-Iglesias, I. Molina-Fernandez, A. Moscoso-Martir, and A. Ortega-Monux, “High-performance monolithically integrated 120 degrees downconverter with relaxed hardware constraints,” Opt. Express 20(5), 5725–5741 (2012).
[Crossref]

Ortega-Moñux, A.

Oton, C. J.

Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
[Crossref]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Papp, S. B.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
[Crossref]

Pfeifle, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Picque, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Rakhshani, M. R.

A. Tavousi, M. R. Rakhshani, and M. A. Mansouri-Birjandi, “High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators,” Opt. Commun. 429, 166–174 (2018).
[Crossref]

Ramirez, J. C.

A. Fernandez Gavela, D. Grajales Garcia, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors 16(3), 285 (2016).
[Crossref]

Ramirez-Priego, P.

P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
[Crossref]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

Ratner, D. M.

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon Photonic Biosensors Using Label-Free Detection,” Sensors 18(10), 3519 (2018).
[Crossref]

Renaud, J. P.

J. P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discovery 15(10), 679–698 (2016).
[Crossref]

Reyes-Iglesias, P. J.

Roccisano, J.

C. Szydzik, A. F. Gavela, S. Herranz, J. Roccisano, M. Knoerzer, P. Thurgood, K. Khoshmanesh, A. Mitchell, and L. M. Lechuga, “An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics,” Lab Chip 17(16), 2793–2804 (2017).
[Crossref]

Russell, P. S.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Sánchez del Río, J.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Advances in Optical Technologies 2008, 1–6 (2008).
[Crossref]

Sanchez-Postigo, A.

J. G. Wanguemert-Perez, A. Hadij-ElHouati, A. Sanchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Monux, R. Halir, and I. Molina-Fernandez, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

Sanders, C.

Saunders, J. E.

Scarano, S.

Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
[Crossref]

Schacht, E.

Schindler, P.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Schmid, J. H.

Schmogrow, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Sendra, J. R.

Sepulveda, B.

Sepúlveda, B.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Advances in Optical Technologies 2008, 1–6 (2008).
[Crossref]

Shoman, H.

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon Photonic Biosensors Using Label-Free Detection,” Sensors 18(10), 3519 (2018).
[Crossref]

Singh, M.

P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
[Crossref]

Soetaert, P.

P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
[Crossref]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

Swann, W.

Szydzik, C.

C. Szydzik, A. F. Gavela, S. Herranz, J. Roccisano, M. Knoerzer, P. Thurgood, K. Khoshmanesh, A. Mitchell, and L. M. Lechuga, “An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics,” Lab Chip 17(16), 2793–2804 (2017).
[Crossref]

Tavousi, A.

A. Tavousi, M. R. Rakhshani, and M. A. Mansouri-Birjandi, “High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators,” Opt. Commun. 429, 166–174 (2018).
[Crossref]

Thurgood, P.

C. Szydzik, A. F. Gavela, S. Herranz, J. Roccisano, M. Knoerzer, P. Thurgood, K. Khoshmanesh, A. Mitchell, and L. M. Lechuga, “An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics,” Lab Chip 17(16), 2793–2804 (2017).
[Crossref]

Tirelli, S.

Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
[Crossref]

Toccafondo, V.

Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
[Crossref]

Torres-Company, V.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Vachon, M.

van Gulik, R. J. J.

R. J. J. van Gulik, B. M. de Boer, and P. J. Harmsma, “Refractive Index Sensing Using a Three-Port Interferometer and Comparison With Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 23(2), 433–439 (2017).
[Crossref]

Van Roy, W.

P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
[Crossref]

Velha, P.

Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
[Crossref]

Vertin, N. R.

J. H. Wade, A. T. Alsop, N. R. Vertin, H. W. Yang, M. D. Johnson, and R. C. Bailey, “Rapid, Multiplexed Phosphoprotein Profiling Using Silicon Photonic Sensor Arrays,” ACS Cent. Sci. 1(7), 374–382 (2015).
[Crossref]

Vivien, L.

R. Halir, L. Vivien, X. Le Roux, D. X. Xu, and P. Cheben, “Direct and Sensitive Phase Readout for Integrated Waveguide Sensors,” IEEE Photonics J. 5(4), 6800906 (2013).
[Crossref]

Vos, R.

P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
[Crossref]

Wade, J. H.

J. H. Wade, A. T. Alsop, N. R. Vertin, H. W. Yang, M. D. Johnson, and R. C. Bailey, “Rapid, Multiplexed Phosphoprotein Profiling Using Silicon Photonic Sensor Arrays,” ACS Cent. Sci. 1(7), 374–382 (2015).
[Crossref]

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Wanguemert-Perez, J. G.

J. G. Wanguemert-Perez, A. Hadij-ElHouati, A. Sanchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Monux, R. Halir, and I. Molina-Fernandez, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

Wangüemert-Pérez, J. G.

Washburn, A. L.

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref]

Wegner, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Weimann, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Weiner, A. M.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

Xu, D. X.

J. G. Wanguemert-Perez, A. Hadij-ElHouati, A. Sanchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Monux, R. Halir, and I. Molina-Fernandez, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

R. Halir, L. Vivien, X. Le Roux, D. X. Xu, and P. Cheben, “Direct and Sensitive Phase Readout for Integrated Waveguide Sensors,” IEEE Photonics J. 5(4), 6800906 (2013).
[Crossref]

A. Densmore, M. Vachon, D. X. Xu, S. Janz, R. Ma, Y. H. Li, G. Lopinski, A. Delage, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett. 34(23), 3598–3600 (2009).
[Crossref]

Yang, H. W.

J. H. Wade, A. T. Alsop, N. R. Vertin, H. W. Yang, M. D. Johnson, and R. C. Bailey, “Rapid, Multiplexed Phosphoprotein Profiling Using Silicon Photonic Sensor Arrays,” ACS Cent. Sci. 1(7), 374–382 (2015).
[Crossref]

Yeo, L. Y.

L. Y. Yeo, H. C. Chang, P. P. Y. Chan, and J. R. Friend, “Microfluidic Devices for Bioapplications,” Small 7(1), 12–48 (2011).
[Crossref]

Yu, Y.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Zhang, S.

S. Zhang, A. Garcia-D’Angeli, J. P. Brennan, and Q. Huo, “Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general,” Analyst 139(2), 439–445 (2014).
[Crossref]

Zinoviev, K.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Advances in Optical Technologies 2008, 1–6 (2008).
[Crossref]

ACS Cent. Sci. (1)

J. H. Wade, A. T. Alsop, N. R. Vertin, H. W. Yang, M. D. Johnson, and R. C. Bailey, “Rapid, Multiplexed Phosphoprotein Profiling Using Silicon Photonic Sensor Arrays,” ACS Cent. Sci. 1(7), 374–382 (2015).
[Crossref]

ACS Sens. (2)

P. Ramirez-Priego, D. Martens, A. A. Elamin, P. Soetaert, W. Van Roy, R. Vos, B. Anton, R. Bockstaele, H. Becker, M. Singh, P. Bienstman, and L. M. Lechuga, “Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform,” ACS Sens. 3(10), 2079–2086 (2018).
[Crossref]

C. S. Huertas, D. Farina, and L. M. Lechuga, “Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor,” ACS Sens. 1(6), 748–756 (2016).
[Crossref]

Advances in Optical Technologies (1)

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Advances in Optical Technologies 2008, 1–6 (2008).
[Crossref]

Anal. Chem. (1)

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref]

Anal. Methods (1)

A. B. Gonzalez-Guerrero, J. Maldonado, S. Herranz, and L. M. Lechuga, “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics,” Anal. Methods 8(48), 8380–8394 (2016).
[Crossref]

Analyst (1)

S. Zhang, A. Garcia-D’Angeli, J. P. Brennan, and Q. Huo, “Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general,” Analyst 139(2), 439–445 (2014).
[Crossref]

Appl. Opt. (1)

Curr. Opin. Biotechnol. (1)

B. Chocarro-Ruiz, A. Fernandez-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Y. E. Marin, V. Toccafondo, P. Velha, S. Scarano, S. Tirelli, A. Nottola, Y. Jeong, H. Jeon, S. Kim, M. Minunni, F. Di Pasquale, and C. J. Oton, “Silicon Photonic Biochemical Sensor on Chip Based on Interferometry and Phase-Generated-Carrier Demodulation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–9 (2019).
[Crossref]

R. J. J. van Gulik, B. M. de Boer, and P. J. Harmsma, “Refractive Index Sensing Using a Three-Port Interferometer and Comparison With Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 23(2), 433–439 (2017).
[Crossref]

IEEE Photonics J. (1)

R. Halir, L. Vivien, X. Le Roux, D. X. Xu, and P. Cheben, “Direct and Sensitive Phase Readout for Integrated Waveguide Sensors,” IEEE Photonics J. 5(4), 6800906 (2013).
[Crossref]

Lab Chip (1)

C. Szydzik, A. F. Gavela, S. Herranz, J. Roccisano, M. Knoerzer, P. Thurgood, K. Khoshmanesh, A. Mitchell, and L. M. Lechuga, “An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics,” Lab Chip 17(16), 2793–2804 (2017).
[Crossref]

Nat. Photonics (3)

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Nat. Rev. Drug Discovery (1)

J. P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discovery 15(10), 679–698 (2016).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

Opt. Commun. (1)

A. Tavousi, M. R. Rakhshani, and M. A. Mansouri-Birjandi, “High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators,” Opt. Commun. 429, 166–174 (2018).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

J. G. Wanguemert-Perez, A. Hadij-ElHouati, A. Sanchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Monux, R. Halir, and I. Molina-Fernandez, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

Opt. Lett. (1)

Optica (1)

Phys. Rev. Lett. (1)

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Sens. Actuators, B (1)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators, B 61(1-3), 100–127 (1999).
[Crossref]

Sensors (2)

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon Photonic Biosensors Using Label-Free Detection,” Sensors 18(10), 3519 (2018).
[Crossref]

A. Fernandez Gavela, D. Grajales Garcia, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors 16(3), 285 (2016).
[Crossref]

Small (1)

L. Y. Yeo, H. C. Chang, P. P. Y. Chan, and J. R. Friend, “Microfluidic Devices for Bioapplications,” Small 7(1), 12–48 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Principle of the conventional single wavelength phase extraction method: A CW single mode laser is sent through a photonic chip and the transmitted power is detected by a photodetector (PD) and recorded over time. For a change in refractive index the spectrum shifts (from dotted to dashed line). From the recorded transmission power over time values, the phase is extracted manually. Due to the non-linear response this manual conversion step causes a small error. (b) Principle of the proposed comb sensing setup: An optical frequency comb is sent through the photonic chip. Three comb lines are split into three channels by a demultiplexer, before being detected by three photodetectors (PD) and recorded over time. For a change in refractive index the same shift occurs, but now we measure at three different points at multiple of 120° intervals. All three recorded transmission power over time values are combined as a vector sum and the angle of the resulting phasor is the phase we want to extract.
Fig. 2.
Fig. 2. (a) Photograph of the assembled sensor setup including the Polydimethylsiloxane (PDMS) microfluidic system with an integrated on-chip pump, as well as the fiber coupling. The insets show a microscope picture of the photonic chip and the asymmetric Mach-Zehnder Interferometer (AMZI). (b) Implementation of the electro-optic comb sensor: The CW single laser line is modulated with a phase modulator (PM) by a radio frequency (RF) and amplified with an erbium-doped fiber amplifier (EDFA) before being interfaced to an AMZI. The transmitted signal is amplified with an EDFA, split into three channels by a WaveShaper (WS) and detected by three photodetectors and quantized with a data acquisition system (NI-DAQ). (c) Spectrum of the phase modulated single mode laser before the EDFA. The modulation amplitude is chosen to achieve approximately similar height for the first side-bands and the carrier. (d) Comb transmission spectrum through the AMZI. The three comb lines are sampling three points of the spectrum of the AMZI.
Fig. 3.
Fig. 3. (a) Raw signal of the detected power levels as a function of time for a fluid transition from DI water to 3% NaCl solution and back. This corresponds to a change in refractive index of 0.005 RIU. (b) Extracted phase changes for the different NaCl solutions. Both methods show good linearity and intercept with the origin. The extracted sensitivity is 3097 rad/RIU and 3109 rad/RIU for the single wavelength and the comb sampling method, respectively. The measured sensor sensitivity was lower than the simulated sensitivity of 3750 rad/RIU. (c) The noise on the phase measurement signal is 0.0962 rad and 0.0416 rad for the single wavelength and the comb sampling method, respectively. (d) Histogram of the single wavelength phase measurement. (e) Histogram of the comb sampling phase measurement.
Fig. 4.
Fig. 4. (a) For the conventional single wavelength phase extraction method, the recorded phase change for the same sample (0.05% NaCl) depends on the detuning of the Mach-Zehnder Interferometer from the quadrature point. If the sensor is biased at a quadrature point (0.5π rad), where the spectral response has the highest slope, the single wavelength and the comb sampling method measure the same phase change for the same sample. The measured phase change decreases towards the extrema for the single wavelength method, while the comb sampling method has a constant reading independent of the bias point. (b) For a phase shift (blue arrows) close to the maximum of the real signal, the change of the real part (red arrow) is only small. There is close to no step visible in the measurement over time (see inset). (c) Around the quadrature point the change on the real axis is the greatest, and the measurement over time shows the expected step (see inset).
Fig. 5.
Fig. 5. (a) For the comb sampling method, the three measured power values have a relative phase difference of 120° to each other. (b) The vector sum of the three measured signals yield the phasor s, illustrated in blue. (c) With half power on all three measured signals the extracted phasor has half the amplitude, but the same angle. (d) For the single wavelength phase extraction method, one only measures the projection of the phasor onto the real axis (indicated by the red arrow). (e) Changes in signal amplitude will directly affect the measured real part. Measurements: (f) For changes in input power (top) the power levels at the three outputs change accordingly (middle). The effects on the readout for the comb sampling method (bottom) become only significant once the input power drops by 50% or more of its original value. (indicated with the light grey background) (g) The extracted phase for the single wavelength method, using only data from channel 2, changes linearly with the input power as expected, while the extracted phase of the comb sampling method remains almost flat. (h) For large changes of the input power the single wavelength method loses the signal after about −5 dB, while the extracted phase with the comb sampling method remains quite constant until about −50 dB signal change.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ λ F S R = λ 2 n g Δ L = ( 1550 nm ) 2 4.36 4.69 mm = 0.1174 nm
f F S R = c Δ λ F S R λ   ( λ + Δ λ F S R ) = 14.653 GHz
x = P 2 0.5 P 1 0.5 P 3
y = 3 2 ( P 1 P 3 )
s = x + j y

Metrics