Abstract

We propose a high-temperature sensor based on a suspended-core microstructured optical fiber (SCMF). The sensor is constructed by fusion splicing a piece of SCMF between two sections of multimode fibers (MMFs) which act as light beam couplers. The multimode interference is formed by the air cladding modes and the silica core modes in the SCMF. Fast Fourier transform is adapted to filtering the raw transmission spectra of the MMF-SCMF-MMF structure. The wavelength shift of the dominant spatial frequency is monitored as the temperature varies from 50 °C to 800 °C. The sensitivities of 31.6 pm/°C and 51.6 pm/°C in the temperature range of 50 °C-450 °C and 450 °C-800 °C are respectively achieved. Taking advantage of the compact size, good stability and repeatability, easy fabrication, and low cost, this proposed high-temperature sensor has an applicable value.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Interferometric high temperature sensor using suspended-core optical fibers

Linh Viet Nguyen, Stephen C. Warren-Smith, Heike Ebendorff-Heidepriem, and Tanya M. Monro
Opt. Express 24(8) 8967-8977 (2016)

High temperature fiber sensor with high sensitivity based on core diameter mismatch

Linh Viet Nguyen, Dusun Hwang, Sucbei Moon, Dae Seung Moon, and Youngjoo Chung
Opt. Express 16(15) 11369-11375 (2008)

Temperature sensing up to 1300°C using suspended-core microstructured optical fibers

Stephen C. Warren-Smith, Linh Viet Nguyen, Catherine Lang, Heike Ebendorff-Heidepriem, and Tanya M. Monro
Opt. Express 24(4) 3714-3719 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
    [Crossref] [PubMed]
  2. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
    [Crossref] [PubMed]
  3. B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
    [Crossref]
  4. A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
    [Crossref]
  5. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
    [Crossref]
  6. I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28(2), 93–135 (1996).
    [Crossref]
  7. S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15(8), 1470–1477 (1997).
    [Crossref]
  8. J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
    [Crossref]
  9. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
    [Crossref]
  10. C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
    [Crossref] [PubMed]
  11. C. Wang, J. Zhang, C. Zhang, J. He, Y. Lin, W. Jin, C. Liao, Y. Wang, and Y. P. Wang, “Bragg Gratings in suspended-core photonic microcells for high-temperature applications,” J. Lightwave Technol. 36(14), 2920–2924 (2018).
    [Crossref]
  12. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19(10), 1574–1579 (2001).
    [Crossref]
  13. C. R. Liao, H. F. Chen, and D. N. Wang, “Ultracompact optical fiber sensor for refractive index and high-temperature measurement,” J. Lightwave Technol. 32(14), 2531–2535 (2014).
    [Crossref]
  14. Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
    [Crossref]
  15. Y. Liu, S. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38(3), 335–337 (2013).
    [Crossref] [PubMed]
  16. T. Wei, Y. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
    [Crossref] [PubMed]
  17. P. Chen and X. Shu, “Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing,” Opt. Express 26(5), 5292–5299 (2018).
    [Crossref] [PubMed]
  18. S. C. Warren-Smith, L. V. Nguyen, C. Lang, H. Ebendorff-Heidepriem, and T. M. Monro, “Temperature sensing up to 1300°C using suspended-core microstructured optical fibers,” Opt. Express 24(4), 3714–3719 (2016).
    [Crossref] [PubMed]
  19. R. Wang and X. Qiao, “Intrinsic Fabry-Perot interferometeric sensor based on microfiber created by chemical etching,” Sensors (Basel) 14(9), 16808–16815 (2014).
    [Crossref] [PubMed]
  20. Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors (Basel) 18(1), 1–7 (2018).
    [PubMed]
  21. L. Zhao, Y. Zhang, Y. Chen, and J. Wang, “Composite cavity fiber tip Fabry-Perot interferometer for high temperature sensing,” Opt. Fiber Technol. 50, 31–35 (2019).
    [Crossref]
  22. M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, O. Frazao, J. B. S. Unger, K. Schuster, J. L. Santos, and O. Frazão, “Post-processing of Fabry–Pérot microcavity tip sensor,” IEEE Photonics Technol. Lett. 25(16), 1593–1596 (2013).
    [Crossref]
  23. Z. Liu, X. Qiao, and R. Wang, “Miniaturized fiber-taper-based Fabry-Perot interferometer for high-temperature sensing,” Appl. Opt. 56(2), 256–259 (2017).
    [Crossref] [PubMed]
  24. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  25. M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
    [Crossref] [PubMed]
  26. X. Tan, Y. Geng, X. Li, R. Gao, and Z. Yin, “High temperature microstructured fiber sensor based on a partial-reflection-enabled intrinsic Fabry-Perot interferometer,” Appl. Opt. 52(34), 8195–8198 (2013).
    [Crossref] [PubMed]
  27. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
    [Crossref] [PubMed]
  28. D. Wu, T. Zhu, and M. Liu, “A high temperature sensor based on a peanut-shape structure Michelson interferometer,” Opt. Commun. 285(24), 5085–5088 (2012).
    [Crossref]
  29. Y. Yu, W. Zhou, J. Ma, S. Ruan, Y. Zhang, Q. Huang, and X. Chen, “High-temperature sensor based on 45° tilted fiber end fabricated by femtosecond laser,” IEEE Photonics Technol. Lett. 28(6), 653–656 (2016).
    [Crossref]
  30. H. Cao and X. Shu, “Miniature all-fiber high temperature sensor based on Michelson interferometer formed with a novel core-mismatching fiber joint,” IEEE Sens. J. 17(11), 3341–3345 (2017).
    [Crossref]
  31. P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
    [Crossref] [PubMed]
  32. L. V. Nguyen, S. C. Warren-Smith, H. Ebendorff-Heidepriem, and T. M. Monro, “Interferometric high temperature sensor using suspended-core optical fibers,” Opt. Express 24(8), 8967–8977 (2016).
    [Crossref] [PubMed]
  33. L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
    [Crossref] [PubMed]
  34. Z. Yin, Y. Geng, X. Li, X. Tan, and R. Gao, “V-groove all-fiber core-cladding intermodal interferometer for high-temperature sensing,” Appl. Opt. 54(2), 319–323 (2015).
    [Crossref] [PubMed]
  35. T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, “Miniaturized fiber in-line Mach-Zehnder interferometer based on inner air cavity for high-temperature sensing,” Opt. Lett. 37(24), 5082–5084 (2012).
    [Crossref] [PubMed]
  36. Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
    [Crossref]
  37. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
    [Crossref] [PubMed]
  38. A. Van Newkirk, E. Antonio-Lopez, G. Salceda-Delgado, R. Amezcua-Correa, and A. Schülzgen, “Optimization of multicore fiber for high-temperature sensing,” Opt. Lett. 39(16), 4812–4815 (2014).
    [Crossref] [PubMed]
  39. J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).
    [Crossref] [PubMed]
  40. H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and L. Jiang, “Investigation on the thermo-optic coefficient of silica fiber within a wide temperature range,” J. Lightwave Technol. 36(24), 5881–5886 (2018).
    [Crossref]

2019 (1)

L. Zhao, Y. Zhang, Y. Chen, and J. Wang, “Composite cavity fiber tip Fabry-Perot interferometer for high temperature sensing,” Opt. Fiber Technol. 50, 31–35 (2019).
[Crossref]

2018 (4)

2017 (3)

Z. Liu, X. Qiao, and R. Wang, “Miniaturized fiber-taper-based Fabry-Perot interferometer for high-temperature sensing,” Appl. Opt. 56(2), 256–259 (2017).
[Crossref] [PubMed]

H. Cao and X. Shu, “Miniature all-fiber high temperature sensor based on Michelson interferometer formed with a novel core-mismatching fiber joint,” IEEE Sens. J. 17(11), 3341–3345 (2017).
[Crossref]

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

2016 (4)

2015 (1)

2014 (5)

2013 (4)

2012 (4)

T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, “Miniaturized fiber in-line Mach-Zehnder interferometer based on inner air cavity for high-temperature sensing,” Opt. Lett. 37(24), 5082–5084 (2012).
[Crossref] [PubMed]

D. Wu, T. Zhu, and M. Liu, “A high temperature sensor based on a peanut-shape structure Michelson interferometer,” Opt. Commun. 285(24), 5085–5088 (2012).
[Crossref]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

2011 (2)

2010 (3)

2008 (2)

2007 (1)

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

2006 (1)

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[Crossref]

2001 (1)

2000 (1)

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[Crossref]

1997 (1)

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15(8), 1470–1477 (1997).
[Crossref]

1996 (1)

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28(2), 93–135 (1996).
[Crossref]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Amezcua-Correa, R.

Antonio-Lopez, E.

Antonio-Lopez, J. E.

Bai, Z.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Baker, S. R.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15(8), 1470–1477 (1997).
[Crossref]

Baker, V.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15(8), 1470–1477 (1997).
[Crossref]

Bennion, I.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28(2), 93–135 (1996).
[Crossref]

Bierlich, J.

M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, O. Frazao, J. B. S. Unger, K. Schuster, J. L. Santos, and O. Frazão, “Post-processing of Fabry–Pérot microcavity tip sensor,” IEEE Photonics Technol. Lett. 25(16), 1593–1596 (2013).
[Crossref]

Bo, L.

Braendle, H.

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

Brambilla, G.

Canning, J.

Cao, H.

H. Cao and X. Shu, “Miniature all-fiber high temperature sensor based on Michelson interferometer formed with a novel core-mismatching fiber joint,” IEEE Sens. J. 17(11), 3341–3345 (2017).
[Crossref]

Cao, S.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Chen, H. F.

Chen, K. P.

Chen, P.

Chen, X.

Y. Yu, W. Zhou, J. Ma, S. Ruan, Y. Zhang, Q. Huang, and X. Chen, “High-temperature sensor based on 45° tilted fiber end fabricated by femtosecond laser,” IEEE Photonics Technol. Lett. 28(6), 653–656 (2016).
[Crossref]

Chen, Y.

L. Zhao, Y. Zhang, Y. Chen, and J. Wang, “Composite cavity fiber tip Fabry-Perot interferometer for high temperature sensing,” Opt. Fiber Technol. 50, 31–35 (2019).
[Crossref]

Chen, Z.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors (Basel) 18(1), 1–7 (2018).
[PubMed]

Choi, E. S.

Choi, H. Y.

Coelho, L.

Cui, Y.

Deng, M.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Dianov, E.

Ding, M.

Donlagic, D.

Doran, N. J.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28(2), 93–135 (1996).
[Crossref]

Duan, L.

Ebendorff-Heidepriem, H.

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Eznaveh, Z. S.

Farrell, G.

Feng, J.

Feng, Y.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors (Basel) 18(1), 1–7 (2018).
[PubMed]

Ferreira, M. S.

M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, O. Frazao, J. B. S. Unger, K. Schuster, J. L. Santos, and O. Frazão, “Post-processing of Fabry–Pérot microcavity tip sensor,” IEEE Photonics Technol. Lett. 25(16), 1593–1596 (2013).
[Crossref]

M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
[Crossref] [PubMed]

Frazao, O.

M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, O. Frazao, J. B. S. Unger, K. Schuster, J. L. Santos, and O. Frazão, “Post-processing of Fabry–Pérot microcavity tip sensor,” IEEE Photonics Technol. Lett. 25(16), 1593–1596 (2013).
[Crossref]

Frazão, O.

M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, O. Frazao, J. B. S. Unger, K. Schuster, J. L. Santos, and O. Frazão, “Post-processing of Fabry–Pérot microcavity tip sensor,” IEEE Photonics Technol. Lett. 25(16), 1593–1596 (2013).
[Crossref]

M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
[Crossref] [PubMed]

Fu, S.

Gan, L.

Gao, H.

Gao, R.

Gao, S.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors (Basel) 18(1), 1–7 (2018).
[PubMed]

Geng, Y.

Goodchild, D.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15(8), 1470–1477 (1997).
[Crossref]

Grobnic, D.

C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
[Crossref] [PubMed]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[Crossref]

Guan, C.

Guo, K.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Han, Y.

He, J.

Hu, T. Y.

Huang, B.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors (Basel) 18(1), 1–7 (2018).
[PubMed]

Huang, Q.

Y. Yu, W. Zhou, J. Ma, S. Ruan, Y. Zhang, Q. Huang, and X. Chen, “High-temperature sensor based on 45° tilted fiber end fabricated by femtosecond laser,” IEEE Photonics Technol. Lett. 28(6), 653–656 (2016).
[Crossref]

Huang, X.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors (Basel) 18(1), 1–7 (2018).
[PubMed]

Jewart, C. M.

Jia, J.

Jiang, L.

Jiang, Y.

Jin, W.

Kahrizi, M.

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

Kobelke, J.

Kou, J. L.

Krippner, P.

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

Kristensen, M.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[Crossref]

Lang, C.

Lee, B. H.

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Li, B.

Li, X.

Li, Y.

Li, Z.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors (Basel) 18(1), 1–7 (2018).
[PubMed]

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Liao, C.

C. Wang, J. Zhang, C. Zhang, J. He, Y. Lin, W. Jin, C. Liao, Y. Wang, and Y. P. Wang, “Bragg Gratings in suspended-core photonic microcells for high-temperature applications,” J. Lightwave Technol. 36(14), 2920–2924 (2018).
[Crossref]

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Liao, C. R.

LiKamWa, P.

Lin, Y.

Liu, D.

Liu, M.

D. Wu, T. Zhu, and M. Liu, “A high temperature sensor based on a peanut-shape structure Michelson interferometer,” Opt. Commun. 285(24), 5085–5088 (2012).
[Crossref]

Liu, W.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors (Basel) 18(1), 1–7 (2018).
[PubMed]

Liu, Y.

Liu, Z.

Lu, Y. Q.

Ma, J.

Y. Yu, W. Zhou, J. Ma, S. Ruan, Y. Zhang, Q. Huang, and X. Chen, “High-temperature sensor based on 45° tilted fiber end fabricated by femtosecond laser,” IEEE Photonics Technol. Lett. 28(6), 653–656 (2016).
[Crossref]

Mihailov, S. J.

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
[Crossref] [PubMed]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[Crossref]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Monro, T. M.

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Nguyen, L. V.

Okhotnikov, O.

Paek, U. C.

Park, K. S.

Park, S. J.

Pedersen, J. E.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[Crossref]

Pevec, S.

Qiao, X.

Z. Liu, X. Qiao, and R. Wang, “Miniaturized fiber-taper-based Fabry-Perot interferometer for high-temperature sensing,” Appl. Opt. 56(2), 256–259 (2017).
[Crossref] [PubMed]

R. Wang and X. Qiao, “Intrinsic Fabry-Perot interferometeric sensor based on microfiber created by chemical etching,” Sensors (Basel) 14(9), 16808–16815 (2014).
[Crossref] [PubMed]

Qu, S.

Rathje, J.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[Crossref]

Rego, G.

Rourke, H. N.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15(8), 1470–1477 (1997).
[Crossref]

Ruan, S.

Y. Yu, W. Zhou, J. Ma, S. Ruan, Y. Zhang, Q. Huang, and X. Chen, “High-temperature sensor based on 45° tilted fiber end fabricated by femtosecond laser,” IEEE Photonics Technol. Lett. 28(6), 653–656 (2016).
[Crossref]

Salceda-Delgado, G.

Santos, J. L.

M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, O. Frazao, J. B. S. Unger, K. Schuster, J. L. Santos, and O. Frazão, “Post-processing of Fabry–Pérot microcavity tip sensor,” IEEE Photonics Technol. Lett. 25(16), 1593–1596 (2013).
[Crossref]

M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, O. Frazao, J. B. S. Unger, K. Schuster, J. L. Santos, and O. Frazão, “Post-processing of Fabry–Pérot microcavity tip sensor,” IEEE Photonics Technol. Lett. 25(16), 1593–1596 (2013).
[Crossref]

M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
[Crossref] [PubMed]

Schülzgen, A.

Schuster, K.

M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, O. Frazao, J. B. S. Unger, K. Schuster, J. L. Santos, and O. Frazão, “Post-processing of Fabry–Pérot microcavity tip sensor,” IEEE Photonics Technol. Lett. 25(16), 1593–1596 (2013).
[Crossref]

M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, O. Frazao, J. B. S. Unger, K. Schuster, J. L. Santos, and O. Frazão, “Post-processing of Fabry–Pérot microcavity tip sensor,” IEEE Photonics Technol. Lett. 25(16), 1593–1596 (2013).
[Crossref]

M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
[Crossref] [PubMed]

Semenova, Y.

Shu, X.

P. Chen and X. Shu, “Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing,” Opt. Express 26(5), 5292–5299 (2018).
[Crossref] [PubMed]

H. Cao and X. Shu, “Miniature all-fiber high temperature sensor based on Michelson interferometer formed with a novel core-mismatching fiber joint,” IEEE Sens. J. 17(11), 3341–3345 (2017).
[Crossref]

Shum, P. P.

Smelser, C. W.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[Crossref]

Sugden, K.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28(2), 93–135 (1996).
[Crossref]

Sulimov, V.

Tan, X.

Tang, J.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Tang, M.

Tong, W.

Tsai, H. L.

Ukil, A.

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

Unger, J. B. S.

M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, O. Frazao, J. B. S. Unger, K. Schuster, J. L. Santos, and O. Frazão, “Post-processing of Fabry–Pérot microcavity tip sensor,” IEEE Photonics Technol. Lett. 25(16), 1593–1596 (2013).
[Crossref]

Unger, S.

M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, O. Frazao, J. B. S. Unger, K. Schuster, J. L. Santos, and O. Frazão, “Post-processing of Fabry–Pérot microcavity tip sensor,” IEEE Photonics Technol. Lett. 25(16), 1593–1596 (2013).
[Crossref]

Van Newkirk, A.

Walker, R. B.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[Crossref]

Wan, L.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors (Basel) 18(1), 1–7 (2018).
[PubMed]

Wang, C.

Wang, D. N.

Wang, J.

L. Zhao, Y. Zhang, Y. Chen, and J. Wang, “Composite cavity fiber tip Fabry-Perot interferometer for high temperature sensing,” Opt. Fiber Technol. 50, 31–35 (2019).
[Crossref]

Wang, M.

Wang, P.

Wang, Q.

Wang, R.

Wang, S.

Wang, Y.

C. Wang, J. Zhang, C. Zhang, J. He, Y. Lin, W. Jin, C. Liao, Y. Wang, and Y. P. Wang, “Bragg Gratings in suspended-core photonic microcells for high-temperature applications,” J. Lightwave Technol. 36(14), 2920–2924 (2018).
[Crossref]

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, “Miniaturized fiber in-line Mach-Zehnder interferometer based on inner air cavity for high-temperature sensing,” Opt. Lett. 37(24), 5082–5084 (2012).
[Crossref] [PubMed]

Wang, Y. P.

Warren-Smith, S. C.

Wei, T.

Williams, J. A. R.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28(2), 93–135 (1996).
[Crossref]

Wu, D.

D. Wu, T. Zhu, and M. Liu, “A high temperature sensor based on a peanut-shape structure Michelson interferometer,” Opt. Commun. 285(24), 5085–5088 (2012).
[Crossref]

Wu, Q.

Xiao, H.

Xiong, S.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors (Basel) 18(1), 1–7 (2018).
[PubMed]

Xu, F.

Yang, J.

Ye, L.

Yin, Z.

Yu, Y.

Y. Yu, W. Zhou, J. Ma, S. Ruan, Y. Zhang, Q. Huang, and X. Chen, “High-temperature sensor based on 45° tilted fiber end fabricated by femtosecond laser,” IEEE Photonics Technol. Lett. 28(6), 653–656 (2016).
[Crossref]

Zhang, B.

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

Zhang, C.

Zhang, H.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors (Basel) 18(1), 1–7 (2018).
[PubMed]

Zhang, J.

Zhang, L.

H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and L. Jiang, “Investigation on the thermo-optic coefficient of silica fiber within a wide temperature range,” J. Lightwave Technol. 36(24), 5881–5886 (2018).
[Crossref]

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28(2), 93–135 (1996).
[Crossref]

Zhang, P.

Zhang, Y.

L. Zhao, Y. Zhang, Y. Chen, and J. Wang, “Composite cavity fiber tip Fabry-Perot interferometer for high temperature sensing,” Opt. Fiber Technol. 50, 31–35 (2019).
[Crossref]

Y. Yu, W. Zhou, J. Ma, S. Ruan, Y. Zhang, Q. Huang, and X. Chen, “High-temperature sensor based on 45° tilted fiber end fabricated by femtosecond laser,” IEEE Photonics Technol. Lett. 28(6), 653–656 (2016).
[Crossref]

Zhang, Z.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Zhao, L.

L. Zhao, Y. Zhang, Y. Chen, and J. Wang, “Composite cavity fiber tip Fabry-Perot interferometer for high temperature sensing,” Opt. Fiber Technol. 50, 31–35 (2019).
[Crossref]

Zhao, Z.

Zhou, W.

Y. Yu, W. Zhou, J. Ma, S. Ruan, Y. Zhang, Q. Huang, and X. Chen, “High-temperature sensor based on 45° tilted fiber end fabricated by femtosecond laser,” IEEE Photonics Technol. Lett. 28(6), 653–656 (2016).
[Crossref]

Zhu, B.

Zhu, T.

D. Wu, T. Zhu, and M. Liu, “A high temperature sensor based on a peanut-shape structure Michelson interferometer,” Opt. Commun. 285(24), 5085–5088 (2012).
[Crossref]

Appl. Opt. (3)

IEEE Photonics J. (1)

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. Yu, W. Zhou, J. Ma, S. Ruan, Y. Zhang, Q. Huang, and X. Chen, “High-temperature sensor based on 45° tilted fiber end fabricated by femtosecond laser,” IEEE Photonics Technol. Lett. 28(6), 653–656 (2016).
[Crossref]

M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, O. Frazao, J. B. S. Unger, K. Schuster, J. L. Santos, and O. Frazão, “Post-processing of Fabry–Pérot microcavity tip sensor,” IEEE Photonics Technol. Lett. 25(16), 1593–1596 (2013).
[Crossref]

IEEE Sens. J. (3)

H. Cao and X. Shu, “Miniature all-fiber high temperature sensor based on Michelson interferometer formed with a novel core-mismatching fiber joint,” IEEE Sens. J. 17(11), 3341–3345 (2017).
[Crossref]

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

J. Appl. Phys. (3)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[Crossref]

Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
[Crossref]

J. Lightwave Technol. (5)

Meas. Sci. Technol. (1)

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[Crossref]

Opt. Commun. (1)

D. Wu, T. Zhu, and M. Liu, “A high temperature sensor based on a peanut-shape structure Michelson interferometer,” Opt. Commun. 285(24), 5085–5088 (2012).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

L. Zhao, Y. Zhang, Y. Chen, and J. Wang, “Composite cavity fiber tip Fabry-Perot interferometer for high temperature sensing,” Opt. Fiber Technol. 50, 31–35 (2019).
[Crossref]

Opt. Lett. (10)

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[Crossref] [PubMed]

M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
[Crossref] [PubMed]

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
[Crossref] [PubMed]

A. Van Newkirk, E. Antonio-Lopez, G. Salceda-Delgado, R. Amezcua-Correa, and A. Schülzgen, “Optimization of multicore fiber for high-temperature sensing,” Opt. Lett. 39(16), 4812–4815 (2014).
[Crossref] [PubMed]

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).
[Crossref] [PubMed]

Y. Liu, S. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38(3), 335–337 (2013).
[Crossref] [PubMed]

T. Wei, Y. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[Crossref] [PubMed]

C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
[Crossref] [PubMed]

T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, “Miniaturized fiber in-line Mach-Zehnder interferometer based on inner air cavity for high-temperature sensing,” Opt. Lett. 37(24), 5082–5084 (2012).
[Crossref] [PubMed]

Opt. Quantum Electron. (1)

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28(2), 93–135 (1996).
[Crossref]

Sensors (Basel) (3)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

R. Wang and X. Qiao, “Intrinsic Fabry-Perot interferometeric sensor based on microfiber created by chemical etching,” Sensors (Basel) 14(9), 16808–16815 (2014).
[Crossref] [PubMed]

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors (Basel) 18(1), 1–7 (2018).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic configuration of the MMF-SCMF-MMF structure.
Fig. 2
Fig. 2 The fabrication process for the MMF-SCMF-MMF structure.
Fig. 3
Fig. 3 Experimental setup for temperature sensing using the MMF-SCMF-MMF structure.
Fig. 4
Fig. 4 The measured transmission spectra of the no MMF structure and the MMF-SCMF-MMF structures with different SCMF length.
Fig. 5
Fig. 5 The spatial frequency spectra of the transmission spectra with different SCMF length.
Fig. 6
Fig. 6 The spectral shift of the dominant spatial frequency ξ = 0.08235 during (a) the heating process; (b) the cooling process.
Fig. 7
Fig. 7 (a) The spectra of 19 recorded data at the tracking wavelength dip within 3 h. (b) Stabilities in terms of wavelength and intensity within 3 h.
Fig. 8
Fig. 8 (a) The tracking wavelength dip at different temperatures during the two heating and cooling cycles. (b) The experimental data of wavelength shift with error bar as temperature rising. Black line: quadratic fitting; R2: the correlation coefficient of the quadratic fitting.
Fig. 9
Fig. 9 The wavelength response of the proposed sensor on (a) RI, (b) curvature, and (c) strain.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I = i = 1 n I i + i j = 1 n 2 I i I j cos [ 2 π λ ( n i e f f n j e f f ) L S C M F ]
ϕ = 2 π λ ( n i e f f n j e f f ) L S C M F
Δ ϕ = ϕ T Δ T = 2 π λ [ ( n i e f f T n j e f f T ) L S C M F + L T ( n i e f f n j e f f ) ] Δ T
Δ λ d i p = 2 2 m + 1 [ ( n i e f f T n j e f f T ) L S C M F + L T ( n i e f f n j e f f ) ] Δ T
λ d i p T = λ d i p ( 1 Δ n e f f Δ n e f f T + 1 L S C M F L S C M F T ) = λ d i p ( 1 Δ n e f f Δ n e f f T + β )
F S R = λ m λ m 1 Δ n e f f L S C M F
Δ n e f f = ζ λ m λ m 1 L S C M F

Metrics