Abstract

We report a cavity-dumped optical parametric oscillator (OPO) with a ring-type cavity configuration, which is based on periodically poled lithium niobate gain synchronously pumped by a mode-locked Ti:sapphire laser. Because of reduced cavity loss and group velocity dispersion inherent to ring-cavity employment, a wide wavelength tuning capability from 1.02 to 1.65 μm was achieved by the simple displacement of a cavity mirror. At a wavelength of 1.28 μm, the cavity-dumped system provides femtosecond pulses with 42 nJ energy and 50% dumping efficiency. The group delay dispersion (GDD) of the OPO cavity could be characterized through the wavelength tuning behavior with cavity displacement, and its validity was confirmed by the numerical GDD calculation of each optical component within the cavity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Near-infrared cavity-dumped femtosecond optical parametric oscillator

Chang-Ki Min and Taiha Joo
Opt. Lett. 30(14) 1855-1857 (2005)

30-fs, cavity-dumped optical parametric oscillator

Eric O. Potma, Wim P. de Boeij, Maxim S. Pshenichnikov, and Douwe A. Wiersma
Opt. Lett. 23(22) 1763-1765 (1998)

Synchronously pumped optical parametric oscillator based on periodically poled MgO-doped lithium niobate

Kang-Jeon Han, Dong-Wook Jang, Ji-Hee Kim, Chang-Ki Min, Tai-Ha Joo, Yong-Sik Lim, Donghan Lee, and Ki-Ju Yee
Opt. Express 16(8) 5299-5304 (2008)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Burr, C. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70(25), 3341–3343 (1997).
    [Crossref]
  2. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate,” Opt. Lett. 22(19), 1458–1460 (1997).
    [Crossref] [PubMed]
  3. C. McGowan, D. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, and D. Jundt, “Femtosecond optical parametric oscillator based on periodically poled lithium niobate,” J. Opt. Soc. Am. B 15(2), 694–701 (1998).
    [Crossref]
  4. P. J. Phillips, S. Das, and M. Ebrahimzadeh, “High-repetition-rate, all-solid-state, Ti:sapphire-pumped optical parametric oscillator for the mid-infrared,” Appl. Phys. Lett. 77(4), 469–471 (2000).
    [Crossref]
  5. T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
    [Crossref]
  6. K.-J. Han, D.-W. Jang, J.-H. Kim, C.-K. Min, T.-H. Joo, Y.-S. Lim, D. Lee, and K.-J. Yee, “Synchronously pumped optical parametric oscillator based on periodically poled MgO-doped lithium niobate,” Opt. Express 16(8), 5299–5304 (2008).
    [Crossref] [PubMed]
  7. T.-Y. Jeong, S.-H. Kim, G.-H. Kim, and K.-J. Yee, “Visible-pulse generation in gain crystal of near-infrared femtosecond optical parametric oscillator,” Opt. Express 23(20), 25620–25627 (2015).
    [Crossref] [PubMed]
  8. D. J. Hilton and C. L. Tang, “Optical orientation and femtosecond relaxation of spin-polarized holes in GaAs,” Phys. Rev. Lett. 89(14), 146601 (2002).
    [Crossref] [PubMed]
  9. H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J.-X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
    [Crossref] [PubMed]
  10. J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
    [Crossref] [PubMed]
  11. K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
    [Crossref]
  12. L. E. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
    [Crossref]
  13. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1518 (1999).
    [Crossref] [PubMed]
  14. M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, “Cavity-dumped femtosecond Kerr-lens mode-locked Ti:A1(2)O(3)laser,” Opt. Lett. 18(21), 1822–1824 (1993).
    [Crossref] [PubMed]
  15. G. N. Gibson, R. Klank, F. Gibson, and B. E. Bouma, “Electro-optically cavity-dumped ultrashort-pulse Ti:sapphire oscillator,” Opt. Lett. 21(14), 1055–1057 (1996).
    [Crossref] [PubMed]
  16. C.-K. Min and T. Joo, “Near-infrared cavity-dumped femtosecond optical parametric oscillator,” Opt. Lett. 30(14), 1855–1857 (2005).
    [Crossref] [PubMed]
  17. T. P. Lamour and D. T. Reid, “650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator,” Opt. Express 19(18), 17557–17562 (2011).
    [Crossref] [PubMed]
  18. E. Yoon and T. Joo, “Cavity-dumped femtosecond optical parametric oscillator based on periodically poled stoichiometric lithium tantalate,” Laser Phys. Lett. 13(3), 035301 (2016).
    [Crossref]
  19. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
    [Crossref] [PubMed]
  20. D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, “Broadly tunable infrared femtosecond optical parametric oscillator based on periodically poled RbTiOAsO(4).,” Opt. Lett. 22(18), 1397–1399 (1997).
    [Crossref] [PubMed]

2016 (1)

E. Yoon and T. Joo, “Cavity-dumped femtosecond optical parametric oscillator based on periodically poled stoichiometric lithium tantalate,” Laser Phys. Lett. 13(3), 035301 (2016).
[Crossref]

2015 (1)

2011 (2)

K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
[Crossref]

T. P. Lamour and D. T. Reid, “650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator,” Opt. Express 19(18), 17557–17562 (2011).
[Crossref] [PubMed]

2010 (1)

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2005 (1)

2003 (1)

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[Crossref]

2002 (1)

D. J. Hilton and C. L. Tang, “Optical orientation and femtosecond relaxation of spin-polarized holes in GaAs,” Phys. Rev. Lett. 89(14), 146601 (2002).
[Crossref] [PubMed]

2000 (1)

P. J. Phillips, S. Das, and M. Ebrahimzadeh, “High-repetition-rate, all-solid-state, Ti:sapphire-pumped optical parametric oscillator for the mid-infrared,” Appl. Phys. Lett. 77(4), 469–471 (2000).
[Crossref]

1999 (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1518 (1999).
[Crossref] [PubMed]

1998 (1)

1997 (3)

1996 (1)

1995 (1)

1993 (1)

1984 (1)

Andres, T.

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[Crossref]

Arbore, M. A.

K. C. Burr, C. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70(25), 3341–3343 (1997).
[Crossref]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate,” Opt. Lett. 22(19), 1458–1460 (1997).
[Crossref] [PubMed]

Beigang, R.

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[Crossref]

Borsutzky, A.

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[Crossref]

Bosenberg, W.

Bouma, B. E.

Brandt, A. U.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Buhman, K. K.

Burr, K. C.

K. C. Burr, C. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70(25), 3341–3343 (1997).
[Crossref]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate,” Opt. Lett. 22(19), 1458–1460 (1997).
[Crossref] [PubMed]

Byer, R.

Chen, H.

Cheng, J.-X.

Das, S.

P. J. Phillips, S. Das, and M. Ebrahimzadeh, “High-repetition-rate, all-solid-state, Ti:sapphire-pumped optical parametric oscillator for the mid-infrared,” Appl. Phys. Lett. 77(4), 469–471 (2000).
[Crossref]

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1518 (1999).
[Crossref] [PubMed]

Ebrahimzadeh, M.

P. J. Phillips, S. Das, and M. Ebrahimzadeh, “High-repetition-rate, all-solid-state, Ti:sapphire-pumped optical parametric oscillator for the mid-infrared,” Appl. Phys. Lett. 77(4), 469–471 (2000).
[Crossref]

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1518 (1999).
[Crossref] [PubMed]

C. McGowan, D. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, and D. Jundt, “Femtosecond optical parametric oscillator based on periodically poled lithium niobate,” J. Opt. Soc. Am. B 15(2), 694–701 (1998).
[Crossref]

D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, “Broadly tunable infrared femtosecond optical parametric oscillator based on periodically poled RbTiOAsO(4).,” Opt. Lett. 22(18), 1397–1399 (1997).
[Crossref] [PubMed]

Eckardt, R.

Fejer, M.

Fejer, M. M.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate,” Opt. Lett. 22(19), 1458–1460 (1997).
[Crossref] [PubMed]

K. C. Burr, C. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70(25), 3341–3343 (1997).
[Crossref]

Fork, R. L.

Fujimoto, J. G.

Gibson, F.

Gibson, G. N.

Gordon, J. P.

Haag, P.

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[Crossref]

Han, K.-J.

Hauser, A. E.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Herz, J.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Hilton, D. J.

D. J. Hilton and C. L. Tang, “Optical orientation and femtosecond relaxation of spin-polarized holes in GaAs,” Phys. Rev. Lett. 89(14), 146601 (2002).
[Crossref] [PubMed]

Hong, B. H.

K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
[Crossref]

Jang, D.-W.

Jeong, T.-Y.

Joo, T.

E. Yoon and T. Joo, “Cavity-dumped femtosecond optical parametric oscillator based on periodically poled stoichiometric lithium tantalate,” Laser Phys. Lett. 13(3), 035301 (2016).
[Crossref]

C.-K. Min and T. Joo, “Near-infrared cavity-dumped femtosecond optical parametric oscillator,” Opt. Lett. 30(14), 1855–1857 (2005).
[Crossref] [PubMed]

Joo, T.-H.

Jundt, D.

Jung, M. H.

K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
[Crossref]

Jung, Y.

Karlsson, H.

Kim, G.-H.

Kim, J.-H.

K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
[Crossref]

K.-J. Han, D.-W. Jang, J.-H. Kim, C.-K. Min, T.-H. Joo, Y.-S. Lim, D. Lee, and K.-J. Yee, “Synchronously pumped optical parametric oscillator based on periodically poled MgO-doped lithium niobate,” Opt. Express 16(8), 5299–5304 (2008).
[Crossref] [PubMed]

Kim, S.-H.

Klank, R.

Kong, K.-J.

K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
[Crossref]

Lamour, T. P.

Laurell, F.

Lee, D.

Leuenberger, T.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Lim, Y.-S.

Martinez, O. E.

McGowan, C.

Meyn, J.-P.

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[Crossref]

Min, C.-K.

Myers, L. E.

Niesner, R. A.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Paye, J.

Penman, Z.

Phillips, P. J.

P. J. Phillips, S. Das, and M. Ebrahimzadeh, “High-repetition-rate, all-solid-state, Ti:sapphire-pumped optical parametric oscillator for the mid-infrared,” Appl. Phys. Lett. 77(4), 469–471 (2000).
[Crossref]

Pierce, J.

Radbruch, H.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Ramaswamy, M.

Reid, D.

Reid, D. T.

Shi, Y.

Sibbett, W.

Siffrin, V.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Slipchenko, M. N.

Tang, C.

K. C. Burr, C. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70(25), 3341–3343 (1997).
[Crossref]

Tang, C. L.

Ulman, M.

Wallenstein, R.

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[Crossref]

Wang, H.

Yee, K.-J.

Yoon, E.

E. Yoon and T. Joo, “Cavity-dumped femtosecond optical parametric oscillator based on periodically poled stoichiometric lithium tantalate,” Laser Phys. Lett. 13(3), 035301 (2016).
[Crossref]

Zelt, S.

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[Crossref]

Zhu, J.

Zipp, F.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Appl. Phys. B (1)

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[Crossref]

Appl. Phys. Lett. (2)

K. C. Burr, C. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70(25), 3341–3343 (1997).
[Crossref]

P. J. Phillips, S. Das, and M. Ebrahimzadeh, “High-repetition-rate, all-solid-state, Ti:sapphire-pumped optical parametric oscillator for the mid-infrared,” Appl. Phys. Lett. 77(4), 469–471 (2000).
[Crossref]

Biophys. J. (1)

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Carbon (1)

K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

E. Yoon and T. Joo, “Cavity-dumped femtosecond optical parametric oscillator based on periodically poled stoichiometric lithium tantalate,” Laser Phys. Lett. 13(3), 035301 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

D. J. Hilton and C. L. Tang, “Optical orientation and femtosecond relaxation of spin-polarized holes in GaAs,” Phys. Rev. Lett. 89(14), 146601 (2002).
[Crossref] [PubMed]

Science (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1518 (1999).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Resonator design of cavity-dumped ring-type OPO: PPLN, MgO-doped PPLN with a poling period of 20.6 μm; AOM, TeO2 crystal with a thickness of 3 mm; M1 to M4, dielectric mirror (R>99.8% at 1.06–1.60 μm) with a radius of curvature (R) of 150 mm; M5 to M6, plane dielectric mirror; OC, BK7 window with anti-reflection coating at one side; PZT, piezoelectric actuator; M7, pump beam focusing mirror with R = 200 mm.
Fig. 2
Fig. 2 Evolution of the pulse spectrum according to the position displacement of M6. The inset shows normalized output spectra at several M6 position displacements.
Fig. 3
Fig. 3 Pulse energy and dumping efficiency as a function of the wavelength of the cavity-dumped beam, acquired by displacing M6.
Fig. 4
Fig. 4 (a) Pulse energy as a function of pump power and (b) autocorrelation signal in the time domain for cavity-dumped pulses at a wavelength of 1.28 μm. The spectrum is shown in the inset.
Fig. 5
Fig. 5 (a) GD as a function of wavelength, deduced from the wavelength versus M6 displacement relation. (b) Comparison of experimentally extracted GDD from wavelength-dependent GD with that theoretically calculated by summing every contribution within the cavity. (c) Theoretical GDD calculated for each optical component.

Metrics