Abstract

Quasi-phase matched sum-frequency generation (SFG) and electro-optic (EO) polarization coupling has been realized simultaneously in a periodically poled lithium niobate on insulator (PPLNOI) ridge waveguide. Therefore, utilizing the cascading process, the intensity of sum-frequency conversion can be modulated by applying a transverse electric field. The driving voltage is reduced by using the ridge waveguide structure, and also the frequency conversion efficiency is enhanced. This scheme is proposed to control nonlinear frequency conversion by electric field applying on the lithium niobate on insulator (LNOI) platform. The integration and fast-speed modulation of the configuration may find applications in nonlinear optical processing and communication.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip

Tingting Ding, Yuanlin Zheng, and Xianfeng Chen
Opt. Lett. 44(6) 1524-1527 (2019)

Polarization independent quasi-phase-matched sum frequency generation for single photon detection

Xiao-shi Song, Zi-yan Yu, Qin Wang, Fei Xu, and Yan-qing Lu
Opt. Express 19(1) 380-386 (2011)

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
    [Crossref]
  2. A. Kobyakov and F. Lederer, “Cascading of quadratic nonlinearities: An analytical study,” Phys. Rev. A 54, 3455–3471 (1996).
    [Crossref] [PubMed]
  3. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Light. Technol. 24, 2579–2592 (2006).
    [Crossref]
  4. G. I. Stegeman, M. Sheik-Bahae, E. V. Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18, 13–15 (1993).
    [Crossref] [PubMed]
  5. A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Reports 370, 63–235 (2002).
    [Crossref]
  6. M. Ahlawat, A. Tehranchi, K. Pandiyan, M. Cha, and R. Kashyap, “Tunable all-optical wavelength broadcasting in a ppln with multiple qpm peaks,” Opt. Express 20, 27425–27433 (2012).
    [Crossref] [PubMed]
  7. S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
    [Crossref]
  8. J. Wang, J. Sun, C. Luo, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (sfg+dfg) in linbo3 waveguides,” Opt. Express 13, 7405–7414 (2005).
    [Crossref] [PubMed]
  9. G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13, 341–343 (2001).
    [Crossref]
  10. J. Huo and X. Chen, “Large phase shift via polarization-coupling cascading,” Opt. Express 20, 13419–13424 (2012).
    [Crossref] [PubMed]
  11. J. Huo, Y. Zheng, and X. Chen, “Active control of light based on polarization-coupling cascading,” Appl. Phys. B 117, 19–23 (2014).
    [Crossref]
  12. M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
    [Crossref] [PubMed]
  13. C.-P. Huang, Q.-J. Wang, and Y.-Y. Zhu, “Cascaded frequency doubling and electro-optic coupling in a single optical superlattice,” Appl. Phys. B 80, 741–744 (2005).
    [Crossref]
  14. J.-W. Zhao, C.-P. Huang, Z.-Q. Shen, Y.-H. Liu, L. Fan, and Y.-Y. Zhu, “Simultaneous harmonic generation and polarization control in an optical superlattice,” Appl. Phys. B 99, 673–677 (2010).
    [Crossref]
  15. Y. Kong, X. Chen, and T. Zhu, “Intensity modulation on polarization coupling and frequency conversion in periodically poled lithium niobate,” Appl. Phys. B 102, 101–107 (2011).
    [Crossref]
  16. T. Ding, Y. Zheng, and X. Chen, “Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip,” Opt. Lett. 37, 1296–1300 (2019).
  17. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
    [Crossref]
  18. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562, 101–104 (2018).
    [Crossref] [PubMed]
  19. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
    [Crossref] [PubMed]
  20. T. Ding, Y. Zheng, and X. Chen, “On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide,” J. Light. Technol. 37, 1296–1300 (2019).
    [Crossref]

2019 (2)

T. Ding, Y. Zheng, and X. Chen, “Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip,” Opt. Lett. 37, 1296–1300 (2019).

T. Ding, Y. Zheng, and X. Chen, “On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide,” J. Light. Technol. 37, 1296–1300 (2019).
[Crossref]

2018 (3)

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

2017 (1)

2014 (1)

J. Huo, Y. Zheng, and X. Chen, “Active control of light based on polarization-coupling cascading,” Appl. Phys. B 117, 19–23 (2014).
[Crossref]

2012 (2)

2011 (1)

Y. Kong, X. Chen, and T. Zhu, “Intensity modulation on polarization coupling and frequency conversion in periodically poled lithium niobate,” Appl. Phys. B 102, 101–107 (2011).
[Crossref]

2010 (1)

J.-W. Zhao, C.-P. Huang, Z.-Q. Shen, Y.-H. Liu, L. Fan, and Y.-Y. Zhu, “Simultaneous harmonic generation and polarization control in an optical superlattice,” Appl. Phys. B 99, 673–677 (2010).
[Crossref]

2006 (1)

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Light. Technol. 24, 2579–2592 (2006).
[Crossref]

2005 (2)

2004 (1)

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

2002 (1)

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Reports 370, 63–235 (2002).
[Crossref]

2001 (1)

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13, 341–343 (2001).
[Crossref]

1996 (2)

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

A. Kobyakov and F. Lederer, “Cascading of quadratic nonlinearities: An analytical study,” Phys. Rev. A 54, 3455–3471 (1996).
[Crossref] [PubMed]

1993 (1)

Ahlawat, M.

Ashihara, S.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

Assanto, G.

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
[Crossref]

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
[Crossref]

Buryak, A. V.

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Reports 370, 63–235 (2002).
[Crossref]

Cha, M.

M. Ahlawat, A. Tehranchi, K. Pandiyan, M. Cha, and R. Kashyap, “Tunable all-optical wavelength broadcasting in a ppln with multiple qpm peaks,” Opt. Express 20, 27425–27433 (2012).
[Crossref] [PubMed]

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Chang, L.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
[Crossref]

Chen, X.

T. Ding, Y. Zheng, and X. Chen, “On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide,” J. Light. Technol. 37, 1296–1300 (2019).
[Crossref]

T. Ding, Y. Zheng, and X. Chen, “Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip,” Opt. Lett. 37, 1296–1300 (2019).

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

J. Huo, Y. Zheng, and X. Chen, “Active control of light based on polarization-coupling cascading,” Appl. Phys. B 117, 19–23 (2014).
[Crossref]

J. Huo and X. Chen, “Large phase shift via polarization-coupling cascading,” Opt. Express 20, 13419–13424 (2012).
[Crossref] [PubMed]

Y. Kong, X. Chen, and T. Zhu, “Intensity modulation on polarization coupling and frequency conversion in periodically poled lithium niobate,” Appl. Phys. B 102, 101–107 (2011).
[Crossref]

Cheng, Y.

Chu, W.

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
[Crossref]

Ding, T.

T. Ding, Y. Zheng, and X. Chen, “Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip,” Opt. Lett. 37, 1296–1300 (2019).

T. Ding, Y. Zheng, and X. Chen, “On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide,” J. Light. Technol. 37, 1296–1300 (2019).
[Crossref]

Fan, L.

J.-W. Zhao, C.-P. Huang, Z.-Q. Shen, Y.-H. Liu, L. Fan, and Y.-Y. Zhu, “Simultaneous harmonic generation and polarization control in an optical superlattice,” Appl. Phys. B 99, 673–677 (2010).
[Crossref]

Fang, W.

Fang, Z.

Fejer, M. M.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Light. Technol. 24, 2579–2592 (2006).
[Crossref]

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13, 341–343 (2001).
[Crossref]

Hagan, D. J.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

Huang, C.-P.

J.-W. Zhao, C.-P. Huang, Z.-Q. Shen, Y.-H. Liu, L. Fan, and Y.-Y. Zhu, “Simultaneous harmonic generation and polarization control in an optical superlattice,” Appl. Phys. B 99, 673–677 (2010).
[Crossref]

C.-P. Huang, Q.-J. Wang, and Y.-Y. Zhu, “Cascaded frequency doubling and electro-optic coupling in a single optical superlattice,” Appl. Phys. B 80, 741–744 (2005).
[Crossref]

Huo, J.

J. Huo, Y. Zheng, and X. Chen, “Active control of light based on polarization-coupling cascading,” Appl. Phys. B 117, 19–23 (2014).
[Crossref]

J. Huo and X. Chen, “Large phase shift via polarization-coupling cascading,” Opt. Express 20, 13419–13424 (2012).
[Crossref] [PubMed]

Kanter, G. S.

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13, 341–343 (2001).
[Crossref]

Kashyap, R.

Kitamura, K.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

Kobyakov, A.

A. Kobyakov and F. Lederer, “Cascading of quadratic nonlinearities: An analytical study,” Phys. Rev. A 54, 3455–3471 (1996).
[Crossref] [PubMed]

Kong, Y.

Y. Kong, X. Chen, and T. Zhu, “Intensity modulation on polarization coupling and frequency conversion in periodically poled lithium niobate,” Appl. Phys. B 102, 101–107 (2011).
[Crossref]

Kumar, P.

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13, 341–343 (2001).
[Crossref]

Kumar, S.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Light. Technol. 24, 2579–2592 (2006).
[Crossref]

Kurimura, S.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

Kuroda, K.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

Langrock, C.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Light. Technol. 24, 2579–2592 (2006).
[Crossref]

Lederer, F.

A. Kobyakov and F. Lederer, “Cascading of quadratic nonlinearities: An analytical study,” Phys. Rev. A 54, 3455–3471 (1996).
[Crossref] [PubMed]

Liao, Y.

Lin, J.

Lipson, M.

Liu, Y.-H.

J.-W. Zhao, C.-P. Huang, Z.-Q. Shen, Y.-H. Liu, L. Fan, and Y.-Y. Zhu, “Simultaneous harmonic generation and polarization control in an optical superlattice,” Appl. Phys. B 99, 673–677 (2010).
[Crossref]

Loncar, M.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Luo, C.

McGeehan, J. E.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Light. Technol. 24, 2579–2592 (2006).
[Crossref]

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
[Crossref]

Pandiyan, K.

Parameswaran, K. R.

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13, 341–343 (2001).
[Crossref]

Qiao, L.

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Sheik-Bahae, M.

Shen, Z.-Q.

J.-W. Zhao, C.-P. Huang, Z.-Q. Shen, Y.-H. Liu, L. Fan, and Y.-Y. Zhu, “Simultaneous harmonic generation and polarization control in an optical superlattice,” Appl. Phys. B 99, 673–677 (2010).
[Crossref]

Shimura, T.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

Skryabin, D. V.

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Reports 370, 63–235 (2002).
[Crossref]

Stegeman, G. I.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

G. I. Stegeman, M. Sheik-Bahae, E. V. Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18, 13–15 (1993).
[Crossref] [PubMed]

Stern, B.

Stryland, E. V.

Sun, J.

Sun, Q.

Taira, T.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

Tehranchi, A.

Torner, L.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

Trapani, P. D.

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Reports 370, 63–235 (2002).
[Crossref]

Trillo, S.

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Reports 370, 63–235 (2002).
[Crossref]

Wang, C.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

Wang, J.

Wang, M.

Wang, P.

Wang, Q.-J.

C.-P. Huang, Q.-J. Wang, and Y.-Y. Zhu, “Cascaded frequency doubling and electro-optic coupling in a single optical superlattice,” Appl. Phys. B 80, 741–744 (2005).
[Crossref]

Willner, A. E.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Light. Technol. 24, 2579–2592 (2006).
[Crossref]

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Xu, Y.

Yu, N. E.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

Zhang, M.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Zhao, J.-W.

J.-W. Zhao, C.-P. Huang, Z.-Q. Shen, Y.-H. Liu, L. Fan, and Y.-Y. Zhu, “Simultaneous harmonic generation and polarization control in an optical superlattice,” Appl. Phys. B 99, 673–677 (2010).
[Crossref]

Zheng, Y.

T. Ding, Y. Zheng, and X. Chen, “Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip,” Opt. Lett. 37, 1296–1300 (2019).

T. Ding, Y. Zheng, and X. Chen, “On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide,” J. Light. Technol. 37, 1296–1300 (2019).
[Crossref]

J. Huo, Y. Zheng, and X. Chen, “Active control of light based on polarization-coupling cascading,” Appl. Phys. B 117, 19–23 (2014).
[Crossref]

Zhu, T.

Y. Kong, X. Chen, and T. Zhu, “Intensity modulation on polarization coupling and frequency conversion in periodically poled lithium niobate,” Appl. Phys. B 102, 101–107 (2011).
[Crossref]

Zhu, Y.-Y.

J.-W. Zhao, C.-P. Huang, Z.-Q. Shen, Y.-H. Liu, L. Fan, and Y.-Y. Zhu, “Simultaneous harmonic generation and polarization control in an optical superlattice,” Appl. Phys. B 99, 673–677 (2010).
[Crossref]

C.-P. Huang, Q.-J. Wang, and Y.-Y. Zhu, “Cascaded frequency doubling and electro-optic coupling in a single optical superlattice,” Appl. Phys. B 80, 741–744 (2005).
[Crossref]

Appl. Phys. B (4)

J. Huo, Y. Zheng, and X. Chen, “Active control of light based on polarization-coupling cascading,” Appl. Phys. B 117, 19–23 (2014).
[Crossref]

C.-P. Huang, Q.-J. Wang, and Y.-Y. Zhu, “Cascaded frequency doubling and electro-optic coupling in a single optical superlattice,” Appl. Phys. B 80, 741–744 (2005).
[Crossref]

J.-W. Zhao, C.-P. Huang, Z.-Q. Shen, Y.-H. Liu, L. Fan, and Y.-Y. Zhu, “Simultaneous harmonic generation and polarization control in an optical superlattice,” Appl. Phys. B 99, 673–677 (2010).
[Crossref]

Y. Kong, X. Chen, and T. Zhu, “Intensity modulation on polarization coupling and frequency conversion in periodically poled lithium niobate,” Appl. Phys. B 102, 101–107 (2011).
[Crossref]

Appl. Phys. Lett. (1)

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13, 341–343 (2001).
[Crossref]

J. Light. Technol. (2)

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Light. Technol. 24, 2579–2592 (2006).
[Crossref]

T. Ding, Y. Zheng, and X. Chen, “On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide,” J. Light. Technol. 37, 1296–1300 (2019).
[Crossref]

Laser & Photonics Rev. (1)

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
[Crossref]

Nature (1)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

T. Ding, Y. Zheng, and X. Chen, “Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip,” Opt. Lett. 37, 1296–1300 (2019).

G. I. Stegeman, M. Sheik-Bahae, E. V. Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18, 13–15 (1993).
[Crossref] [PubMed]

Opt. Quantum Electron. (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

Phys. Reports (1)

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Reports 370, 63–235 (2002).
[Crossref]

Phys. Rev. A (1)

A. Kobyakov and F. Lederer, “Cascading of quadratic nonlinearities: An analytical study,” Phys. Rev. A 54, 3455–3471 (1996).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Simulation of SFe output related to the applied electric field. (b) Intensity of SFe with respect to the intensity of one fundamental wave ( FF 1 e ), with the other kept constant.
Fig. 2
Fig. 2 (a) Cross-section structure of the PPLNOI ridge waveguide. (b) Simulated spatial fundamental mode profiles of each wave in the ridge waveguide. FF is in the telecom band (1550 nm) and SF is in the NIR range (775 nm). (c) Schematic illustration of the experimental setup.
Fig. 3
Fig. 3 (a) The temperature tuning of EO polarization coupling and SFG processes. (b) Experimental modulation of EO polarization coupling at a fast speed of 100 MHz.
Fig. 4
Fig. 4 (a) SFG efficiency versus FF2 wavelength as T = 42°C and FF1 = 1583.3 nm. (b) Linear relationship between intensity of SFG and input power of FF1, while the power of FF2 is fixed. (c) Intensity of SF varied with the applied voltage. The wavelength of FF2 = 1567.7 nm. (d,e,f) correspond to the situation when T = 33°C and FF1 = 1589.0 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d E 1 z d x = i ω 1 2 n 1 z c ( β ( x ) E 1 y e i Δ k E O x + 2 d ( x ) E 2 z * E 3 z e i Δ k SFG x ) ,
d E 1 y d x = i ω 1 2 n 1 y c β ( x ) E 1 z e i Δ k E O x ,
d E 2 z d x = i ω 2 n 2 z c d ( x ) E 1 z * E 3 z e i Δ k S F G x ,
d E 3 z d x = i ω 3 n 3 z c d ( x ) E 1 z * E 2 z e i Δ k S F G x .

Metrics