Abstract

Detecting light is fundamental to all optical experiments and applications. At the single photon level, the quantized nature of light requires specialised detectors, which typically saturate when more than one photon is incident. Here, we report on a massively-multiplexed single-photon detector, which exploits the saturation regime of a single click detector to exhibit a dynamic range of 123 dB, enabling measurement from optical energies as low as 107 photons per pulse to ∼ 2.5 × 105photons per pulse. This allows us to calibrate a single photon detector directly to a power meter, as well as characterize the nonclassical features of a variety of quantum states.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths

Chandra M. Natarajan, Lijian Zhang, Hendrik Coldenstrodt-Ronge, Gaia Donati, Sander N. Dorenbos, Val Zwiller, Ian A. Walmsley, and Robert H. Hadfield
Opt. Express 21(1) 893-902 (2013)

Advantages of gated silicon single-photon detectors

Tommaso Lunghi, Enrico Pomarico, Claudio Barreiro, Damien Stucki, Bruno Sanguinetti, and Hugo Zbinden
Appl. Opt. 51(35) 8455-8459 (2012)

Modeling the avalanche diode as a photon detector in quantum optical interferometers

Kay Schmid, Erna Frins, Wolfgang Dultz, and Heidrun Schmitzer
Appl. Opt. 51(31) 7560-7565 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. Paul, P. Törmä, T. Kiss, and I. Jex, “Photon chopping: new way to measure the quantum state of light,” Phys. Rev. Lett. 76(14), 2464–2467 (1996).
    [Crossref] [PubMed]
  2. J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74(7), 902–904 (1999).
    [Crossref]
  3. K. Banaszek and I. A. Walmsley, “Photon counting with a loop detector,” Opt. Lett. 28(1), 52–54 (2003).
    [Crossref] [PubMed]
  4. D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28(23), 2387 (2003).
    [Crossref] [PubMed]
  5. J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67(6), 061801 (2003).
    [Crossref]
  6. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68(4), 043814 (2003).
    [Crossref]
  7. D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number-resolving detection using time-multiplexing,” J. Mod. Opt. 519–101499–1515 (2004).
    [Crossref]
  8. S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, “Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array,” J. Mod. Opt. 542–3337–352 (2007).
    [Crossref]
  9. V. Schettini, S. V. Polyakov, I. P. Degiovanni, G. Brida, S. Castelletto, and A. L. Migdall, “Implementing a multiplexed system of detectors for higher photon counting rates,” IEEE J. Sel. Top. Quantum Electron. 13(4), 978–983 (2007).
    [Crossref]
  10. G. A. P. Thé and R. V. Ramos, “Multiple-photon number resolving detector using fibre ring and single-photon detector,” J. Mod. Opt. 54(8), 1187–1202 (2007).
    [Crossref]
  11. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
    [Crossref]
  12. M. Mičuda, O. Haderka, and M. Ježek, “High-efficiency photon-number-resolving multichannel detector,” Phys. Rev. A 78(2), 025804 (2008).
    [Crossref]
  13. G. Brida, I. P. Degiovanni, F. Piacentini, V. Schettini, S. V. Polyakov, and A. Migdall, “Scalable multiplexed detector system for high-rate telecom-band single-photon detection,” Rev. Sci. Instruments 80(11), 116103 (2009).
    [Crossref]
  14. E. Pomarico, B. Sanguinetti, R. Thew, and H. Zbinden, “Room temperature photon number resolving detector for infared wavelengths,” Opt. Express 18(10), 10750–10759 (2010).
    [Crossref] [PubMed]
  15. M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
    [Crossref]
  16. R. Kruse, J. Tiedau, T. J. Bartley, S. Barkhofen, and C. Silberhorn, “Limits of the time-multiplexed photon-counting method,” Phys. Rev. A 95(2), 023815 (2017).
    [Crossref]
  17. T. Gerrits, B. Calkins, N. Tomlin, A. E. Lita, A. Migdall, R. Mirin, and S. W. Nam, “Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime,” Opt. Express 20(21), 23798–23810 (2012).
    [Crossref] [PubMed]
  18. J. G. Webb and E. H. Huntington, “Photostatistics reconstruction via loop detector signatures,” Opt. Express 17(14), 11799–11812 (2009).
    [Crossref] [PubMed]
  19. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photon 7(3), 210–214 (2013).
    [Crossref]
  20. I. Müller, R. M. Klein, and L. Werner, “Traceable calibration of a fibre-coupled superconducting nano-wire single photon detector using characterized synchrotron radiation,” Metrologia 51(6), S329 (2014).
    [Crossref]
  21. I. Müller, R. D. Horansky, J. H. Lehman, S. W. Nam, I. Vayshenker, L. Werner, G. Wuebbeler, and M. White, “Verification of calibration methods for determining photon-counting detection efficiency using superconducting nano-wire single photon detectors,” Opt. Express 25(18), 21483–21495 (2017).
    [Crossref]
  22. D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10(9), 1112 (1980).
    [Crossref]
  23. A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32(6), 479 (1995).
    [Crossref]
  24. O. Haderka, J. PeȈrina, M. Hamar, and J. PeȈrina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005).
    [Crossref]
  25. T. Kiesel and W. Vogel, “Complete nonclassicality test with a photon-number-resolving detector,” Phys. Rev. A 86(3), 032119 (2012).
    [Crossref]
  26. J. Sperling, W. Vogel, and G. S. Agarwal, “Sub-binomial light,” Phys. Rev. Lett. 109(9), 093601 (2012).
    [Crossref] [PubMed]
  27. J. Sperling, W. Vogel, and G. S. Agarwal, “True photocounting statistics of multiple on-off detectors,” Phys. Rev. A 85(2), 023820 (2012).
    [Crossref]
  28. T. J. Bartley, G. Donati, X.-M. Jin, A. Datta, M. Barbieri, and I. A. Walmsley, “Direct observation of sub-binomial light,” Phys. Rev. Lett. 110(17), 173602 (2013).
    [Crossref] [PubMed]
  29. G. Harder, C. Silberhorn, J. Rehacek, Z. Hradil, L. Motka, B. Stoklasa, and L. L. Sánchez-Soto, “Time-multiplexed measurements of nonclassical light at telecom wavelengths,” Phys. Rev. A 90(4), 042105 (2014).
    [Crossref]
  30. D. Liu, L. You, Y. He, C. Lv, S. Chen, L. Zhang, Z. Wang, and X. Xie, “Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system,” J. Opt. Soc. Am. B, JOSAB 31(4), 816–820 (2014).
    [Crossref]
  31. R. Chrapkiewicz, “Photon counts statistics of squeezed and multimode thermal states of light on multiplexed on-off detectors,” J. Opt. Soc. Am. B, JOSAB 31(10), B8–B13 (2014).
    [Crossref]
  32. J. Sperling, M. Bohmann, W. Vogel, G. Harder, B. Brecht, V. Ansari, and C. Silberhorn, “Uncovering quantum correlations with time-multiplexed click detection,” Phys. Rev. Lett. 115(2), 023601 (2015).
    [Crossref] [PubMed]
  33. C. Lee, S. Ferrari, W. H. P. Pernice, and C. Rockstuhl, “Sub-poisson-binomial light,” Phys. Rev. A 94(5), 053844 (2016).
    [Crossref]
  34. J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
    [Crossref]
  35. M. Bohmann, J. Tiedau, T. Bartley, J. Sperling, C. Silberhorn, and W. Vogel, “Incomplete detection of nonclassical phase-space distributions,” Phys. Rev. Lett. 120(6), 063607 (2018).
    [Crossref] [PubMed]
  36. T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys.  18(6), 063017 (2016).
    [Crossref]

2018 (1)

M. Bohmann, J. Tiedau, T. Bartley, J. Sperling, C. Silberhorn, and W. Vogel, “Incomplete detection of nonclassical phase-space distributions,” Phys. Rev. Lett. 120(6), 063607 (2018).
[Crossref] [PubMed]

2017 (3)

J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
[Crossref]

R. Kruse, J. Tiedau, T. J. Bartley, S. Barkhofen, and C. Silberhorn, “Limits of the time-multiplexed photon-counting method,” Phys. Rev. A 95(2), 023815 (2017).
[Crossref]

I. Müller, R. D. Horansky, J. H. Lehman, S. W. Nam, I. Vayshenker, L. Werner, G. Wuebbeler, and M. White, “Verification of calibration methods for determining photon-counting detection efficiency using superconducting nano-wire single photon detectors,” Opt. Express 25(18), 21483–21495 (2017).
[Crossref]

2016 (2)

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys.  18(6), 063017 (2016).
[Crossref]

C. Lee, S. Ferrari, W. H. P. Pernice, and C. Rockstuhl, “Sub-poisson-binomial light,” Phys. Rev. A 94(5), 053844 (2016).
[Crossref]

2015 (2)

J. Sperling, M. Bohmann, W. Vogel, G. Harder, B. Brecht, V. Ansari, and C. Silberhorn, “Uncovering quantum correlations with time-multiplexed click detection,” Phys. Rev. Lett. 115(2), 023601 (2015).
[Crossref] [PubMed]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

2014 (4)

I. Müller, R. M. Klein, and L. Werner, “Traceable calibration of a fibre-coupled superconducting nano-wire single photon detector using characterized synchrotron radiation,” Metrologia 51(6), S329 (2014).
[Crossref]

G. Harder, C. Silberhorn, J. Rehacek, Z. Hradil, L. Motka, B. Stoklasa, and L. L. Sánchez-Soto, “Time-multiplexed measurements of nonclassical light at telecom wavelengths,” Phys. Rev. A 90(4), 042105 (2014).
[Crossref]

D. Liu, L. You, Y. He, C. Lv, S. Chen, L. Zhang, Z. Wang, and X. Xie, “Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system,” J. Opt. Soc. Am. B, JOSAB 31(4), 816–820 (2014).
[Crossref]

R. Chrapkiewicz, “Photon counts statistics of squeezed and multimode thermal states of light on multiplexed on-off detectors,” J. Opt. Soc. Am. B, JOSAB 31(10), B8–B13 (2014).
[Crossref]

2013 (2)

T. J. Bartley, G. Donati, X.-M. Jin, A. Datta, M. Barbieri, and I. A. Walmsley, “Direct observation of sub-binomial light,” Phys. Rev. Lett. 110(17), 173602 (2013).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photon 7(3), 210–214 (2013).
[Crossref]

2012 (4)

T. Kiesel and W. Vogel, “Complete nonclassicality test with a photon-number-resolving detector,” Phys. Rev. A 86(3), 032119 (2012).
[Crossref]

J. Sperling, W. Vogel, and G. S. Agarwal, “Sub-binomial light,” Phys. Rev. Lett. 109(9), 093601 (2012).
[Crossref] [PubMed]

J. Sperling, W. Vogel, and G. S. Agarwal, “True photocounting statistics of multiple on-off detectors,” Phys. Rev. A 85(2), 023820 (2012).
[Crossref]

T. Gerrits, B. Calkins, N. Tomlin, A. E. Lita, A. Migdall, R. Mirin, and S. W. Nam, “Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime,” Opt. Express 20(21), 23798–23810 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (2)

J. G. Webb and E. H. Huntington, “Photostatistics reconstruction via loop detector signatures,” Opt. Express 17(14), 11799–11812 (2009).
[Crossref] [PubMed]

G. Brida, I. P. Degiovanni, F. Piacentini, V. Schettini, S. V. Polyakov, and A. Migdall, “Scalable multiplexed detector system for high-rate telecom-band single-photon detection,” Rev. Sci. Instruments 80(11), 116103 (2009).
[Crossref]

2008 (2)

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

M. Mičuda, O. Haderka, and M. Ježek, “High-efficiency photon-number-resolving multichannel detector,” Phys. Rev. A 78(2), 025804 (2008).
[Crossref]

2007 (3)

S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, “Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array,” J. Mod. Opt. 542–3337–352 (2007).
[Crossref]

V. Schettini, S. V. Polyakov, I. P. Degiovanni, G. Brida, S. Castelletto, and A. L. Migdall, “Implementing a multiplexed system of detectors for higher photon counting rates,” IEEE J. Sel. Top. Quantum Electron. 13(4), 978–983 (2007).
[Crossref]

G. A. P. Thé and R. V. Ramos, “Multiple-photon number resolving detector using fibre ring and single-photon detector,” J. Mod. Opt. 54(8), 1187–1202 (2007).
[Crossref]

2005 (1)

O. Haderka, J. PeȈrina, M. Hamar, and J. PeȈrina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005).
[Crossref]

2004 (1)

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number-resolving detection using time-multiplexing,” J. Mod. Opt. 519–101499–1515 (2004).
[Crossref]

2003 (4)

J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67(6), 061801 (2003).
[Crossref]

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68(4), 043814 (2003).
[Crossref]

K. Banaszek and I. A. Walmsley, “Photon counting with a loop detector,” Opt. Lett. 28(1), 52–54 (2003).
[Crossref] [PubMed]

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28(23), 2387 (2003).
[Crossref] [PubMed]

1999 (1)

J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74(7), 902–904 (1999).
[Crossref]

1996 (1)

H. Paul, P. Törmä, T. Kiss, and I. Jex, “Photon chopping: new way to measure the quantum state of light,” Phys. Rev. Lett. 76(14), 2464–2467 (1996).
[Crossref] [PubMed]

1995 (1)

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32(6), 479 (1995).
[Crossref]

1980 (1)

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10(9), 1112 (1980).
[Crossref]

Achilles, D.

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number-resolving detection using time-multiplexing,” J. Mod. Opt. 519–101499–1515 (2004).
[Crossref]

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28(23), 2387 (2003).
[Crossref] [PubMed]

Agarwal, G. S.

J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
[Crossref]

J. Sperling, W. Vogel, and G. S. Agarwal, “True photocounting statistics of multiple on-off detectors,” Phys. Rev. A 85(2), 023820 (2012).
[Crossref]

J. Sperling, W. Vogel, and G. S. Agarwal, “Sub-binomial light,” Phys. Rev. Lett. 109(9), 093601 (2012).
[Crossref] [PubMed]

Allman, M. S.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Ansari, V.

J. Sperling, M. Bohmann, W. Vogel, G. Harder, B. Brecht, V. Ansari, and C. Silberhorn, “Uncovering quantum correlations with time-multiplexed click detection,” Phys. Rev. Lett. 115(2), 023601 (2015).
[Crossref] [PubMed]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photon 7(3), 210–214 (2013).
[Crossref]

Banaszek, K.

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number-resolving detection using time-multiplexing,” J. Mod. Opt. 519–101499–1515 (2004).
[Crossref]

K. Banaszek and I. A. Walmsley, “Photon counting with a loop detector,” Opt. Lett. 28(1), 52–54 (2003).
[Crossref] [PubMed]

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28(23), 2387 (2003).
[Crossref] [PubMed]

Barbieri, M.

T. J. Bartley, G. Donati, X.-M. Jin, A. Datta, M. Barbieri, and I. A. Walmsley, “Direct observation of sub-binomial light,” Phys. Rev. Lett. 110(17), 173602 (2013).
[Crossref] [PubMed]

Barkhofen, S.

R. Kruse, J. Tiedau, T. J. Bartley, S. Barkhofen, and C. Silberhorn, “Limits of the time-multiplexed photon-counting method,” Phys. Rev. A 95(2), 023815 (2017).
[Crossref]

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys.  18(6), 063017 (2016).
[Crossref]

Bartley, T.

M. Bohmann, J. Tiedau, T. Bartley, J. Sperling, C. Silberhorn, and W. Vogel, “Incomplete detection of nonclassical phase-space distributions,” Phys. Rev. Lett. 120(6), 063607 (2018).
[Crossref] [PubMed]

Bartley, T. J.

R. Kruse, J. Tiedau, T. J. Bartley, S. Barkhofen, and C. Silberhorn, “Limits of the time-multiplexed photon-counting method,” Phys. Rev. A 95(2), 023815 (2017).
[Crossref]

T. J. Bartley, G. Donati, X.-M. Jin, A. Datta, M. Barbieri, and I. A. Walmsley, “Direct observation of sub-binomial light,” Phys. Rev. Lett. 110(17), 173602 (2013).
[Crossref] [PubMed]

Benkhaoul, M.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Beyer, A.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Bitauld, D.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Bohmann, M.

M. Bohmann, J. Tiedau, T. Bartley, J. Sperling, C. Silberhorn, and W. Vogel, “Incomplete detection of nonclassical phase-space distributions,” Phys. Rev. Lett. 120(6), 063607 (2018).
[Crossref] [PubMed]

J. Sperling, M. Bohmann, W. Vogel, G. Harder, B. Brecht, V. Ansari, and C. Silberhorn, “Uncovering quantum correlations with time-multiplexed click detection,” Phys. Rev. Lett. 115(2), 023601 (2015).
[Crossref] [PubMed]

Brecht, B.

J. Sperling, M. Bohmann, W. Vogel, G. Harder, B. Brecht, V. Ansari, and C. Silberhorn, “Uncovering quantum correlations with time-multiplexed click detection,” Phys. Rev. Lett. 115(2), 023601 (2015).
[Crossref] [PubMed]

Brida, G.

G. Brida, I. P. Degiovanni, F. Piacentini, V. Schettini, S. V. Polyakov, and A. Migdall, “Scalable multiplexed detector system for high-rate telecom-band single-photon detection,” Rev. Sci. Instruments 80(11), 116103 (2009).
[Crossref]

V. Schettini, S. V. Polyakov, I. P. Degiovanni, G. Brida, S. Castelletto, and A. L. Migdall, “Implementing a multiplexed system of detectors for higher photon counting rates,” IEEE J. Sel. Top. Quantum Electron. 13(4), 978–983 (2007).
[Crossref]

Calkins, B.

Castelletto, S.

V. Schettini, S. V. Polyakov, I. P. Degiovanni, G. Brida, S. Castelletto, and A. L. Migdall, “Implementing a multiplexed system of detectors for higher photon counting rates,” IEEE J. Sel. Top. Quantum Electron. 13(4), 978–983 (2007).
[Crossref]

Castelletto, S. A.

S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, “Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array,” J. Mod. Opt. 542–3337–352 (2007).
[Crossref]

Chen, S.

D. Liu, L. You, Y. He, C. Lv, S. Chen, L. Zhang, Z. Wang, and X. Xie, “Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system,” J. Opt. Soc. Am. B, JOSAB 31(4), 816–820 (2014).
[Crossref]

Chrapkiewicz, R.

R. Chrapkiewicz, “Photon counts statistics of squeezed and multimode thermal states of light on multiplexed on-off detectors,” J. Opt. Soc. Am. B, JOSAB 31(10), B8–B13 (2014).
[Crossref]

Clements, W. R.

J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
[Crossref]

Datla, R. U.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32(6), 479 (1995).
[Crossref]

Datta, A.

T. J. Bartley, G. Donati, X.-M. Jin, A. Datta, M. Barbieri, and I. A. Walmsley, “Direct observation of sub-binomial light,” Phys. Rev. Lett. 110(17), 173602 (2013).
[Crossref] [PubMed]

Degiovanni, I. P.

G. Brida, I. P. Degiovanni, F. Piacentini, V. Schettini, S. V. Polyakov, and A. Migdall, “Scalable multiplexed detector system for high-rate telecom-band single-photon detection,” Rev. Sci. Instruments 80(11), 116103 (2009).
[Crossref]

V. Schettini, S. V. Polyakov, I. P. Degiovanni, G. Brida, S. Castelletto, and A. L. Migdall, “Implementing a multiplexed system of detectors for higher photon counting rates,” IEEE J. Sel. Top. Quantum Electron. 13(4), 978–983 (2007).
[Crossref]

S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, “Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array,” J. Mod. Opt. 542–3337–352 (2007).
[Crossref]

Divochiy, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Donati, G.

T. J. Bartley, G. Donati, X.-M. Jin, A. Datta, M. Barbieri, and I. A. Walmsley, “Direct observation of sub-binomial light,” Phys. Rev. Lett. 110(17), 173602 (2013).
[Crossref] [PubMed]

Eckstein, A.

J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
[Crossref]

Elster, F.

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys.  18(6), 063017 (2016).
[Crossref]

Ferrari, S.

C. Lee, S. Ferrari, W. H. P. Pernice, and C. Rockstuhl, “Sub-poisson-binomial light,” Phys. Rev. A 94(5), 053844 (2016).
[Crossref]

Fiore, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Fitch, M. J.

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number-resolving detection using time-multiplexing,” J. Mod. Opt. 519–101499–1515 (2004).
[Crossref]

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68(4), 043814 (2003).
[Crossref]

Franson, J. D.

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number-resolving detection using time-multiplexing,” J. Mod. Opt. 519–101499–1515 (2004).
[Crossref]

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68(4), 043814 (2003).
[Crossref]

Gábris, A.

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys.  18(6), 063017 (2016).
[Crossref]

Gaggero, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Gerrits, T.

J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photon 7(3), 210–214 (2013).
[Crossref]

T. Gerrits, B. Calkins, N. Tomlin, A. E. Lita, A. Migdall, R. Mirin, and S. W. Nam, “Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime,” Opt. Express 20(21), 23798–23810 (2012).
[Crossref] [PubMed]

Gol’tsman, G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Haderka, O.

M. Mičuda, O. Haderka, and M. Ježek, “High-efficiency photon-number-resolving multichannel detector,” Phys. Rev. A 78(2), 025804 (2008).
[Crossref]

O. Haderka, J. PeȈrina, M. Hamar, and J. PeȈrina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005).
[Crossref]

J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67(6), 061801 (2003).
[Crossref]

Hamar, M.

O. Haderka, J. PeȈrina, M. Hamar, and J. PeȈrina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005).
[Crossref]

J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67(6), 061801 (2003).
[Crossref]

Harder, G.

J. Sperling, M. Bohmann, W. Vogel, G. Harder, B. Brecht, V. Ansari, and C. Silberhorn, “Uncovering quantum correlations with time-multiplexed click detection,” Phys. Rev. Lett. 115(2), 023601 (2015).
[Crossref] [PubMed]

G. Harder, C. Silberhorn, J. Rehacek, Z. Hradil, L. Motka, B. Stoklasa, and L. L. Sánchez-Soto, “Time-multiplexed measurements of nonclassical light at telecom wavelengths,” Phys. Rev. A 90(4), 042105 (2014).
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photon 7(3), 210–214 (2013).
[Crossref]

He, Y.

D. Liu, L. You, Y. He, C. Lv, S. Chen, L. Zhang, Z. Wang, and X. Xie, “Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system,” J. Opt. Soc. Am. B, JOSAB 31(4), 816–820 (2014).
[Crossref]

Hogue, H. H.

J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74(7), 902–904 (1999).
[Crossref]

Horansky, R. D.

I. Müller, R. D. Horansky, J. H. Lehman, S. W. Nam, I. Vayshenker, L. Werner, G. Wuebbeler, and M. White, “Verification of calibration methods for determining photon-counting detection efficiency using superconducting nano-wire single photon detectors,” Opt. Express 25(18), 21483–21495 (2017).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Hradil, Z.

G. Harder, C. Silberhorn, J. Rehacek, Z. Hradil, L. Motka, B. Stoklasa, and L. L. Sánchez-Soto, “Time-multiplexed measurements of nonclassical light at telecom wavelengths,” Phys. Rev. A 90(4), 042105 (2014).
[Crossref]

J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67(6), 061801 (2003).
[Crossref]

Huntington, E. H.

Jacobs, B. C.

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number-resolving detection using time-multiplexing,” J. Mod. Opt. 519–101499–1515 (2004).
[Crossref]

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68(4), 043814 (2003).
[Crossref]

Jex, I.

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys.  18(6), 063017 (2016).
[Crossref]

H. Paul, P. Törmä, T. Kiss, and I. Jex, “Photon chopping: new way to measure the quantum state of light,” Phys. Rev. Lett. 76(14), 2464–2467 (1996).
[Crossref] [PubMed]

Ježek, M.

M. Mičuda, O. Haderka, and M. Ježek, “High-efficiency photon-number-resolving multichannel detector,” Phys. Rev. A 78(2), 025804 (2008).
[Crossref]

Jin, X.-M.

T. J. Bartley, G. Donati, X.-M. Jin, A. Datta, M. Barbieri, and I. A. Walmsley, “Direct observation of sub-binomial light,” Phys. Rev. Lett. 110(17), 173602 (2013).
[Crossref] [PubMed]

Kaurova, N.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Kiesel, T.

T. Kiesel and W. Vogel, “Complete nonclassicality test with a photon-number-resolving detector,” Phys. Rev. A 86(3), 032119 (2012).
[Crossref]

Kim, J.

J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74(7), 902–904 (1999).
[Crossref]

Kiss, T.

H. Paul, P. Törmä, T. Kiss, and I. Jex, “Photon chopping: new way to measure the quantum state of light,” Phys. Rev. Lett. 76(14), 2464–2467 (1996).
[Crossref] [PubMed]

Klein, R. M.

I. Müller, R. M. Klein, and L. Werner, “Traceable calibration of a fibre-coupled superconducting nano-wire single photon detector using characterized synchrotron radiation,” Metrologia 51(6), S329 (2014).
[Crossref]

Klyshko, D. N.

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10(9), 1112 (1980).
[Crossref]

Kolthammer, W. S.

J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
[Crossref]

Korneev, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Kruse, R.

R. Kruse, J. Tiedau, T. J. Bartley, S. Barkhofen, and C. Silberhorn, “Limits of the time-multiplexed photon-counting method,” Phys. Rev. A 95(2), 023815 (2017).
[Crossref]

Kumor, D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Lagoudakis, K. G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Lee, C.

C. Lee, S. Ferrari, W. H. P. Pernice, and C. Rockstuhl, “Sub-poisson-binomial light,” Phys. Rev. A 94(5), 053844 (2016).
[Crossref]

Lehman, J. H.

Leoni, R.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Lévy, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Lita, A.

J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
[Crossref]

Lita, A. E.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photon 7(3), 210–214 (2013).
[Crossref]

T. Gerrits, B. Calkins, N. Tomlin, A. E. Lita, A. Migdall, R. Mirin, and S. W. Nam, “Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime,” Opt. Express 20(21), 23798–23810 (2012).
[Crossref] [PubMed]

Liu, D.

D. Liu, L. You, Y. He, C. Lv, S. Chen, L. Zhang, Z. Wang, and X. Xie, “Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system,” J. Opt. Soc. Am. B, JOSAB 31(4), 816–820 (2014).
[Crossref]

Lv, C.

D. Liu, L. You, Y. He, C. Lv, S. Chen, L. Zhang, Z. Wang, and X. Xie, “Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system,” J. Opt. Soc. Am. B, JOSAB 31(4), 816–820 (2014).
[Crossref]

Marsili, F.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photon 7(3), 210–214 (2013).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Mattioli, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Micuda, M.

M. Mičuda, O. Haderka, and M. Ježek, “High-efficiency photon-number-resolving multichannel detector,” Phys. Rev. A 78(2), 025804 (2008).
[Crossref]

Migdall, A.

T. Gerrits, B. Calkins, N. Tomlin, A. E. Lita, A. Migdall, R. Mirin, and S. W. Nam, “Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime,” Opt. Express 20(21), 23798–23810 (2012).
[Crossref] [PubMed]

G. Brida, I. P. Degiovanni, F. Piacentini, V. Schettini, S. V. Polyakov, and A. Migdall, “Scalable multiplexed detector system for high-rate telecom-band single-photon detection,” Rev. Sci. Instruments 80(11), 116103 (2009).
[Crossref]

Migdall, A. L.

S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, “Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array,” J. Mod. Opt. 542–3337–352 (2007).
[Crossref]

V. Schettini, S. V. Polyakov, I. P. Degiovanni, G. Brida, S. Castelletto, and A. L. Migdall, “Implementing a multiplexed system of detectors for higher photon counting rates,” IEEE J. Sel. Top. Quantum Electron. 13(4), 978–983 (2007).
[Crossref]

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32(6), 479 (1995).
[Crossref]

Minaeva, O.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Mirin, R.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

T. Gerrits, B. Calkins, N. Tomlin, A. E. Lita, A. Migdall, R. Mirin, and S. W. Nam, “Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime,” Opt. Express 20(21), 23798–23810 (2012).
[Crossref] [PubMed]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photon 7(3), 210–214 (2013).
[Crossref]

Moore, M.

J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
[Crossref]

Motka, L.

G. Harder, C. Silberhorn, J. Rehacek, Z. Hradil, L. Motka, B. Stoklasa, and L. L. Sánchez-Soto, “Time-multiplexed measurements of nonclassical light at telecom wavelengths,” Phys. Rev. A 90(4), 042105 (2014).
[Crossref]

Müller, I.

Nam, S. W.

J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
[Crossref]

I. Müller, R. D. Horansky, J. H. Lehman, S. W. Nam, I. Vayshenker, L. Werner, G. Wuebbeler, and M. White, “Verification of calibration methods for determining photon-counting detection efficiency using superconducting nano-wire single photon detectors,” Opt. Express 25(18), 21483–21495 (2017).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photon 7(3), 210–214 (2013).
[Crossref]

T. Gerrits, B. Calkins, N. Tomlin, A. E. Lita, A. Migdall, R. Mirin, and S. W. Nam, “Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime,” Opt. Express 20(21), 23798–23810 (2012).
[Crossref] [PubMed]

Nitsche, T.

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys.  18(6), 063017 (2016).
[Crossref]

Novotný, J.

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys.  18(6), 063017 (2016).
[Crossref]

Orszak, J. S.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32(6), 479 (1995).
[Crossref]

Paul, H.

H. Paul, P. Törmä, T. Kiss, and I. Jex, “Photon chopping: new way to measure the quantum state of light,” Phys. Rev. Lett. 76(14), 2464–2467 (1996).
[Crossref] [PubMed]

Pe?rina, J.

O. Haderka, J. PeȈrina, M. Hamar, and J. PeȈrina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005).
[Crossref]

O. Haderka, J. PeȈrina, M. Hamar, and J. PeȈrina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005).
[Crossref]

Perina, J.

J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67(6), 061801 (2003).
[Crossref]

Pernice, W. H. P.

C. Lee, S. Ferrari, W. H. P. Pernice, and C. Rockstuhl, “Sub-poisson-binomial light,” Phys. Rev. A 94(5), 053844 (2016).
[Crossref]

Piacentini, F.

G. Brida, I. P. Degiovanni, F. Piacentini, V. Schettini, S. V. Polyakov, and A. Migdall, “Scalable multiplexed detector system for high-rate telecom-band single-photon detection,” Rev. Sci. Instruments 80(11), 116103 (2009).
[Crossref]

Pittman, T. B.

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number-resolving detection using time-multiplexing,” J. Mod. Opt. 519–101499–1515 (2004).
[Crossref]

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68(4), 043814 (2003).
[Crossref]

Polyakov, S. V.

G. Brida, I. P. Degiovanni, F. Piacentini, V. Schettini, S. V. Polyakov, and A. Migdall, “Scalable multiplexed detector system for high-rate telecom-band single-photon detection,” Rev. Sci. Instruments 80(11), 116103 (2009).
[Crossref]

V. Schettini, S. V. Polyakov, I. P. Degiovanni, G. Brida, S. Castelletto, and A. L. Migdall, “Implementing a multiplexed system of detectors for higher photon counting rates,” IEEE J. Sel. Top. Quantum Electron. 13(4), 978–983 (2007).
[Crossref]

Pomarico, E.

Ramos, R. V.

G. A. P. Thé and R. V. Ramos, “Multiple-photon number resolving detector using fibre ring and single-photon detector,” J. Mod. Opt. 54(8), 1187–1202 (2007).
[Crossref]

Rehacek, J.

G. Harder, C. Silberhorn, J. Rehacek, Z. Hradil, L. Motka, B. Stoklasa, and L. L. Sánchez-Soto, “Time-multiplexed measurements of nonclassical light at telecom wavelengths,” Phys. Rev. A 90(4), 042105 (2014).
[Crossref]

Rehácek, J.

J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67(6), 061801 (2003).
[Crossref]

Renema, J. J.

J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
[Crossref]

Rockstuhl, C.

C. Lee, S. Ferrari, W. H. P. Pernice, and C. Rockstuhl, “Sub-poisson-binomial light,” Phys. Rev. A 94(5), 053844 (2016).
[Crossref]

Sánchez-Soto, L. L.

G. Harder, C. Silberhorn, J. Rehacek, Z. Hradil, L. Motka, B. Stoklasa, and L. L. Sánchez-Soto, “Time-multiplexed measurements of nonclassical light at telecom wavelengths,” Phys. Rev. A 90(4), 042105 (2014).
[Crossref]

Sanguinetti, B.

Schettini, V.

G. Brida, I. P. Degiovanni, F. Piacentini, V. Schettini, S. V. Polyakov, and A. Migdall, “Scalable multiplexed detector system for high-rate telecom-band single-photon detection,” Rev. Sci. Instruments 80(11), 116103 (2009).
[Crossref]

S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, “Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array,” J. Mod. Opt. 542–3337–352 (2007).
[Crossref]

V. Schettini, S. V. Polyakov, I. P. Degiovanni, G. Brida, S. Castelletto, and A. L. Migdall, “Implementing a multiplexed system of detectors for higher photon counting rates,” IEEE J. Sel. Top. Quantum Electron. 13(4), 978–983 (2007).
[Crossref]

Seleznev, V.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Sergienko, A.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32(6), 479 (1995).
[Crossref]

Shaw, M. D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photon 7(3), 210–214 (2013).
[Crossref]

Shih, Y. H.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32(6), 479 (1995).
[Crossref]

Silberhorn, C.

M. Bohmann, J. Tiedau, T. Bartley, J. Sperling, C. Silberhorn, and W. Vogel, “Incomplete detection of nonclassical phase-space distributions,” Phys. Rev. Lett. 120(6), 063607 (2018).
[Crossref] [PubMed]

R. Kruse, J. Tiedau, T. J. Bartley, S. Barkhofen, and C. Silberhorn, “Limits of the time-multiplexed photon-counting method,” Phys. Rev. A 95(2), 023815 (2017).
[Crossref]

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys.  18(6), 063017 (2016).
[Crossref]

J. Sperling, M. Bohmann, W. Vogel, G. Harder, B. Brecht, V. Ansari, and C. Silberhorn, “Uncovering quantum correlations with time-multiplexed click detection,” Phys. Rev. Lett. 115(2), 023601 (2015).
[Crossref] [PubMed]

G. Harder, C. Silberhorn, J. Rehacek, Z. Hradil, L. Motka, B. Stoklasa, and L. L. Sánchez-Soto, “Time-multiplexed measurements of nonclassical light at telecom wavelengths,” Phys. Rev. A 90(4), 042105 (2014).
[Crossref]

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number-resolving detection using time-multiplexing,” J. Mod. Opt. 519–101499–1515 (2004).
[Crossref]

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28(23), 2387 (2003).
[Crossref] [PubMed]

Sliwa, C.

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number-resolving detection using time-multiplexing,” J. Mod. Opt. 519–101499–1515 (2004).
[Crossref]

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28(23), 2387 (2003).
[Crossref] [PubMed]

Sperling, J.

M. Bohmann, J. Tiedau, T. Bartley, J. Sperling, C. Silberhorn, and W. Vogel, “Incomplete detection of nonclassical phase-space distributions,” Phys. Rev. Lett. 120(6), 063607 (2018).
[Crossref] [PubMed]

J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
[Crossref]

J. Sperling, M. Bohmann, W. Vogel, G. Harder, B. Brecht, V. Ansari, and C. Silberhorn, “Uncovering quantum correlations with time-multiplexed click detection,” Phys. Rev. Lett. 115(2), 023601 (2015).
[Crossref] [PubMed]

J. Sperling, W. Vogel, and G. S. Agarwal, “Sub-binomial light,” Phys. Rev. Lett. 109(9), 093601 (2012).
[Crossref] [PubMed]

J. Sperling, W. Vogel, and G. S. Agarwal, “True photocounting statistics of multiple on-off detectors,” Phys. Rev. A 85(2), 023820 (2012).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photon 7(3), 210–214 (2013).
[Crossref]

Stevens, M.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Stoklasa, B.

G. Harder, C. Silberhorn, J. Rehacek, Z. Hradil, L. Motka, B. Stoklasa, and L. L. Sánchez-Soto, “Time-multiplexed measurements of nonclassical light at telecom wavelengths,” Phys. Rev. A 90(4), 042105 (2014).
[Crossref]

Takeuchi, S.

J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74(7), 902–904 (1999).
[Crossref]

Thé, G. A. P.

G. A. P. Thé and R. V. Ramos, “Multiple-photon number resolving detector using fibre ring and single-photon detector,” J. Mod. Opt. 54(8), 1187–1202 (2007).
[Crossref]

Thew, R.

Tiedau, J.

M. Bohmann, J. Tiedau, T. Bartley, J. Sperling, C. Silberhorn, and W. Vogel, “Incomplete detection of nonclassical phase-space distributions,” Phys. Rev. Lett. 120(6), 063607 (2018).
[Crossref] [PubMed]

R. Kruse, J. Tiedau, T. J. Bartley, S. Barkhofen, and C. Silberhorn, “Limits of the time-multiplexed photon-counting method,” Phys. Rev. A 95(2), 023815 (2017).
[Crossref]

Tomlin, N.

Törmä, P.

H. Paul, P. Törmä, T. Kiss, and I. Jex, “Photon chopping: new way to measure the quantum state of light,” Phys. Rev. Lett. 76(14), 2464–2467 (1996).
[Crossref] [PubMed]

Vayshenker, I.

I. Müller, R. D. Horansky, J. H. Lehman, S. W. Nam, I. Vayshenker, L. Werner, G. Wuebbeler, and M. White, “Verification of calibration methods for determining photon-counting detection efficiency using superconducting nano-wire single photon detectors,” Opt. Express 25(18), 21483–21495 (2017).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photon 7(3), 210–214 (2013).
[Crossref]

Verma, V. B.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photon 7(3), 210–214 (2013).
[Crossref]

Vogel, W.

M. Bohmann, J. Tiedau, T. Bartley, J. Sperling, C. Silberhorn, and W. Vogel, “Incomplete detection of nonclassical phase-space distributions,” Phys. Rev. Lett. 120(6), 063607 (2018).
[Crossref] [PubMed]

J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
[Crossref]

J. Sperling, M. Bohmann, W. Vogel, G. Harder, B. Brecht, V. Ansari, and C. Silberhorn, “Uncovering quantum correlations with time-multiplexed click detection,” Phys. Rev. Lett. 115(2), 023601 (2015).
[Crossref] [PubMed]

T. Kiesel and W. Vogel, “Complete nonclassicality test with a photon-number-resolving detector,” Phys. Rev. A 86(3), 032119 (2012).
[Crossref]

J. Sperling, W. Vogel, and G. S. Agarwal, “Sub-binomial light,” Phys. Rev. Lett. 109(9), 093601 (2012).
[Crossref] [PubMed]

J. Sperling, W. Vogel, and G. S. Agarwal, “True photocounting statistics of multiple on-off detectors,” Phys. Rev. A 85(2), 023820 (2012).
[Crossref]

Walmsley, I. A.

J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
[Crossref]

T. J. Bartley, G. Donati, X.-M. Jin, A. Datta, M. Barbieri, and I. A. Walmsley, “Direct observation of sub-binomial light,” Phys. Rev. Lett. 110(17), 173602 (2013).
[Crossref] [PubMed]

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number-resolving detection using time-multiplexing,” J. Mod. Opt. 519–101499–1515 (2004).
[Crossref]

K. Banaszek and I. A. Walmsley, “Photon counting with a loop detector,” Opt. Lett. 28(1), 52–54 (2003).
[Crossref] [PubMed]

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28(23), 2387 (2003).
[Crossref] [PubMed]

Wang, Z.

D. Liu, L. You, Y. He, C. Lv, S. Chen, L. Zhang, Z. Wang, and X. Xie, “Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system,” J. Opt. Soc. Am. B, JOSAB 31(4), 816–820 (2014).
[Crossref]

Webb, J. G.

Werner, L.

White, M.

Wuebbeler, G.

Xie, X.

D. Liu, L. You, Y. He, C. Lv, S. Chen, L. Zhang, Z. Wang, and X. Xie, “Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system,” J. Opt. Soc. Am. B, JOSAB 31(4), 816–820 (2014).
[Crossref]

Yamamoto, Y.

J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74(7), 902–904 (1999).
[Crossref]

You, L.

D. Liu, L. You, Y. He, C. Lv, S. Chen, L. Zhang, Z. Wang, and X. Xie, “Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system,” J. Opt. Soc. Am. B, JOSAB 31(4), 816–820 (2014).
[Crossref]

Zbinden, H.

Zhang, L.

D. Liu, L. You, Y. He, C. Lv, S. Chen, L. Zhang, Z. Wang, and X. Xie, “Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system,” J. Opt. Soc. Am. B, JOSAB 31(4), 816–820 (2014).
[Crossref]

Appl. Phys. Lett. (2)

J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74(7), 902–904 (1999).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Schettini, S. V. Polyakov, I. P. Degiovanni, G. Brida, S. Castelletto, and A. L. Migdall, “Implementing a multiplexed system of detectors for higher photon counting rates,” IEEE J. Sel. Top. Quantum Electron. 13(4), 978–983 (2007).
[Crossref]

J. Mod. Opt. (3)

G. A. P. Thé and R. V. Ramos, “Multiple-photon number resolving detector using fibre ring and single-photon detector,” J. Mod. Opt. 54(8), 1187–1202 (2007).
[Crossref]

D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number-resolving detection using time-multiplexing,” J. Mod. Opt. 519–101499–1515 (2004).
[Crossref]

S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, “Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array,” J. Mod. Opt. 542–3337–352 (2007).
[Crossref]

J. Opt. Soc. Am. B, JOSAB (2)

D. Liu, L. You, Y. He, C. Lv, S. Chen, L. Zhang, Z. Wang, and X. Xie, “Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system,” J. Opt. Soc. Am. B, JOSAB 31(4), 816–820 (2014).
[Crossref]

R. Chrapkiewicz, “Photon counts statistics of squeezed and multimode thermal states of light on multiplexed on-off detectors,” J. Opt. Soc. Am. B, JOSAB 31(10), B8–B13 (2014).
[Crossref]

Metrologia (2)

I. Müller, R. M. Klein, and L. Werner, “Traceable calibration of a fibre-coupled superconducting nano-wire single photon detector using characterized synchrotron radiation,” Metrologia 51(6), S329 (2014).
[Crossref]

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32(6), 479 (1995).
[Crossref]

Nat. Photon (1)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photon 7(3), 210–214 (2013).
[Crossref]

Nat. Photonics (1)

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

New J. Phys (1)

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys.  18(6), 063017 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (10)

G. Harder, C. Silberhorn, J. Rehacek, Z. Hradil, L. Motka, B. Stoklasa, and L. L. Sánchez-Soto, “Time-multiplexed measurements of nonclassical light at telecom wavelengths,” Phys. Rev. A 90(4), 042105 (2014).
[Crossref]

J. Sperling, W. Vogel, and G. S. Agarwal, “True photocounting statistics of multiple on-off detectors,” Phys. Rev. A 85(2), 023820 (2012).
[Crossref]

C. Lee, S. Ferrari, W. H. P. Pernice, and C. Rockstuhl, “Sub-poisson-binomial light,” Phys. Rev. A 94(5), 053844 (2016).
[Crossref]

J. Sperling, A. Eckstein, W. R. Clements, M. Moore, J. J. Renema, W. S. Kolthammer, S. W. Nam, A. Lita, T. Gerrits, I. A. Walmsley, G. S. Agarwal, and W. Vogel, “Identification of nonclassical properties of light with multiplexing layouts,” Phys. Rev. A 96(1), 013804 (2017).
[Crossref]

M. Mičuda, O. Haderka, and M. Ježek, “High-efficiency photon-number-resolving multichannel detector,” Phys. Rev. A 78(2), 025804 (2008).
[Crossref]

J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67(6), 061801 (2003).
[Crossref]

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68(4), 043814 (2003).
[Crossref]

R. Kruse, J. Tiedau, T. J. Bartley, S. Barkhofen, and C. Silberhorn, “Limits of the time-multiplexed photon-counting method,” Phys. Rev. A 95(2), 023815 (2017).
[Crossref]

O. Haderka, J. PeȈrina, M. Hamar, and J. PeȈrina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005).
[Crossref]

T. Kiesel and W. Vogel, “Complete nonclassicality test with a photon-number-resolving detector,” Phys. Rev. A 86(3), 032119 (2012).
[Crossref]

Phys. Rev. Lett. (5)

J. Sperling, W. Vogel, and G. S. Agarwal, “Sub-binomial light,” Phys. Rev. Lett. 109(9), 093601 (2012).
[Crossref] [PubMed]

H. Paul, P. Törmä, T. Kiss, and I. Jex, “Photon chopping: new way to measure the quantum state of light,” Phys. Rev. Lett. 76(14), 2464–2467 (1996).
[Crossref] [PubMed]

M. Bohmann, J. Tiedau, T. Bartley, J. Sperling, C. Silberhorn, and W. Vogel, “Incomplete detection of nonclassical phase-space distributions,” Phys. Rev. Lett. 120(6), 063607 (2018).
[Crossref] [PubMed]

J. Sperling, M. Bohmann, W. Vogel, G. Harder, B. Brecht, V. Ansari, and C. Silberhorn, “Uncovering quantum correlations with time-multiplexed click detection,” Phys. Rev. Lett. 115(2), 023601 (2015).
[Crossref] [PubMed]

T. J. Bartley, G. Donati, X.-M. Jin, A. Datta, M. Barbieri, and I. A. Walmsley, “Direct observation of sub-binomial light,” Phys. Rev. Lett. 110(17), 173602 (2013).
[Crossref] [PubMed]

Rev. Sci. Instruments (1)

G. Brida, I. P. Degiovanni, F. Piacentini, V. Schettini, S. V. Polyakov, and A. Migdall, “Scalable multiplexed detector system for high-rate telecom-band single-photon detection,” Rev. Sci. Instruments 80(11), 116103 (2009).
[Crossref]

Sov. J. Quantum Electron. (1)

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10(9), 1112 (1980).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Binary detector coupled to a resonator with coupling R(t). For active switching, R(t = 0) = 0, i.e. all the light is switched into the loop. Subsequently, R(t) = R is constant. In the passive case, R(t) = R is constant for all times.
Fig. 2
Fig. 2 (a) Click probability pj for a passive loop detector as a function of bin j, for a Fock state (blue), coherent state (green) and thermal state (orange), each with a mean photon number of n ¯ = 3 , outcoupling parameter R = 0.5, loop efficiency η = 0.9 and noise contribution ν = 10−3. (b) As above, but with the mean photon number n ¯ = 300 in each case (all other parameters remain the same). In general, each of these classes produces slightly different distribution of clicks per bin pj, for fixed mean photon number. This occurs due to the nonlinear response of the click detectors, and is most clearly identified close to the saturation regime (e.g. around bin 5) in (b).
Fig. 3
Fig. 3 Histogram of click probabilities on linear and log scales, for a coherent state input with an average of ∼250 000 photons per pulse to the passive loop detector with a repetition rate of 50 kHz. Error bars are based on estimating the success probability of a Binomial distribution (shown in black).
Fig. 4
Fig. 4 Detection of sub-binomial light with a dynamic loop detector. Heralded single photons and thermal states (from Periodically-poled Potassium Titanyl Phosphate - PPKTP waveguide), and coherent states are coupled into the loop with a fast Pockels cell polarization switch. Then on each pass through the loop a small fraction of the light, determined by the angle of the half-wave plate (HWP), is coupled out to the superconducting nanowire single photon detector (SNSPD).
Fig. 5
Fig. 5 Classicality parameters QPB and QB as measured by the loop detector for heralded PDC states, for (a) actively switched loop (with coupling parameter R = 0.1); and (b) passively switched loop (with R = 0.5). Error bars are based on 10000 Monte-Carlo-Simulations where the mean and variance are given by the measured ck distributions.
Fig. 6
Fig. 6 Schematic of calibration setup. n ¯ in indicates the mean photon number per pulse incident on the loop. n ¯ out is the mean photon number after the loop, summed over all bins. n ¯ out can be switched between an on-off detector or a power meter. Reliable switching is important for the calibration procedure as systematic errors can be produced during this process.
Fig. 7
Fig. 7 Histogram showing the bin probability in linear (top) and logarithmic (bottom) scale for a calibration measurement (a) and a highly attenuated input (b), using a passive loop. Red curves: Fit based on Eq. (11). The fit for the attenuated coherent state gives an estimate for R = 0.91370 ± 5 · 10−5 and η = 0.8615 ± 3 · 10−4.
Fig. 8
Fig. 8 Inferred mean photon number per pulse n ¯ j after the loop from measured click probabilities pj. Red line: mean value of n ¯ measured = 208011 . The first bins j ≤ 25 are excluded because dead times from back reflections reduced the count rate (see next section for further details).
Fig. 9
Fig. 9 Relative uncertainty contributions σ i 2 n ¯ 2 ( d n ¯ d i ) 2 from each error source, arising from uncertainty in the measured bin probabilities pj (red line), the loop loss η (green line), the loop reflectivity R (blue line) and the noise ν (gold line). Note that these quantities are evaluated using the a posteriori weighted mean n ¯ i.e. the mean photon number averaged over all j. The blue dots are the total relative error contributions, and red crosses the relative error in pj, evaluated at the individually determined photon number n ¯ out | j (in contrast to the solid lines). The deviation of these measures at low bin number j ≲ 25 arises from undercounting caused by back-reflection-induced inefficiency, resulting in an underestimate of the error associated with pj. This is discussed further in the following section.
Fig. 10
Fig. 10 (a) Raw time-tags for a bright pulse, zoomed in on the first 24 bins, showing clear excess counts outside of the expected loop bins (orange). This arises from spurious back-reflections present in the setup. (b) Click probability as a function of bin number. In early bins 2 ≤ j ≲ 20, back reflections cause a reduction in the expected counts since they induce dead time, which can be seen by a deviation from the expected click probabilities.
Fig. 11
Fig. 11 Single bin click probability as a function of incident number of photons per pulse and pulse repetition rate. Once latching occurs, no counts can be measured (upper right corner).

Tables (1)

Tables Icon

Table 1 Absolute and relative errors of the measured values

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

p j = ( 1 ν j ) n = 0 P ( j | n ) ρ in ( n ) + ν j ,
P ( j | n ) = { 1 [ 1 ( R η ) j 1 η ( 1 R ) ] n active , 1 [ 1 ( R η ) j 1 R 1 ( 1 R ) 2 ] n passive ,
P ( 1 | n ) = { 1 [ 1 η ( 1 R ) ] n active , 1 R n passive .
Q P B = N ( Δ c ) 2 c ( N c ) N 2 σ 2 1 ,
c = k = 0 N k c k ; ( Δ c ) 2 = k = 0 N ( k c ) 2 c k
m = 1 N j = 0 N p j ; σ 2 = 1 N j = 0 N ( p j m ) 2 .
p j Fock = 1 ( 1 ν ) [ 1 ( 1 R ) R 1 ( R η ) j ] n ¯
p j coh = 1 ( 1 ν ) exp [ ( 1 R ) R 1 ( η R ) j n ¯ ]
p j therm = 1 ( 1 ν ) R R + ( 1 R ) ( R η ) j n ¯
p j Fock = { 1 ( 1 ν ) R n ¯ j = 1 1 ( 1 ν ) [ 1 ( 1 R ) 2 R 1 ( R η ) j 1 ] n ¯ j 2
p j coh = { 1 ( 1 ν ) exp [ ( 1 R ) n ¯ ] j = 1 1 ( 1 ν ) exp [ ( 1 R ) 2 R 1 ( η R ) j 1 n ¯ ] j 2
p j therm = { 1 ( 1 ν ) 1 1 + ( 1 R ) n ¯ j = 1 1 ( 1 ν ) R 2 η R 2 η + ( 1 R ) 2 ( R η ) j n ¯ j 2
η SDE = n ¯ measured n dark counts n ¯ PM
n ¯ j = n ¯ in ( 1 R ) R j 1 η j ,
n ¯ j = { n ¯ in R j = 1 n ¯ in ( 1 R ) 2 R j 2 η j 1 j 2
n ¯ out = j = 1 n ¯ j .
n ¯ out = n ¯ in ( 1 + R ) η 1 + R η
n ¯ out = n ¯ in ( R η + 2 R η ) 1 + R η .
n ¯ out | j = R η ( R η ) j ln [ 1 ν 1 p j ] 1 + R η
n ¯ out | j = { ( R + η 2 η R ) ln [ 1 ν 1 p j ] R ( 1 R η ) j = 1 ( R + η 2 η R ) ( R η ) 1 j R 1 ln [ 1 ν 1 p j ] ( 1 R η ) ( R 1 ) 2 j 2 .
n ¯ measured = j w j n ¯ out | j j w j ,
w j = 1 σ n ¯ out | j 2 .
σ n ¯ out | j n ¯ out | j = [ σ p j 2 n ¯ out 2 | j ( d n ¯ out d p j ) 2 + σ R 2 n ¯ out 2 | j ( d n ¯ out d R ) 2 + σ η 2 n ¯ out 2 | j ( d n ¯ out d η ) 2 + σ ν 2 n ¯ out 2 | j ( d n ¯ out d ν ) 2 ] 1 / 2 | j = { σ p j 2 1 ( 1 p j ) 2 ln ( 1 ν 1 p j ) 2 + σ R 2 [ 1 j R + 1 R ( 1 R η ) + 1 R ( 1 2 R ) + η ( 1 2 R ) 2 2 R 1 3 R + 2 R 2 ] 2 + σ η 2 [ 1 j η + ( 1 R ) 2 ( R + η 2 R η ) ( 1 R η ) ] 2 + σ ν 2 1 ( 1 ν ) 2 ln ( 1 ν 1 p j ) 2 } 1 / 2 | j .
σ n ¯ = 1 ( j w j ) 1 / 2 .
j max log 10 [ ν n max ] log 10 [ η ( 1 R ) ] .

Metrics