Abstract

Dynamic tailoring of the propagating surface plasmon polaritons (SPPs) through incident angle modulation is proposed and numerically demonstrated. The generation and tailoring mechanism of the SPPs are discussed. The relationship formula between the incident angle and the generated SPP wave vector direction is theoretically derived. The correctness of the formula is verified with three different approaches using finite difference time domain method. Using this formula, the generated SPP wave vector direction can be precisely modulated by changing the incident angle. The precise modulation results of two dimensional Bessel-like SPP beam and SPP bottle beam array are given. The results can deepen the understanding of the generation and modulation mechanism of the SPPs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Manipulation of surface plasmon polaritons by phase modulation of incident light

G. H. Yuan, X.-C. Yuan, J. Bu, P. S. Tan, and Q. Wang
Opt. Express 19(1) 224-229 (2011)

Polarization-based dynamic manipulation of Bessel-like surface plasmon polaritons beam

Sen Wang, Shuyun Wang, and Yan Zhang
Opt. Express 26(5) 5461-5468 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [Crossref]
  4. B. Rothenhäusler and W. Knoll, “Surface-Plasmon Microscopy,” Nature 332(6165), 615–617 (1988).
    [Crossref]
  5. B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
    [Crossref] [PubMed]
  6. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  7. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  8. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
    [Crossref] [PubMed]
  9. K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93(9), 093103 (2008).
    [Crossref]
  10. J. Ji, Y. Meng, Y. Hu, J. Xu, S. Li, and G. Yang, “High-speed near-field photolithography at 16.85 nm linewidth with linearly polarized illumination,” Opt. Express 25(15), 17571–17580 (2017).
    [Crossref] [PubMed]
  11. L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
    [Crossref] [PubMed]
  12. A. E. Klein, A. Minovich, M. Steinert, N. Janunts, A. Tünnermann, D. N. Neshev, Y. S. Kivshar, and T. Pertsch, “Controlling plasmonic hot spots by interfering Airy beams,” Opt. Lett. 37(16), 3402–3404 (2012).
    [Crossref] [PubMed]
  13. A. Libster-Hershko, I. Epstein, and A. Arie, “Rapidly accelerating Mathieu and Weber surface plasmon beams,” Phys. Rev. Lett. 113(12), 123902 (2014).
    [Crossref] [PubMed]
  14. C. J. Regan, L. G. de Peralta, and A. A. Bernussi, “Two-dimensional Bessel-like surface plasmon-polariton beams,” J. Appl. Phys. 112(10), 103107 (2012).
    [Crossref]
  15. C. E. Garcia-Ortiz, V. Coello, Z. Han, and S. I. Bozhevolnyi, “Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles,” Opt. Lett. 38(6), 905–907 (2013).
    [Crossref] [PubMed]
  16. J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
    [Crossref] [PubMed]
  17. K. Xiao, S. Wei, C. Min, G. Yuan, S. W. Zhu, T. Lei, and X. C. Yuan, “Dynamic cosine-Gauss plasmonic beam through phase control,” Opt. Express 22(11), 13541–13546 (2014).
    [Crossref] [PubMed]
  18. I. Epstein, R. Remez, Y. Tsur, and A. Arie, “Generation of intensity-controlled two-dimensional shape-preserving beams in plasmonic lossy media,” Optica 3(1), 15–19 (2016).
    [Crossref]
  19. I. Epstein and A. Arie, “Arbitrary bending plasmonic light waves,” Phys. Rev. Lett. 112(2), 023903 (2014).
    [Crossref] [PubMed]
  20. P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36(16), 3191–3193 (2011).
    [Crossref] [PubMed]
  21. I. Epstein and A. Arie, “Dynamic generation of plasmonic bottle-beams with controlled shape,” Opt. Lett. 39(11), 3165–3168 (2014).
    [Crossref] [PubMed]
  22. S. Wei, J. Lin, R. Wang, Q. Wang, G. Yuan, L. Du, Y. Wang, X. Luo, M. Hong, C. Min, and X. Yuan, “Self-imaging generation of plasmonic void arrays,” Opt. Lett. 38(15), 2783–2785 (2013).
    [Crossref] [PubMed]
  23. P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, and F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
    [Crossref] [PubMed]
  24. S. Wei, J. Lin, Q. Wang, G. Yuan, L. Du, R. Wang, L. Xu, M. Hong, C. Min, and X. Yuan, “Singular diffraction-free surface plasmon beams generated by overlapping phase-shifted sources,” Opt. Lett. 38(7), 1182–1184 (2013).
    [Crossref] [PubMed]
  25. D. Egorov, B. S. Dennis, G. Blumberg, and M. I. Haftel, “Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures,” Phys. Rev. B 70(3), 033404 (2004).
    [Crossref]
  26. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  27. W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
    [Crossref] [PubMed]
  28. O. You, B. Bai, L. Sun, B. Shen, and Z. Zhu, “Versatile and tunable surface plasmon polariton excitation over a broad bandwidth with a simple metaline by external polarization modulation,” Opt. Express 24(19), 22061–22073 (2016).
    [Crossref] [PubMed]
  29. J. Li, C. Yang, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in spiral nanostructures under linearly polarized illumination,” Opt. Express 22(14), 16686–16693 (2014).
    [Crossref] [PubMed]
  30. G. H. Yuan, X.-C. Yuan, J. Bu, P. S. Tan, and Q. Wang, “Manipulation of surface plasmon polaritons by phase modulation of incident light,” Opt. Express 19(1), 224–229 (2011).
    [Crossref] [PubMed]
  31. C. F. Kuo and S. C. Chu, “Launching of surface plasmon polaritons with tunable directions and intensity ratios by phase control of dual fundamental Gaussian beams,” Opt. Express 25(9), 10456–10463 (2017).
    [Crossref] [PubMed]
  32. O. You, B. Bai, X. Wu, Z. Zhu, and Q. Wang, “A simple method for generating unidirectional surface plasmon polariton beams with arbitrary profiles,” Opt. Lett. 40(23), 5486–5489 (2015).
    [Crossref] [PubMed]
  33. Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
    [Crossref]
  34. D. Bar-Lev, A. Arie, J. Scheuer, and I. Epstein, “Efficient excitation and control of arbitrary surface plasmon polariton beams using one-dimensional metallic gratings,” J. Opt. Soc. Am. B 32(5), 923–932 (2015).
    [Crossref]
  35. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [Crossref] [PubMed]
  36. X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
    [Crossref] [PubMed]
  37. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 (2006).
    [Crossref]
  38. Q. Gan, Y. Gao, Q. Wang, L. Zhu, and F. Bartoli, “Surface plasmon waves generated by nanogrooves through spectral interference,” Phys. Rev. B 81(8), 085443 (2010).
    [Crossref]
  39. Q. Gan and F. J. Bartoli, “Bidirectional surface wave splitter at visible frequencies,” Opt. Lett. 35(24), 4181–4183 (2010).
    [Crossref] [PubMed]
  40. F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
    [Crossref]
  41. H. F. Hu, X. Zeng, Y. Zhao, J. Li, H. M. Song, G. F. Song, Y. Xu, and Q. Q. Gan, “Unidirectional coupling of surface plasmon polaritons by a single slit on a metal substrate,” IEEE Photonics Technol. Lett. 28(21), 2395–2398 (2016).
    [Crossref]

2017 (2)

2016 (3)

2015 (3)

2014 (6)

I. Epstein and A. Arie, “Dynamic generation of plasmonic bottle-beams with controlled shape,” Opt. Lett. 39(11), 3165–3168 (2014).
[Crossref] [PubMed]

K. Xiao, S. Wei, C. Min, G. Yuan, S. W. Zhu, T. Lei, and X. C. Yuan, “Dynamic cosine-Gauss plasmonic beam through phase control,” Opt. Express 22(11), 13541–13546 (2014).
[Crossref] [PubMed]

J. Li, C. Yang, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in spiral nanostructures under linearly polarized illumination,” Opt. Express 22(14), 16686–16693 (2014).
[Crossref] [PubMed]

A. Libster-Hershko, I. Epstein, and A. Arie, “Rapidly accelerating Mathieu and Weber surface plasmon beams,” Phys. Rev. Lett. 113(12), 123902 (2014).
[Crossref] [PubMed]

I. Epstein and A. Arie, “Arbitrary bending plasmonic light waves,” Phys. Rev. Lett. 112(2), 023903 (2014).
[Crossref] [PubMed]

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

2013 (7)

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

C. E. Garcia-Ortiz, V. Coello, Z. Han, and S. I. Bozhevolnyi, “Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles,” Opt. Lett. 38(6), 905–907 (2013).
[Crossref] [PubMed]

S. Wei, J. Lin, Q. Wang, G. Yuan, L. Du, R. Wang, L. Xu, M. Hong, C. Min, and X. Yuan, “Singular diffraction-free surface plasmon beams generated by overlapping phase-shifted sources,” Opt. Lett. 38(7), 1182–1184 (2013).
[Crossref] [PubMed]

P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, and F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
[Crossref] [PubMed]

S. Wei, J. Lin, R. Wang, Q. Wang, G. Yuan, L. Du, Y. Wang, X. Luo, M. Hong, C. Min, and X. Yuan, “Self-imaging generation of plasmonic void arrays,” Opt. Lett. 38(15), 2783–2785 (2013).
[Crossref] [PubMed]

2012 (3)

A. E. Klein, A. Minovich, M. Steinert, N. Janunts, A. Tünnermann, D. N. Neshev, Y. S. Kivshar, and T. Pertsch, “Controlling plasmonic hot spots by interfering Airy beams,” Opt. Lett. 37(16), 3402–3404 (2012).
[Crossref] [PubMed]

C. J. Regan, L. G. de Peralta, and A. A. Bernussi, “Two-dimensional Bessel-like surface plasmon-polariton beams,” J. Appl. Phys. 112(10), 103107 (2012).
[Crossref]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

Q. Gan and F. J. Bartoli, “Bidirectional surface wave splitter at visible frequencies,” Opt. Lett. 35(24), 4181–4183 (2010).
[Crossref] [PubMed]

Q. Gan, Y. Gao, Q. Wang, L. Zhu, and F. Bartoli, “Surface plasmon waves generated by nanogrooves through spectral interference,” Phys. Rev. B 81(8), 085443 (2010).
[Crossref]

2008 (3)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93(9), 093103 (2008).
[Crossref]

2007 (1)

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

2006 (3)

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 (2006).
[Crossref]

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
[Crossref]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

2005 (2)

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

2004 (1)

D. Egorov, B. S. Dennis, G. Blumberg, and M. I. Haftel, “Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures,” Phys. Rev. B 70(3), 033404 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1988 (1)

B. Rothenhäusler and W. Knoll, “Surface-Plasmon Microscopy,” Nature 332(6165), 615–617 (1988).
[Crossref]

Antoniou, N.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Arie, A.

Aulbach, J.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

Bai, B.

Bar-Lev, D.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartoli, F.

Q. Gan, Y. Gao, Q. Wang, L. Zhu, and F. Bartoli, “Surface plasmon waves generated by nanogrooves through spectral interference,” Phys. Rev. B 81(8), 085443 (2010).
[Crossref]

Bartoli, F. J.

Bernussi, A. A.

C. J. Regan, L. G. de Peralta, and A. A. Bernussi, “Two-dimensional Bessel-like surface plasmon-polariton beams,” J. Appl. Phys. 112(10), 103107 (2012).
[Crossref]

Blanchard, R.

Blumberg, G.

D. Egorov, B. S. Dennis, G. Blumberg, and M. I. Haftel, “Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures,” Phys. Rev. B 70(3), 033404 (2004).
[Crossref]

Bozhevolnyi, S. I.

C. E. Garcia-Ortiz, V. Coello, Z. Han, and S. I. Bozhevolnyi, “Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles,” Opt. Lett. 38(6), 905–907 (2013).
[Crossref] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Bu, J.

Capasso, F.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, and F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
[Crossref] [PubMed]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[Crossref] [PubMed]

Chen, Z.

Chu, S. C.

Chua, J. K.

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93(9), 093103 (2008).
[Crossref]

Cluzel, B.

P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, and F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
[Crossref] [PubMed]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[Crossref] [PubMed]

Coello, V.

de Fornel, F.

P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, and F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
[Crossref] [PubMed]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[Crossref] [PubMed]

de Peralta, L. G.

C. J. Regan, L. G. de Peralta, and A. A. Bernussi, “Two-dimensional Bessel-like surface plasmon-polariton beams,” J. Appl. Phys. 112(10), 103107 (2012).
[Crossref]

Dellinger, J.

P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, and F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
[Crossref] [PubMed]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[Crossref] [PubMed]

Dennis, B. S.

D. Egorov, B. S. Dennis, G. Blumberg, and M. I. Haftel, “Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures,” Phys. Rev. B 70(3), 033404 (2004).
[Crossref]

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Du, L.

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Egorov, D.

D. Egorov, B. S. Dennis, G. Blumberg, and M. I. Haftel, “Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures,” Phys. Rev. B 70(3), 033404 (2004).
[Crossref]

Epstein, I.

Gan, Q.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Q. Gan, Y. Gao, Q. Wang, L. Zhu, and F. Bartoli, “Surface plasmon waves generated by nanogrooves through spectral interference,” Phys. Rev. B 81(8), 085443 (2010).
[Crossref]

Q. Gan and F. J. Bartoli, “Bidirectional surface wave splitter at visible frequencies,” Opt. Lett. 35(24), 4181–4183 (2010).
[Crossref] [PubMed]

Gan, Q. Q.

H. F. Hu, X. Zeng, Y. Zhao, J. Li, H. M. Song, G. F. Song, Y. Xu, and Q. Q. Gan, “Unidirectional coupling of surface plasmon polaritons by a single slit on a metal substrate,” IEEE Photonics Technol. Lett. 28(21), 2395–2398 (2016).
[Crossref]

Gao, Y.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Q. Gan, Y. Gao, Q. Wang, L. Zhu, and F. Bartoli, “Surface plasmon waves generated by nanogrooves through spectral interference,” Phys. Rev. B 81(8), 085443 (2010).
[Crossref]

Garcia-Ortiz, C. E.

Garcia-Vidal, F. J.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Genevet, P.

P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, and F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
[Crossref] [PubMed]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[Crossref] [PubMed]

Gjonaj, B.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

Gonzalez, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Haftel, M. I.

D. Egorov, B. S. Dennis, G. Blumberg, and M. I. Haftel, “Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures,” Phys. Rev. B 70(3), 033404 (2004).
[Crossref]

Han, Z.

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Hong, M.

Hu, H.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Hu, H. F.

H. F. Hu, X. Zeng, Y. Zhao, J. Li, H. M. Song, G. F. Song, Y. Xu, and Q. Q. Gan, “Unidirectional coupling of surface plasmon polaritons by a single slit on a metal substrate,” IEEE Photonics Technol. Lett. 28(21), 2395–2398 (2016).
[Crossref]

Hu, Y.

Huang, C. B.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Huang, J. S.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Hugonin, J. P.

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 (2006).
[Crossref]

Janunts, N.

Ji, D.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Ji, J.

Jiang, S.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Johnson, P. M.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Kats, M. A.

Kivshar, Y. S.

Klein, A. E.

Knoll, W.

B. Rothenhäusler and W. Knoll, “Surface-Plasmon Microscopy,” Nature 332(6165), 615–617 (1988).
[Crossref]

Krenn, J. R.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Kuipers, L.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

Kuo, C. F.

Lagendijk, A.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

Lalanne, P.

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 (2006).
[Crossref]

Lee, H.

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
[Crossref]

Lei, T.

Li, J.

H. F. Hu, X. Zeng, Y. Zhao, J. Li, H. M. Song, G. F. Song, Y. Xu, and Q. Q. Gan, “Unidirectional coupling of surface plasmon polaritons by a single slit on a metal substrate,” IEEE Photonics Technol. Lett. 28(21), 2395–2398 (2016).
[Crossref]

J. Li, C. Yang, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in spiral nanostructures under linearly polarized illumination,” Opt. Express 22(14), 16686–16693 (2014).
[Crossref] [PubMed]

Li, L.

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

Li, S.

Li, T.

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

Libster-Hershko, A.

A. Libster-Hershko, I. Epstein, and A. Arie, “Rapidly accelerating Mathieu and Weber surface plasmon beams,” Phys. Rev. Lett. 113(12), 123902 (2014).
[Crossref] [PubMed]

Lin, F.

Lin, J.

S. Wei, J. Lin, R. Wang, Q. Wang, G. Yuan, L. Du, Y. Wang, X. Luo, M. Hong, C. Min, and X. Yuan, “Self-imaging generation of plasmonic void arrays,” Opt. Lett. 38(15), 2783–2785 (2013).
[Crossref] [PubMed]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

S. Wei, J. Lin, Q. Wang, G. Yuan, L. Du, R. Wang, L. Xu, M. Hong, C. Min, and X. Yuan, “Singular diffraction-free surface plasmon beams generated by overlapping phase-shifted sources,” Opt. Lett. 38(7), 1182–1184 (2013).
[Crossref] [PubMed]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[Crossref] [PubMed]

Liu, K.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Lu, C.

Luo, X.

Martin-Moreno, L.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Meng, Y.

Min, C.

Minovich, A.

Mosk, A. P.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

Mueller, J. P. B.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Murukeshan, V. M.

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93(9), 093103 (2008).
[Crossref]

Neshev, D. N.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pertsch, T.

Petit, M.

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Radko, I. P.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Regan, C. J.

C. J. Regan, L. G. de Peralta, and A. A. Bernussi, “Two-dimensional Bessel-like surface plasmon-polariton beams,” J. Appl. Phys. 112(10), 103107 (2012).
[Crossref]

Remez, R.

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Rothenhäusler, B.

B. Rothenhäusler and W. Knoll, “Surface-Plasmon Microscopy,” Nature 332(6165), 615–617 (1988).
[Crossref]

Scheuer, J.

She, A.

Shen, B.

Song, G. F.

H. F. Hu, X. Zeng, Y. Zhao, J. Li, H. M. Song, G. F. Song, Y. Xu, and Q. Q. Gan, “Unidirectional coupling of surface plasmon polaritons by a single slit on a metal substrate,” IEEE Photonics Technol. Lett. 28(21), 2395–2398 (2016).
[Crossref]

Song, H.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Song, H. M.

H. F. Hu, X. Zeng, Y. Zhao, J. Li, H. M. Song, G. F. Song, Y. Xu, and Q. Q. Gan, “Unidirectional coupling of surface plasmon polaritons by a single slit on a metal substrate,” IEEE Photonics Technol. Lett. 28(21), 2395–2398 (2016).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93(9), 093103 (2008).
[Crossref]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Steinert, M.

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Sun, L.

Tan, P. S.

Tsai, W. Y.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Tsur, Y.

Tünnermann, A.

Wang, Q.

Wang, R.

Wang, S.

Wang, S. M.

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

Wang, Y.

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Wei, S.

Wu, X.

Xiao, K.

Xu, J.

Xu, L.

Xu, Y.

H. F. Hu, X. Zeng, Y. Zhao, J. Li, H. M. Song, G. F. Song, Y. Xu, and Q. Q. Gan, “Unidirectional coupling of surface plasmon polaritons by a single slit on a metal substrate,” IEEE Photonics Technol. Lett. 28(21), 2395–2398 (2016).
[Crossref]

Yang, C.

Yang, G.

Yin, X.

You, O.

Yuan, G.

Yuan, G. H.

Yuan, X.

Yuan, X. C.

K. Xiao, S. Wei, C. Min, G. Yuan, S. W. Zhu, T. Lei, and X. C. Yuan, “Dynamic cosine-Gauss plasmonic beam through phase control,” Opt. Express 22(11), 13541–13546 (2014).
[Crossref] [PubMed]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, X.-C.

Zeng, X.

H. F. Hu, X. Zeng, Y. Zhao, J. Li, H. M. Song, G. F. Song, Y. Xu, and Q. Q. Gan, “Unidirectional coupling of surface plasmon polaritons by a single slit on a metal substrate,” IEEE Photonics Technol. Lett. 28(21), 2395–2398 (2016).
[Crossref]

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Zhang, N.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Zhang, P.

Zhang, X.

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36(16), 3191–3193 (2011).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Zhao, H.

Zhao, Y.

H. F. Hu, X. Zeng, Y. Zhao, J. Li, H. M. Song, G. F. Song, Y. Xu, and Q. Q. Gan, “Unidirectional coupling of surface plasmon polaritons by a single slit on a metal substrate,” IEEE Photonics Technol. Lett. 28(21), 2395–2398 (2016).
[Crossref]

Zhu, L.

Q. Gan, Y. Gao, Q. Wang, L. Zhu, and F. Bartoli, “Surface plasmon waves generated by nanogrooves through spectral interference,” Phys. Rev. B 81(8), 085443 (2010).
[Crossref]

Zhu, S. N.

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

Zhu, S. W.

Zhu, X.

Zhu, Z.

Appl. Phys. Lett. (2)

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93(9), 093103 (2008).
[Crossref]

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

H. F. Hu, X. Zeng, Y. Zhao, J. Li, H. M. Song, G. F. Song, Y. Xu, and Q. Q. Gan, “Unidirectional coupling of surface plasmon polaritons by a single slit on a metal substrate,” IEEE Photonics Technol. Lett. 28(21), 2395–2398 (2016).
[Crossref]

J. Appl. Phys. (1)

C. J. Regan, L. G. de Peralta, and A. A. Bernussi, “Two-dimensional Bessel-like surface plasmon-polariton beams,” J. Appl. Phys. 112(10), 103107 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (3)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Nat. Phys. (2)

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 (2006).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

B. Rothenhäusler and W. Knoll, “Surface-Plasmon Microscopy,” Nature 332(6165), 615–617 (1988).
[Crossref]

Opt. Express (7)

K. Xiao, S. Wei, C. Min, G. Yuan, S. W. Zhu, T. Lei, and X. C. Yuan, “Dynamic cosine-Gauss plasmonic beam through phase control,” Opt. Express 22(11), 13541–13546 (2014).
[Crossref] [PubMed]

J. Ji, Y. Meng, Y. Hu, J. Xu, S. Li, and G. Yang, “High-speed near-field photolithography at 16.85 nm linewidth with linearly polarized illumination,” Opt. Express 25(15), 17571–17580 (2017).
[Crossref] [PubMed]

O. You, B. Bai, L. Sun, B. Shen, and Z. Zhu, “Versatile and tunable surface plasmon polariton excitation over a broad bandwidth with a simple metaline by external polarization modulation,” Opt. Express 24(19), 22061–22073 (2016).
[Crossref] [PubMed]

J. Li, C. Yang, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in spiral nanostructures under linearly polarized illumination,” Opt. Express 22(14), 16686–16693 (2014).
[Crossref] [PubMed]

G. H. Yuan, X.-C. Yuan, J. Bu, P. S. Tan, and Q. Wang, “Manipulation of surface plasmon polaritons by phase modulation of incident light,” Opt. Express 19(1), 224–229 (2011).
[Crossref] [PubMed]

C. F. Kuo and S. C. Chu, “Launching of surface plasmon polaritons with tunable directions and intensity ratios by phase control of dual fundamental Gaussian beams,” Opt. Express 25(9), 10456–10463 (2017).
[Crossref] [PubMed]

P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, and F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
[Crossref] [PubMed]

Opt. Lett. (8)

S. Wei, J. Lin, Q. Wang, G. Yuan, L. Du, R. Wang, L. Xu, M. Hong, C. Min, and X. Yuan, “Singular diffraction-free surface plasmon beams generated by overlapping phase-shifted sources,” Opt. Lett. 38(7), 1182–1184 (2013).
[Crossref] [PubMed]

O. You, B. Bai, X. Wu, Z. Zhu, and Q. Wang, “A simple method for generating unidirectional surface plasmon polariton beams with arbitrary profiles,” Opt. Lett. 40(23), 5486–5489 (2015).
[Crossref] [PubMed]

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36(16), 3191–3193 (2011).
[Crossref] [PubMed]

I. Epstein and A. Arie, “Dynamic generation of plasmonic bottle-beams with controlled shape,” Opt. Lett. 39(11), 3165–3168 (2014).
[Crossref] [PubMed]

S. Wei, J. Lin, R. Wang, Q. Wang, G. Yuan, L. Du, Y. Wang, X. Luo, M. Hong, C. Min, and X. Yuan, “Self-imaging generation of plasmonic void arrays,” Opt. Lett. 38(15), 2783–2785 (2013).
[Crossref] [PubMed]

A. E. Klein, A. Minovich, M. Steinert, N. Janunts, A. Tünnermann, D. N. Neshev, Y. S. Kivshar, and T. Pertsch, “Controlling plasmonic hot spots by interfering Airy beams,” Opt. Lett. 37(16), 3402–3404 (2012).
[Crossref] [PubMed]

C. E. Garcia-Ortiz, V. Coello, Z. Han, and S. I. Bozhevolnyi, “Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles,” Opt. Lett. 38(6), 905–907 (2013).
[Crossref] [PubMed]

Q. Gan and F. J. Bartoli, “Bidirectional surface wave splitter at visible frequencies,” Opt. Lett. 35(24), 4181–4183 (2010).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. B (2)

Q. Gan, Y. Gao, Q. Wang, L. Zhu, and F. Bartoli, “Surface plasmon waves generated by nanogrooves through spectral interference,” Phys. Rev. B 81(8), 085443 (2010).
[Crossref]

D. Egorov, B. S. Dennis, G. Blumberg, and M. I. Haftel, “Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures,” Phys. Rev. B 70(3), 033404 (2004).
[Crossref]

Phys. Rev. Lett. (5)

I. Epstein and A. Arie, “Arbitrary bending plasmonic light waves,” Phys. Rev. Lett. 112(2), 023903 (2014).
[Crossref] [PubMed]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[Crossref] [PubMed]

A. Libster-Hershko, I. Epstein, and A. Arie, “Rapidly accelerating Mathieu and Weber surface plasmon beams,” Phys. Rev. Lett. 113(12), 123902 (2014).
[Crossref] [PubMed]

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Focusing and scanning microscopy with propagating surface plasmons,” Phys. Rev. Lett. 110(26), 266804 (2013).
[Crossref] [PubMed]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Sci. Rep. (1)

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Science (2)

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of a double groove structure and the coordinate definition. The incident light is illuminated from the substrate side with an oblique incident angle γ. The polarization direction of the incident light is indicated with the double arrow. (b) and (c) Schematic diagrams of vector relationship between the wave vector of the incident light and the generated SPP. The SPP wave vector direction is indicated with a red arrow (OH, OF). In Fig. 1(b) ko is on the x-z plane and in Fig. 1(c) ko is on the y-z plane.
Fig. 2
Fig. 2 The generated SPP spatial phase distributions on x-y plane with different incident angle γ. A groove with θ = 45°, L = 10um is used as a coupling structure and is illuminated under (a) normal incidence, γ = 0°, (b) left oblique incidence, γ = 47.9° and (c) right oblique incidence, γ = 30.5°. ko is on the x-z plane.
Fig. 3
Fig. 3 2D optical field distributions of the SPP wave generated by the double groove structure. (a) θ = 10°, under left oblique incidence, γ = 30° and (b) θ = 14.7°, γ = 0°. The normalized light intensity values versus y-axis at (c) x = 5 um, (d) x = 15 um. ko is on the x-z plane.
Fig. 4
Fig. 4 Demonstration the correctness of formulas (2), (3) and (4). 2D optical field distributions of the SPP waves generated by double groove structures, (a) θ = 15°, under left oblique incidence γ = 5°, (b) equivalent virtual double groove structure with left groove θ = 10.4° and right groove θ = 19.6°, γ = 0°. (c) The normalized light intensity values versus x axis at y = 0 um.
Fig. 5
Fig. 5 Simulation results of the dynamic modulation of non-diffracting 2D Bessel-like SPP beams by varying the incident angles. The wave vector direction of incident light changes from (a) right oblique incidence γ = 15° to (b) normal incidence γ = 0°, and then changes to (c) left oblique incidence γ = 30°, respectively.
Fig. 6
Fig. 6 The simulated results of the dynamic modulation of non-diffracting 2D SPP bottle beams by varying the incident angle. The half cross angle is set to θ = 45°. (a-c) right oblique incidence γ = 30°, 20°, 10°, (d) normal incidence γ = 0° and (e-g) left oblique incidence γ = 10°, 20°, 30°. (h) The curves of the normalized light intensity along x axis at y = 0 um.
Fig. 7
Fig. 7 The relation curves between the maximum incident angle γ and the half cross angle of the symmetrical grooves. (a) and (c) The relation curve between the half angle θleft (or θright) of the equivalent virtual groove with the θ. (b) The relation curve between the maximum incident angle γ with the θ. (a) and (b) ko is on the x-z plane. (c) and (d) ko is on the y-z plane.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

sin(α)=sin(β)= k in sin(θ) k spp = k o sin(γ)sin(θ) k spp .
sin(α)=sin(β)= k in sin(θ) k spp = k o sin(γ)cos(θ) k spp .
θ left =θ+α.
θ right =θβ.
Δy= λ spp 2sin(θ) = 490nm 2sin( 14.7 ) =965.5nm.
Δx= λ spp 1cos(θ) .

Metrics