Abstract

A liquid crystal (LC) lens array with high light control power and a large aperture using a composited alignment layer is proposed. In our design, the alignment layer is not only used for getting a uniform arrangement of LC molecule, but also for getting a lens-like refractive index distribution in the LC layer when a voltage is applied. Through simple technology processes, a tunable focal length LC lens array with a millimeter scale diameter can be achieved. Furthermore, the maximum phase difference of the proposed LC lens array can achieve 105.38π. So, the proposed LC lens array has a high light control power.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large aperture liquid crystal lens with an imbedded floating ring electrode

Che-Ju Hsu, Jyun-Jia Jhang, and Chi-Yen Huang
Opt. Express 24(15) 16722-16731 (2016)

Low-voltage tunable liquid crystal lens fabricated with self-assembled polymer gravel arrays

Che Ju Hsu, Pravinraj Selvaraj, and Chi Yen Huang
Opt. Express 28(5) 6582-6593 (2020)

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  2. N. A. Riza and M. C. Dejule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19(14), 1013–1015 (1994).
    [Crossref] [PubMed]
  3. T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
    [Crossref] [PubMed]
  4. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(41), L571–L573 (2002).
    [Crossref]
  5. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
    [Crossref]
  6. N. A. Riza and S. A. Khan, “Programmable high-speed polarization multiplexed optical scanner,” Opt. Lett. 28(7), 561–563 (2003).
    [Crossref] [PubMed]
  7. H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
    [Crossref]
  8. V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
    [Crossref]
  9. C. H. Lin, C. H. Chen, R. H. Chiang, I. M. Jiang, C. T. Kuo, and C. Y. Huang, “Dual-frequency liquid-crystal lenses based on a surface-relief dielectric structure on an electrode,” IEEE Photonic. Tech. L 23(24), 1875–1877 (2011).
    [Crossref]
  10. J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
    [Crossref] [PubMed]
  11. W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35(24), 4127–4129 (2010).
    [Crossref] [PubMed]
  12. K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127–130 (2014).
    [Crossref] [PubMed]
  13. L. Li, D. Bryant, T. van Heugten, and P. J. Bos, “Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings,” Appl. Opt. 52(9), 1978–1986 (2013).
    [Crossref] [PubMed]
  14. L. Li, D. Bryant, T. Van Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21(7), 8371–8381 (2013).
    [Crossref] [PubMed]
  15. C. J. Hsu, J. J. Jhang, and C. Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
    [Crossref] [PubMed]
  16. X. Q. Wang, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable Fresnel lens based on micropatterned alignment,” Opt. Lett. 38(11), 1775–1777 (2013).
    [Crossref] [PubMed]
  17. X. Zhao, C. Liu, D. Zhang, and Y. Luo, “Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab,” Optik (Stuttg.) 124(23), 6132–6139 (2013).
    [Crossref]
  18. C. W. Chen, M. Cho, Y. P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37(19), 4125–4127 (2012).
    [Crossref] [PubMed]
  19. T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Opt. Lett. 41(14), 3265–3268 (2016).
    [Crossref] [PubMed]
  20. N. A. Riza and M. C. Dejule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19(14), 1013–1015 (1994).
    [Crossref] [PubMed]
  21. L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2(2), 130–154 (2014).
    [Crossref]
  22. C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19(18), 17402–17407 (2011).
    [Crossref] [PubMed]
  23. N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” J. Disp. Technol. 12(10), 1008–1012 (2016).
    [Crossref]
  24. S. Kang, X. Zhang, C. Xie, and T. Zhang, “Liquid-crystal microlens with focus swing and low driving voltage,” Appl. Opt. 52(3), 381–387 (2013).
    [Crossref] [PubMed]
  25. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
    [Crossref] [PubMed]
  26. Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
    [Crossref]
  27. J. P. Cui, H. X. Fan, and Q. H. Wang, “A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure,” Liq. Cryst. 44(4), 643–647 (2017).
    [Crossref]
  28. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
    [Crossref] [PubMed]
  29. O. Sova, V. Reshetnyak, T. Galstian, and K. Asatryan, “Electrically variable liquid crystal lens based on the dielectric dividing principle,” J. Opt. Soc. Am. A 32(5), 803–808 (2015).
    [Crossref] [PubMed]
  30. O. Sova, V. Reshetnyak, and T. Galstian, “Theoretical analyses of a liquid crystal adaptive lens with optically hidden dielectric double layer,” J. Opt. Soc. Am. A 34(3), 424–431 (2017).
    [Crossref] [PubMed]
  31. O. Sova, V. Reshetnyak, and T. Galstian, “Modulation transfer function of liquid crystal microlenses and microprisms using double dielectric layer,” Appl. Opt. 57(1), 18–24 (2018).
    [Crossref] [PubMed]
  32. H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
    [Crossref] [PubMed]
  33. J. H. Na, S. C. Park, S. U. Kim, Y. Choi, and S. D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
    [Crossref] [PubMed]
  34. Y. F. Wang, Y. Q. Guo, Y. X. Ren, M. Z. Fu, J. L. Zhu, and Y. B. Sun, “Study on polyvinylidene fluoride as alignment layer in twist-nematic liquid crystal display” Liq. Cryst. (2017).
  35. Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
    [Crossref]

2018 (1)

2017 (3)

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

J. P. Cui, H. X. Fan, and Q. H. Wang, “A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure,” Liq. Cryst. 44(4), 643–647 (2017).
[Crossref]

O. Sova, V. Reshetnyak, and T. Galstian, “Theoretical analyses of a liquid crystal adaptive lens with optically hidden dielectric double layer,” J. Opt. Soc. Am. A 34(3), 424–431 (2017).
[Crossref] [PubMed]

2016 (4)

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” J. Disp. Technol. 12(10), 1008–1012 (2016).
[Crossref]

T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Opt. Lett. 41(14), 3265–3268 (2016).
[Crossref] [PubMed]

C. J. Hsu, J. J. Jhang, and C. Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
[Crossref] [PubMed]

V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
[Crossref]

2015 (1)

2014 (2)

L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2(2), 130–154 (2014).
[Crossref]

K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127–130 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (3)

2011 (3)

2010 (3)

2005 (1)

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

2003 (2)

H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

N. A. Riza and S. A. Khan, “Programmable high-speed polarization multiplexed optical scanner,” Opt. Lett. 28(7), 561–563 (2003).
[Crossref] [PubMed]

2002 (2)

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(41), L571–L573 (2002).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
[Crossref]

1997 (1)

1994 (2)

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Algorri, J. F.

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Asatryan, K.

Bagramyan, A.

Bennis, N.

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Bezruchenko, V. S.

V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
[Crossref]

Bos, P. J.

Bryant, D.

Careau, S.

Chen, C. H.

C. H. Lin, C. H. Chen, R. H. Chiang, I. M. Jiang, C. T. Kuo, and C. Y. Huang, “Dual-frequency liquid-crystal lenses based on a surface-relief dielectric structure on an electrode,” IEEE Photonic. Tech. L 23(24), 1875–1877 (2011).
[Crossref]

Chen, C. W.

C. W. Chen, M. Cho, Y. P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37(19), 4125–4127 (2012).
[Crossref] [PubMed]

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Chiang, R. H.

C. H. Lin, C. H. Chen, R. H. Chiang, I. M. Jiang, C. T. Kuo, and C. Y. Huang, “Dual-frequency liquid-crystal lenses based on a surface-relief dielectric structure on an electrode,” IEEE Photonic. Tech. L 23(24), 1875–1877 (2011).
[Crossref]

Chien, L. C.

Chigrinov, V. G.

Cho, M.

Choi, Y.

Cotovanu, M.

Cui, J. P.

J. P. Cui, H. X. Fan, and Q. H. Wang, “A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure,” Liq. Cryst. 44(4), 643–647 (2017).
[Crossref]

Dejule, M. C.

Fan, H. X.

J. P. Cui, H. X. Fan, and Q. H. Wang, “A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure,” Liq. Cryst. 44(4), 643–647 (2017).
[Crossref]

Fan, Y. H.

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

Galstian, T.

Hong, J.

Hong, K.

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
[Crossref]

Hsu, C. J.

Huang, C. Y.

C. J. Hsu, J. J. Jhang, and C. Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
[Crossref] [PubMed]

C. H. Lin, C. H. Chen, R. H. Chiang, I. M. Jiang, C. T. Kuo, and C. Y. Huang, “Dual-frequency liquid-crystal lenses based on a surface-relief dielectric structure on an electrode,” IEEE Photonic. Tech. L 23(24), 1875–1877 (2011).
[Crossref]

Huang, S.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” J. Disp. Technol. 12(10), 1008–1012 (2016).
[Crossref]

Huang, Y. P.

C. W. Chen, M. Cho, Y. P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37(19), 4125–4127 (2012).
[Crossref] [PubMed]

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Jang, C.

Jaroszewicz, L. R.

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Javidi, B.

Jhang, J. J.

Jiang, I. M.

C. H. Lin, C. H. Chen, R. H. Chiang, I. M. Jiang, C. T. Kuo, and C. Y. Huang, “Dual-frequency liquid-crystal lenses based on a surface-relief dielectric structure on an electrode,” IEEE Photonic. Tech. L 23(24), 1875–1877 (2011).
[Crossref]

Kang, S.

Khan, S. A.

Kim, S. U.

Kuo, C. T.

C. H. Lin, C. H. Chen, R. H. Chiang, I. M. Jiang, C. T. Kuo, and C. Y. Huang, “Dual-frequency liquid-crystal lenses based on a surface-relief dielectric structure on an electrode,” IEEE Photonic. Tech. L 23(24), 1875–1877 (2011).
[Crossref]

Kwok, H. S.

Lee, B.

Lee, C. T.

Lee, S. D.

Li, D. H.

Li, J.

Li, L.

Li, X.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” J. Disp. Technol. 12(10), 1008–1012 (2016).
[Crossref]

Li, Y.

Liang, X.

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

Liao, L. Y.

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Lin, C. H.

C. H. Lin, C. H. Chen, R. H. Chiang, I. M. Jiang, C. T. Kuo, and C. Y. Huang, “Dual-frequency liquid-crystal lenses based on a surface-relief dielectric structure on an electrode,” IEEE Photonic. Tech. L 23(24), 1875–1877 (2011).
[Crossref]

Lin, H. C.

Lin, H. Y.

Lin, Y. H.

Liu, C.

X. Zhao, C. Liu, D. Zhang, and Y. Luo, “Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab,” Optik (Stuttg.) 124(23), 6132–6139 (2013).
[Crossref]

Liu, S.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” J. Disp. Technol. 12(10), 1008–1012 (2016).
[Crossref]

Lu, J.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” J. Disp. Technol. 12(10), 1008–1012 (2016).
[Crossref]

Luo, Y.

X. Zhao, C. Liu, D. Zhang, and Y. Luo, “Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab,” Optik (Stuttg.) 124(23), 6132–6139 (2013).
[Crossref]

Mahilny, U. V.

V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
[Crossref]

Masuda, S.

Morawiak, P.

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Murauski, A. A.

V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
[Crossref]

Muravsky, A. A.

V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
[Crossref]

Na, J. H.

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
[Crossref]

T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
[Crossref] [PubMed]

Park, S. C.

Presniakov, V.

Presnyakov, V.

Ren, H.

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

Reshetnyak, V.

Riza, N. A.

Rong, N.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” J. Disp. Technol. 12(10), 1008–1012 (2016).
[Crossref]

Sánchez-Pena, J. M.

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Sato, S.

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(41), L571–L573 (2002).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
[Crossref]

T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
[Crossref] [PubMed]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Sova, O.

Srivastava, A. K.

Stankevich, A. I.

V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
[Crossref]

Su, Y.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” J. Disp. Technol. 12(10), 1008–1012 (2016).
[Crossref]

Thiboutot, M.

Tork, A.

Urruchi, V.

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

van Heugten, T.

Wang, A. H.

Wang, B.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
[Crossref]

Wang, H.

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

Wang, Q. H.

J. P. Cui, H. X. Fan, and Q. H. Wang, “A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure,” Liq. Cryst. 44(4), 643–647 (2017).
[Crossref]

W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35(24), 4127–4129 (2010).
[Crossref] [PubMed]

Wang, X. Q.

Wu, S. T.

C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19(18), 17402–17407 (2011).
[Crossref] [PubMed]

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref] [PubMed]

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

Xie, C.

Ye, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
[Crossref]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(41), L571–L573 (2002).
[Crossref]

Yeom, J.

Yuan, Y.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” J. Disp. Technol. 12(10), 1008–1012 (2016).
[Crossref]

Zhang, D.

X. Zhao, C. Liu, D. Zhang, and Y. Luo, “Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab,” Optik (Stuttg.) 124(23), 6132–6139 (2013).
[Crossref]

Zhang, T.

Zhang, X.

Zhao, W. X.

Zhao, X.

X. Zhao, C. Liu, D. Zhang, and Y. Luo, “Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab,” Optik (Stuttg.) 124(23), 6132–6139 (2013).
[Crossref]

Zhou, P.

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” J. Disp. Technol. 12(10), 1008–1012 (2016).
[Crossref]

Zohrabyan, A.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

IEEE Photonic. Tech. L (1)

C. H. Lin, C. H. Chen, R. H. Chiang, I. M. Jiang, C. T. Kuo, and C. Y. Huang, “Dual-frequency liquid-crystal lenses based on a surface-relief dielectric structure on an electrode,” IEEE Photonic. Tech. L 23(24), 1875–1877 (2011).
[Crossref]

J. Disp. Technol. (2)

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

N. Rong, Y. Li, Y. Yuan, X. Li, P. Zhou, S. Huang, S. Liu, J. Lu, and Y. Su, “Polymer-stabilized blue-phase liquid-crystal Fresnel lens cured by patterned light using a spatial light modulator,” J. Disp. Technol. 12(10), 1008–1012 (2016).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Soc. Inf. Disp. (1)

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Jpn. J. Appl. Phys. (3)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(41), L571–L573 (2002).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
[Crossref]

Liq. Cryst. (1)

J. P. Cui, H. X. Fan, and Q. H. Wang, “A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure,” Liq. Cryst. 44(4), 643–647 (2017).
[Crossref]

Liq. Cryst. Rev. (1)

L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2(2), 130–154 (2014).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

V. S. Bezruchenko, A. A. Muravsky, A. A. Murauski, A. I. Stankevich, and U. V. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 626(1), 222–228 (2016).
[Crossref]

Opt. Express (7)

Opt. Lett. (9)

T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
[Crossref] [PubMed]

N. A. Riza and S. A. Khan, “Programmable high-speed polarization multiplexed optical scanner,” Opt. Lett. 28(7), 561–563 (2003).
[Crossref] [PubMed]

N. A. Riza and M. C. Dejule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19(14), 1013–1015 (1994).
[Crossref] [PubMed]

N. A. Riza and M. C. Dejule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19(14), 1013–1015 (1994).
[Crossref] [PubMed]

X. Q. Wang, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable Fresnel lens based on micropatterned alignment,” Opt. Lett. 38(11), 1775–1777 (2013).
[Crossref] [PubMed]

T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Opt. Lett. 41(14), 3265–3268 (2016).
[Crossref] [PubMed]

W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35(24), 4127–4129 (2010).
[Crossref] [PubMed]

C. W. Chen, M. Cho, Y. P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37(19), 4125–4127 (2012).
[Crossref] [PubMed]

K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127–130 (2014).
[Crossref] [PubMed]

Optik (Stuttg.) (1)

X. Zhao, C. Liu, D. Zhang, and Y. Luo, “Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab,” Optik (Stuttg.) 124(23), 6132–6139 (2013).
[Crossref]

Sci. Rep. (1)

J. F. Algorri, N. Bennis, V. Urruchi, P. Morawiak, J. M. Sánchez-Pena, and L. R. Jaroszewicz, “Tunable liquid crystal multifocal microlens array,” Sci. Rep. 7(1), 17318 (2017).
[Crossref] [PubMed]

Other (1)

Y. F. Wang, Y. Q. Guo, Y. X. Ren, M. Z. Fu, J. L. Zhu, and Y. B. Sun, “Study on polyvinylidene fluoride as alignment layer in twist-nematic liquid crystal display” Liq. Cryst. (2017).

Supplementary Material (1)

NameDescription
» Visualization 1       The video of large aperture liquid crystal lens array using a composited alignment layer when the applied voltage is increased.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the liquid crystal lens array using a CAL. (a) Stereogram of the LC lens array. (b) Cross section of the LC lens array in the voltage-off state. (c) Cross section of the LC lens array in the voltage-on state. (d) Electric field distribution in the LC layer.
Fig. 2
Fig. 2 Fabrication of the CAL. (a) Trapezoid protrusions by lithography. (b) Trapezoid protrusions are turned into convex protrusions after a high dielectric layer being coated.
Fig. 3
Fig. 3 Director distribution in the cross section of the LC layer with different applied voltages: (a) 11V, (b) 12V, (c) 13V, (d) 14V.
Fig. 4
Fig. 4 Refractive index distribution in the in the cross section of the LC layer with different applied voltages: (a) 11V, (b) 12V, (c) 13V, (d) 14V.
Fig. 5
Fig. 5 Phase profiles of the proposed LC lens array when the applied voltages are different: (a) 11V, (b) 12V, (c) 13V, (d) 14V.
Fig. 6
Fig. 6 Picture of the proposed LC lens array: (a) On state with an applied voltage. (b) Off state without an applied voltage (see Visualization 1).
Fig. 7
Fig. 7 CCD images of the proposed LC lens at different applied voltages: (a)11V, (b) 12V, (c)13V, (d)14V.
Fig. 8
Fig. 8 Phase distribution difference (2π) of the proposed LC lens array when the applied voltages are different: (a) 11V, (b) 12V, (c) 13V, (d) 14V.
Fig. 9
Fig. 9 Interference rings of the proposed LC lens array when the applied voltages are different: (a) 0V, (b) 13V, (c) 14V. (f = 1kHz, λ = 632.8nm).
Fig. 10
Fig. 10 Applied voltage dependent focal length of the proposed LC lens array (λ = 632.8nm).

Metrics