Abstract

To improve long-term stability, we present a single-polarization resonator optic gyro based on a hollow-core photonic-crystal fiber (HCPCF), utilizing a micro-optical polarizing coupler formed by pairs of collimators and a series of polarization-dependent devices. We build the mathematical model of the polarization noise of the proposed gyro and experimentally validate the elimination of the undesired polarization eigenstate, which is the basis of the system’s improved long-term stability. We use multi-modulation to suppress the backscattering noise and the closed-loop detection method to eliminate the effect of fluctuating output power on the gyro bias. A long-term bias stability of 20°/h is successfully demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of polarization noise in transmissive single-beam-splitter resonator optic gyro based on hollow-core photonic-crystal fiber

Hongchen Jiao, Lishuang Feng, Kai Wang, Ning Liu, and Zhaohua Yang
Opt. Express 25(22) 27806-27817 (2017)

Design of low-crosstalk polarizing resonator and homologous multi-frequency differential detection for hollow-core photonic-crystal fiber optic gyro

Hongchen Jiao, Lishuang Feng, Chunqi Zhang, Ning Liu, Yonggui Zhang, and Honghao Ma
Opt. Express 27(14) 19536-19547 (2019)

Transmissive single-beam-splitter resonator optic gyro based on a hollow-core photonic-crystal fiber

Hongchen Jiao, Lishuang Feng, Junjie Wang, Kai Wang, and Zhaohua Yang
Opt. Lett. 42(15) 3016-3019 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ME2.
  2. N. M. Barbour, “Inertial Navigation Sensors,” in AIAA Guidance, Navigation, and Control Conference (C. S. Draper Lab, 2011).
  3. G. A. Sanders, S. J. Sandersa, L. K. Strandjordb, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
    [Crossref]
  4. L. Feng, H. Jiao, and W. Song, “Research on polarization noise of hollow-core photonic crystal fiber resonator optic gyroscope,” Proc. SPIE 9679, 967919 (2015).
    [Crossref]
  5. H. Jiao, L. Feng, K. Wang, N. Liu, and Z. Yang, “Analysis of polarization noise in transmissive single-beam-splitter resonator optic gyro based on hollow-core photonic-crystal fiber,” Opt. Express 25(22), 27806–27817 (2017).
    [Crossref] [PubMed]
  6. Z. K. Ioannidis, R. Kadiwar, and I. P. Giles, “Polarization mode coupling in highly birefringent optical-fiber ring resonators,” Opt. Lett. 14(10), 520–522 (1989).
    [Crossref] [PubMed]
  7. S. L. A. Carrara, B. Y. Kim, and H. J. Shaw, “Bias drift reduction in polarization-maintaining fiber gyroscope,” Opt. Lett. 12(3), 214–216 (1987).
    [Crossref] [PubMed]
  8. H. Ma, Z. Chen, Z. Yang, X. Yu, and Z. Jin, “Polarization-induced noise in resonator fiber optic gyro,” Appl. Opt. 51(28), 6708–6717 (2012).
    [Crossref] [PubMed]
  9. K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
    [Crossref]
  10. J. Zhang, H. Ma, H. Li, and Z. Jin, “Single-polarization fiber-pigtailed high-finesse silica waveguide ring resonator for a resonant micro-optic gyroscope,” Opt. Lett. 42(18), 3658–3661 (2017).
    [Crossref] [PubMed]
  11. T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4(1), 3855 (2014).
    [Crossref] [PubMed]
  12. Y. Yan, H. Ma, and Z. Jin, “Reducing polarization-fluctuation induced drift in resonant fiber optic gyro by using single-polarization fiber,” Opt. Express 23(3), 2002–2009 (2015).
    [Crossref] [PubMed]
  13. Y. Yan, H. Ma, L. Wang, H. Li, and Z. Jin, “Effect of Fresnel reflections in a hybrid air-core photonic-bandgap fiber ring-resonator gyro,” Opt. Express 23(24), 31384–31392 (2015).
    [Crossref] [PubMed]
  14. Y. Yan, L. Wang, H. Ma, D. Ying, and Z. Jin, “Hybrid air-core photonic bandgap fiber ring resonator and implications for resonant fiber optic gyro,” Proc. SPIE 9655, 965501 (2015).
  15. M. A. Terrel, M. J. F. Digonnet, and S. Fan, “Resonant fiber optic gyroscope using an air-core fiber,” J. Lightwave Technol. 30(7), 931–937 (2012).
    [Crossref]
  16. L. K. Strandjord, T. Qiu, J. Wu, T. Ohnstein, and G. A. Sanders, “Resonator fiber optic gyro progress including observation of navigation grade angle random walk,” Proc. SPIE 8421, 842109 (2012).
    [Crossref]
  17. L. Feng, X. Ren, X. Deng, and H. Liu, “Analysis of a hollow core photonic bandgap fiber ring resonator based on micro-optical structure,” Opt. Express 20(16), 18202–18208 (2012).
    [Crossref] [PubMed]
  18. M. Takahashi, S. Tai, and K. Kyuma, “Effect of polarization coupling on the detection sensitivity of a fiber-optic passive ring-resonator gyro,” Electron. Commun. Jpn. 73(8), 28–39 (1990).
  19. H. Jiao, L. Feng, J. Wang, K. Wang, and Z. Yang, “Transmissive single-beam-splitter resonator optic gyro based on a hollow-core photonic-crystal fiber,” Opt. Lett. 42(15), 3016–3019 (2017).
    [Crossref] [PubMed]
  20. Y. Zhi, L. Feng, J. Wang, and Y. Tang, “Reduction of backscattering noise in a resonator integrated optic gyro by double triangular phase modulation,” Appl. Opt. 54(1), 114–122 (2015).
    [Crossref] [PubMed]
  21. Y. Zhi, L. Feng, J. Wang, and Y. Tang, “Compensation of scale factor nonlinearity in resonator fiber optic gyro,” Opt. Eng. 53(12), 1271081 (2014).
    [Crossref]
  22. J. Wang, L. Feng, Y. Tang, and Y. Zhi, “Resonator integrated optic gyro employing trapezoidal phase modulation technique,” Opt. Lett. 40(2), 155–158 (2015).
    [Crossref] [PubMed]

2017 (3)

2016 (1)

G. A. Sanders, S. J. Sandersa, L. K. Strandjordb, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

2015 (6)

2014 (2)

Y. Zhi, L. Feng, J. Wang, and Y. Tang, “Compensation of scale factor nonlinearity in resonator fiber optic gyro,” Opt. Eng. 53(12), 1271081 (2014).
[Crossref]

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4(1), 3855 (2014).
[Crossref] [PubMed]

2012 (4)

1992 (1)

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
[Crossref]

1990 (1)

M. Takahashi, S. Tai, and K. Kyuma, “Effect of polarization coupling on the detection sensitivity of a fiber-optic passive ring-resonator gyro,” Electron. Commun. Jpn. 73(8), 28–39 (1990).

1989 (1)

1987 (1)

Arrizon, A.

G. A. Sanders, S. J. Sandersa, L. K. Strandjordb, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Carrara, S. L. A.

Chen, Z.

Deng, X.

Digonnet, M. J. F.

Fan, S.

Feng, L.

Giles, I. P.

Ho, W.

G. A. Sanders, S. J. Sandersa, L. K. Strandjordb, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Hotate, K.

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
[Crossref]

Ioannidis, Z. K.

Jiao, H.

Jin, Z.

Kadiwar, R.

Kim, B. Y.

Kyuma, K.

M. Takahashi, S. Tai, and K. Kyuma, “Effect of polarization coupling on the detection sensitivity of a fiber-optic passive ring-resonator gyro,” Electron. Commun. Jpn. 73(8), 28–39 (1990).

Li, H.

Li, R. Z.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4(1), 3855 (2014).
[Crossref] [PubMed]

Liu, H.

Liu, N.

Ma, H.

Mead, D.

G. A. Sanders, S. J. Sandersa, L. K. Strandjordb, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Mosor, S.

G. A. Sanders, S. J. Sandersa, L. K. Strandjordb, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Ohnstein, T.

L. K. Strandjord, T. Qiu, J. Wu, T. Ohnstein, and G. A. Sanders, “Resonator fiber optic gyro progress including observation of navigation grade angle random walk,” Proc. SPIE 8421, 842109 (2012).
[Crossref]

Qian, G.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4(1), 3855 (2014).
[Crossref] [PubMed]

Qiu, T.

G. A. Sanders, S. J. Sandersa, L. K. Strandjordb, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

L. K. Strandjord, T. Qiu, J. Wu, T. Ohnstein, and G. A. Sanders, “Resonator fiber optic gyro progress including observation of navigation grade angle random walk,” Proc. SPIE 8421, 842109 (2012).
[Crossref]

Ren, X.

Salit, M.

G. A. Sanders, S. J. Sandersa, L. K. Strandjordb, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sanders, G. A.

G. A. Sanders, S. J. Sandersa, L. K. Strandjordb, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

L. K. Strandjord, T. Qiu, J. Wu, T. Ohnstein, and G. A. Sanders, “Resonator fiber optic gyro progress including observation of navigation grade angle random walk,” Proc. SPIE 8421, 842109 (2012).
[Crossref]

Sandersa, S. J.

G. A. Sanders, S. J. Sandersa, L. K. Strandjordb, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Shan, F.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4(1), 3855 (2014).
[Crossref] [PubMed]

Shaw, H. J.

Smiciklas, M.

G. A. Sanders, S. J. Sandersa, L. K. Strandjordb, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Song, W.

L. Feng, H. Jiao, and W. Song, “Research on polarization noise of hollow-core photonic crystal fiber resonator optic gyroscope,” Proc. SPIE 9679, 967919 (2015).
[Crossref]

Strandjord, L. K.

L. K. Strandjord, T. Qiu, J. Wu, T. Ohnstein, and G. A. Sanders, “Resonator fiber optic gyro progress including observation of navigation grade angle random walk,” Proc. SPIE 8421, 842109 (2012).
[Crossref]

Strandjordb, L. K.

G. A. Sanders, S. J. Sandersa, L. K. Strandjordb, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Tai, S.

M. Takahashi, S. Tai, and K. Kyuma, “Effect of polarization coupling on the detection sensitivity of a fiber-optic passive ring-resonator gyro,” Electron. Commun. Jpn. 73(8), 28–39 (1990).

Takahashi, M.

M. Takahashi, S. Tai, and K. Kyuma, “Effect of polarization coupling on the detection sensitivity of a fiber-optic passive ring-resonator gyro,” Electron. Commun. Jpn. 73(8), 28–39 (1990).

Takiguchi, K.

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
[Crossref]

Tang, Y.

Terrel, M. A.

Wang, J.

Wang, K.

Wang, L.

Y. Yan, L. Wang, H. Ma, D. Ying, and Z. Jin, “Hybrid air-core photonic bandgap fiber ring resonator and implications for resonant fiber optic gyro,” Proc. SPIE 9655, 965501 (2015).

Y. Yan, H. Ma, L. Wang, H. Li, and Z. Jin, “Effect of Fresnel reflections in a hybrid air-core photonic-bandgap fiber ring-resonator gyro,” Opt. Express 23(24), 31384–31392 (2015).
[Crossref] [PubMed]

Wang, Y. Y.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4(1), 3855 (2014).
[Crossref] [PubMed]

Wu, J.

G. A. Sanders, S. J. Sandersa, L. K. Strandjordb, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

L. K. Strandjord, T. Qiu, J. Wu, T. Ohnstein, and G. A. Sanders, “Resonator fiber optic gyro progress including observation of navigation grade angle random walk,” Proc. SPIE 8421, 842109 (2012).
[Crossref]

Wu, J. Y.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4(1), 3855 (2014).
[Crossref] [PubMed]

Xue, X. J.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4(1), 3855 (2014).
[Crossref] [PubMed]

Yan, Y.

Yang, Z.

Ying, D.

Y. Yan, L. Wang, H. Ma, D. Ying, and Z. Jin, “Hybrid air-core photonic bandgap fiber ring resonator and implications for resonant fiber optic gyro,” Proc. SPIE 9655, 965501 (2015).

Yu, X.

Zhang, J.

Zhang, T.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4(1), 3855 (2014).
[Crossref] [PubMed]

Zhang, X. Y.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4(1), 3855 (2014).
[Crossref] [PubMed]

Zhi, Y.

Appl. Opt. (2)

Electron. Commun. Jpn. (1)

M. Takahashi, S. Tai, and K. Kyuma, “Effect of polarization coupling on the detection sensitivity of a fiber-optic passive ring-resonator gyro,” Electron. Commun. Jpn. 73(8), 28–39 (1990).

J. Lightwave Technol. (2)

M. A. Terrel, M. J. F. Digonnet, and S. Fan, “Resonant fiber optic gyroscope using an air-core fiber,” J. Lightwave Technol. 30(7), 931–937 (2012).
[Crossref]

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
[Crossref]

Opt. Eng. (1)

Y. Zhi, L. Feng, J. Wang, and Y. Tang, “Compensation of scale factor nonlinearity in resonator fiber optic gyro,” Opt. Eng. 53(12), 1271081 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Proc. SPIE (4)

Y. Yan, L. Wang, H. Ma, D. Ying, and Z. Jin, “Hybrid air-core photonic bandgap fiber ring resonator and implications for resonant fiber optic gyro,” Proc. SPIE 9655, 965501 (2015).

L. K. Strandjord, T. Qiu, J. Wu, T. Ohnstein, and G. A. Sanders, “Resonator fiber optic gyro progress including observation of navigation grade angle random walk,” Proc. SPIE 8421, 842109 (2012).
[Crossref]

G. A. Sanders, S. J. Sandersa, L. K. Strandjordb, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

L. Feng, H. Jiao, and W. Song, “Research on polarization noise of hollow-core photonic crystal fiber resonator optic gyroscope,” Proc. SPIE 9679, 967919 (2015).
[Crossref]

Sci. Rep. (1)

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4(1), 3855 (2014).
[Crossref] [PubMed]

Other (2)

G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ME2.

N. M. Barbour, “Inertial Navigation Sensors,” in AIAA Guidance, Navigation, and Control Conference (C. S. Draper Lab, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Single-polarization resonator based on HCPCF. (a) Structure of the resonator. (b) Light path of the MOPC.
Fig. 2
Fig. 2 Resonance curve of the proposed resonator based on a MOPC.
Fig. 3
Fig. 3 Simulation of gyro bias considering undesired polarization. (a) Gyro bias flowing with Δσ and ω(τx – τy). (b) Gyro bias curves with different PER.
Fig. 4
Fig. 4 Tested resonance curves with backscattering light induced.
Fig. 5
Fig. 5 Multi-modulation technology used in the proposed gyro system. (a) IOM with four sinusoidal waves. (b) Spectral distributions of the signals with modulations.
Fig. 6
Fig. 6 Long-term test of the output power of the resonator.
Fig. 7
Fig. 7 Closed-loop detection method used in the gyro system. (a) IOM equipped with a sawtooth wave for light frequency shift. (b) Simulations of the step responses of the PID.
Fig. 8
Fig. 8 Structure of the proposed HC-RFOG system.
Fig. 9
Fig. 9 Long-term stability tests of the HC-RFOG. (a) Test results with three different methods. (b) PSDs of the three test results.
Fig. 10
Fig. 10 Test results of gyro bias over a full temperature cycle (equivalent to ω(τx – τy) in the range of 2π). (a) Comparison between the bias of the gyro system with MOPC and the bias of the gyro system without MOPC. (b) Allan variance of the long-term static test under the MMCL method.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E 0_CW =[ cos( φ CW ) sin( φ CW ) e i σ CW ] ; E 0_CCW =[ cos( φ CCW ) sin( φ CCW ) e i σ CCW ].
M SBS_rl =[ α SBS r s e iπ 0 0 α SBS r p ] ; M SBS_rr =[ α SBS 1 r s 0 0 α SBS 1 r p ] M PBS =[ α PBS 0 0 α PBS PER ] ;C=[ cos( φ ) sin( φ ) sin( φ ) cos( φ ) ] ; M coup =[ α c 0 0 α c ] M fb_CW =[ α l e i( ω τ x + θ s ( Ω ) ) 0 0 α l e i( ω τ y + θ s ( Ω ) ) ] ; M fb_CCW =[ α l e i( ω τ x θ s ( Ω ) ) 0 0 α l e i( ω τ y θ s ( Ω ) ) ]
R in = M coup C M SBS_rl C M PBS C R out = M coup C M PBS C M SBS_rl C T CW = M fb_CW M coup C M SBS_rr C M PBS C M SBS_rr C T CCW = M fb_CCW M coup C M SBS_rr C M PBS C M SBS_rr C. E out_CW = R out ( 1 T CW ) 1 M fb_CW R in E 0_CW E out_CCW = R out ( 1 T CCW ) 1 M fb_CCW R in E 0_CCW I CW = E out_CW E out_CW I CCW = E out_CCW E out_CCW
I CW ω | ω CW =0 ; I CCW ω | ω CCW =0 .
Ω op = λ D ( ω CW ω CCW )
β= I bs I in = α l 1cos( NA ) 2 ,
I= I T_max + I bs +2 I T_max I bs cos(θ),

Metrics