Abstract

We theoretically realize the Fano resonance with a high quality factor of 106 using a structure, which is constructed from three one-dimensional photonic crystals and a defect layer. The emerged Fano resonance can be attributed to the weak coupling between a Fabry-Perot cavity mode and a topological edge state mode provided by the topological photonic crystal heterostructure. Moreover, we experimentally reproduce this Fano resonance in the optical communication range with a high quality of 104. This may be useful reference for the study of applications of photonic topological states in integrated photonic devices and information processing chips.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene

Xi Wang, Yanzhao Liang, Leiming Wu, Jun Guo, Xiaoyu Dai, and Yuanjiang Xiang
Opt. Lett. 43(17) 4256-4259 (2018)

Photonic crystals as topological high-Q resonators

R. Merlin and S. M. Young
Opt. Express 22(15) 18579-18587 (2014)

Spectral properties of photonic crystal double heterostructure resonant cavities

Adam Mock, Ling Lu, and J. D. O’Brien
Opt. Express 16(13) 9391-9397 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
    [Crossref] [PubMed]
  2. M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
    [Crossref] [PubMed]
  3. L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
    [Crossref]
  4. C. W. Ling, M. Xiao, C. T. Chan, S. F. Yu, and K. H. Fung, “Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles,” Opt. Express 23(3), 2021–2031 (2015).
    [Crossref] [PubMed]
  5. A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014).
    [Crossref]
  6. S. Longhi, “Zak phase of photons in optical waveguide lattices,” Opt. Lett. 38(19), 3716–3719 (2013).
    [Crossref] [PubMed]
  7. M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
    [Crossref] [PubMed]
  8. L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
    [Crossref] [PubMed]
  9. J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
    [Crossref] [PubMed]
  10. T. Ochiai, “Broken Symmetry and Topology in Photonic Analog of Graphene,” Int. J. Mod. Phys. B 28(2), 1441004 (2014).
  11. L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013).
    [Crossref]
  12. L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
    [Crossref]
  13. G. Breit and E. Wigner, “Capture of Slow Neutrons,” Phys. Rev. 49(7), 519–531 (1936).
    [Crossref]
  14. R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental Corroboration of the Theory of Neutron Resonance Scattering,” Phys. Rev. 76(2), 308 (1949).
    [Crossref]
  15. U. Fano and A. R. P. Rau, “Atomic Collisions and Spectra” (Orlando, FL: Academic) (1986).
  16. F. Cerdeira, T. A. Fjeldly, and M. Cardona, “Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si. II. Optical Modes,” Phys. Rev. B 8(10), 4734–4745 (1973).
    [Crossref]
  17. L. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers,” Opt. Lett. 32(7), 781–783 (2007).
    [Crossref] [PubMed]
  18. J. F. Song, Y. Ochiai, and J. P. Bird, “Fano resonances in open quantum dots and their application as spin filters,” Appl. Phys. Lett. 82(25), 4561–4563 (2003).
    [Crossref]
  19. J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
    [Crossref]
  20. Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
    [Crossref]
  21. Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
    [Crossref]
  22. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  23. A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol. 39(5), 1059–1065 (2007).
    [Crossref]
  24. M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
    [Crossref]
  25. C. Li, X. Y. Hu, W. Gao, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 1701071 (2018).
    [Crossref]
  26. V. Dal Lago, M. Atala, and L. E. F. Foa Torres, “Floquet topological transitions in a driven one-dimensional topological insulator,” Phys. Rev. A 92(2), 023624 (2015).
    [Crossref]
  27. M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
    [Crossref]
  28. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals: Molding the flow of light,” Princeton University Press, Princeton (1995).
  29. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  30. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  31. Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

2016 (1)

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

2015 (5)

C. W. Ling, M. Xiao, C. T. Chan, S. F. Yu, and K. H. Fung, “Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles,” Opt. Express 23(3), 2021–2031 (2015).
[Crossref] [PubMed]

L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
[Crossref] [PubMed]

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

V. Dal Lago, M. Atala, and L. E. F. Foa Torres, “Floquet topological transitions in a driven one-dimensional topological insulator,” Phys. Rev. A 92(2), 023624 (2015).
[Crossref]

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

2014 (7)

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

T. Ochiai, “Broken Symmetry and Topology in Photonic Analog of Graphene,” Int. J. Mod. Phys. B 28(2), 1441004 (2014).

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014).
[Crossref]

A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
[Crossref] [PubMed]

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

2013 (4)

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
[Crossref] [PubMed]

S. Longhi, “Zak phase of photons in optical waveguide lattices,” Opt. Lett. 38(19), 3716–3719 (2013).
[Crossref] [PubMed]

M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[Crossref] [PubMed]

L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013).
[Crossref]

2010 (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

2007 (2)

A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol. 39(5), 1059–1065 (2007).
[Crossref]

L. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers,” Opt. Lett. 32(7), 781–783 (2007).
[Crossref] [PubMed]

2003 (1)

J. F. Song, Y. Ochiai, and J. P. Bird, “Fano resonances in open quantum dots and their application as spin filters,” Appl. Phys. Lett. 82(25), 4561–4563 (2003).
[Crossref]

2000 (1)

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

1998 (1)

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[Crossref]

1973 (1)

F. Cerdeira, T. A. Fjeldly, and M. Cardona, “Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si. II. Optical Modes,” Phys. Rev. B 8(10), 4734–4745 (1973).
[Crossref]

1961 (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

1949 (1)

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental Corroboration of the Theory of Neutron Resonance Scattering,” Phys. Rev. 76(2), 308 (1949).
[Crossref]

1936 (1)

G. Breit and E. Wigner, “Capture of Slow Neutrons,” Phys. Rev. 49(7), 519–531 (1936).
[Crossref]

Abe, M.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[Crossref]

Adair, R. K.

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental Corroboration of the Theory of Neutron Resonance Scattering,” Phys. Rev. 76(2), 308 (1949).
[Crossref]

Arai, K.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[Crossref]

Atala, M.

V. Dal Lago, M. Atala, and L. E. F. Foa Torres, “Floquet topological transitions in a driven one-dimensional topological insulator,” Phys. Rev. A 92(2), 023624 (2015).
[Crossref]

Bird, J. P.

J. F. Song, Y. Ochiai, and J. P. Bird, “Fano resonances in open quantum dots and their application as spin filters,” Appl. Phys. Lett. 82(25), 4561–4563 (2003).
[Crossref]

Bockelman, C. K.

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental Corroboration of the Theory of Neutron Resonance Scattering,” Phys. Rev. 76(2), 308 (1949).
[Crossref]

Breit, G.

G. Breit and E. Wigner, “Capture of Slow Neutrons,” Phys. Rev. 49(7), 519–531 (1936).
[Crossref]

Cardona, M.

F. Cerdeira, T. A. Fjeldly, and M. Cardona, “Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si. II. Optical Modes,” Phys. Rev. B 8(10), 4734–4745 (1973).
[Crossref]

Cerdeira, F.

F. Cerdeira, T. A. Fjeldly, and M. Cardona, “Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si. II. Optical Modes,” Phys. Rev. B 8(10), 4734–4745 (1973).
[Crossref]

Chan, C. T.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

C. W. Ling, M. Xiao, C. T. Chan, S. F. Yu, and K. H. Fung, “Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles,” Opt. Express 23(3), 2021–2031 (2015).
[Crossref] [PubMed]

L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
[Crossref] [PubMed]

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Chang, M. L.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Chen, W. J.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Chen, Y.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Chen, Z.

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Cui, L. N.

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Dal Lago, V.

V. Dal Lago, M. Atala, and L. E. F. Foa Torres, “Floquet topological transitions in a driven one-dimensional topological insulator,” Phys. Rev. A 92(2), 023624 (2015).
[Crossref]

Dong, J. W.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Fang, C.

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

Fano, U.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fjeldly, T. A.

F. Cerdeira, T. A. Fjeldly, and M. Cardona, “Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si. II. Optical Modes,” Phys. Rev. B 8(10), 4734–4745 (1973).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Foa Torres, L. E. F.

V. Dal Lago, M. Atala, and L. E. F. Foa Torres, “Floquet topological transitions in a driven one-dimensional topological insulator,” Phys. Rev. A 92(2), 023624 (2015).
[Crossref]

Fu, L.

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013).
[Crossref]

Fujii, T.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[Crossref]

Fung, K. H.

Ge, L.

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Goldhaber-Gordon, D.

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

Göres, J.

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

Guinea, F.

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Han, D.

Hang, Z. H.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Heemeyer, S.

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

Heuck, M.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Hu, H.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Hu, R.

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Huang, X. Q.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Huang, Z. Y.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Inoue, M.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[Crossref]

Ivchenko, E. L.

A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
[Crossref] [PubMed]

Joannopoulos, J. D.

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013).
[Crossref]

Johnson, S. G.

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

Kastner, M. A.

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

Kita, S.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Kivshar, Y.

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Kraus, Y. E.

M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[Crossref] [PubMed]

Lahini, Y.

M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[Crossref] [PubMed]

Lewenstein, M.

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
[Crossref] [PubMed]

Li, Y.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Ling, C. W.

Loncar, M.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Longhi, S.

Lu, L.

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Mahalu, D.

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Manoharan, H. C.

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
[Crossref] [PubMed]

Mazur, E.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Meirav, U.

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

Miroshnichenko, A.

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Mørk, J.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Muñoz, P.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Ochiai, T.

T. Ochiai, “Broken Symmetry and Topology in Photonic Analog of Graphene,” Int. J. Mod. Phys. B 28(2), 1441004 (2014).

Ochiai, Y.

J. F. Song, Y. Ochiai, and J. P. Bird, “Fano resonances in open quantum dots and their application as spin filters,” Appl. Phys. Lett. 82(25), 4561–4563 (2003).
[Crossref]

Oxenløwe, L. K.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Pellegrini, V.

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
[Crossref] [PubMed]

Peterson, R. E.

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental Corroboration of the Theory of Neutron Resonance Scattering,” Phys. Rev. 76(2), 308 (1949).
[Crossref]

Peucheret, C.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Pilozzi, L.

A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014).
[Crossref]

Poddubny, A. N.

A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
[Crossref] [PubMed]

Polini, M.

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
[Crossref] [PubMed]

Poon, A. W.

Poshakinskiy, A. V.

A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
[Crossref] [PubMed]

Reshef, O.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Rostami, A.

A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol. 39(5), 1059–1065 (2007).
[Crossref]

Shtrikman, H.

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

Silberberg, Y.

M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[Crossref] [PubMed]

Slobozhanyuk, A.

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014).
[Crossref]

Soljacic, M.

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013).
[Crossref]

Song, J. F.

J. F. Song, Y. Ochiai, and J. P. Bird, “Fano resonances in open quantum dots and their application as spin filters,” Appl. Phys. Lett. 82(25), 4561–4563 (2003).
[Crossref]

Verbin, M.

M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[Crossref] [PubMed]

Vulis, D. I.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Wang, L.

L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
[Crossref] [PubMed]

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Wen, W.

Wigner, E.

G. Breit and E. Wigner, “Capture of Slow Neutrons,” Phys. Rev. 49(7), 519–531 (1936).
[Crossref]

Xiao, J.

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Xiao, M.

Xue, W. Q.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Yin, M.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Yu, L.

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Yu, S. F.

Yu, Y.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Yvind, K.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Zhang, Z. Q.

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhong, Z. C.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Zhou, L.

Zilberberg, O.

M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014).
[Crossref]

Appl. Phys. Lett. (2)

J. F. Song, Y. Ochiai, and J. P. Bird, “Fano resonances in open quantum dots and their application as spin filters,” Appl. Phys. Lett. 82(25), 4561–4563 (2003).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Int. J. Mod. Phys. B (1)

T. Ochiai, “Broken Symmetry and Topology in Photonic Analog of Graphene,” Int. J. Mod. Phys. B 28(2), 1441004 (2014).

J. Appl. Phys. (1)

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[Crossref]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
[Crossref] [PubMed]

Nat. Photonics (3)

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013).
[Crossref]

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Nat. Phys. (1)

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

Opt. Commun. (1)

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol. 39(5), 1059–1065 (2007).
[Crossref]

Opt. Lett. (2)

Phys. Rev. (3)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

G. Breit and E. Wigner, “Capture of Slow Neutrons,” Phys. Rev. 49(7), 519–531 (1936).
[Crossref]

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental Corroboration of the Theory of Neutron Resonance Scattering,” Phys. Rev. 76(2), 308 (1949).
[Crossref]

Phys. Rev. A (1)

V. Dal Lago, M. Atala, and L. E. F. Foa Torres, “Floquet topological transitions in a driven one-dimensional topological insulator,” Phys. Rev. A 92(2), 023624 (2015).
[Crossref]

Phys. Rev. B (2)

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

F. Cerdeira, T. A. Fjeldly, and M. Cardona, “Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si. II. Optical Modes,” Phys. Rev. B 8(10), 4734–4745 (1973).
[Crossref]

Phys. Rev. Lett. (3)

A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
[Crossref] [PubMed]

M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[Crossref] [PubMed]

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Other (3)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals: Molding the flow of light,” Princeton University Press, Princeton (1995).

C. Li, X. Y. Hu, W. Gao, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 1701071 (2018).
[Crossref]

U. Fano and A. R. P. Rau, “Atomic Collisions and Spectra” (Orlando, FL: Academic) (1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The whole structure consists of two PhC 1 (alternative layers of silicon and silicon dioxide), one PhC 2 (consisting of alternative layers of silicon dioxide and silicon) and a defect layer made of silicon dioxide. The PhC heterostructure consists of the PhC 1 and the PhC 2. While the Fabry-Perot cavity consist of the PhC 2, the defect layer and the PhC 1. And the Light illuminates from the left to the right direction. (b) Transmitting the light through the PhC 1. (c) Transmitting the light through the PhC 2. (d) The transmission spectra of individual PhC 1 and 2 are indicated by black and red lines, respectively. (e) The band structures of PhC 1 and PhC 2. The red band indicates a bandgap with the positive topological phase, and the blue indicates that with a negative topological phase. We label the Zak phase (0 or π) of each band. The green numbers (1-4) denote the order of the bandgaps.
Fig. 2
Fig. 2 (a) The PhC heterostructure consisting of the PhC 1 and PhC 2. The topological edge state will appear at the interface of PhC 1 and PhC 2. (b) The calculated electric field of Ez component in 1D PhC heterostructure. (c) The transmission spectrum of the 1D PhC heterostructure. The red arrow indicates the frequency position of the emerged topological edge state. (d) A zoom-in of the transmission peak (black curve) of the photonic topological edge state denoted in (c) together with its fitting curve (red curve).
Fig. 3
Fig. 3 (a) The Fabry-Perot cavity consisting of the PhC 2, the defect layer and the PhC 1. The Light illuminates from left to right. (b) The calculated electric field of Ez component in the Fabry-Perot cavity. (c) The calculated transmission spectrum (black curve) and the fitting curve (red curve) of the Fabry-Perot cavity.
Fig. 4
Fig. 4 (a) The whole structure and the calculated electric field of Ez component of it. (b)The transmission curves of the PhC heterostructure (black curve), the Fabry-Perot cavity (blue curve) and the whole structure (red curve, the component of the Fano resonance have been highlighted). (c) A zoom-in of the highlighted transmission peak (black curve) and the fitting curve (red curve) with a Fano profile.
Fig. 5
Fig. 5 (a) Three-dimensional schematic structure of the sample. (b) SEM image of the grating structure. (c) SEM image of the whole structure. (d) The transmission of the experiment curve.
Fig. 6
Fig. 6 The calculated transmission spectra of the Fabry-Perot cavity with different distances d0 between the PhC 2 and PhC 1. When d0 = 900nm, 960nm, 1020nm, 1080nm, 1140nm, 1200nm, the corresponding quality factor equals 423, 715,897, 1033, 749,408.
Fig. 7
Fig. 7 The calculated transmission spectra of the whole structure with different distances d0 between the PhC 2 and PhC 1.
Fig. 8
Fig. 8 (a) The calculated electric field of Ez component in 2D geometry. (b) The transmission spectrum of the 2D geometry calculated by the finite-difference time domain simulation (FDTD).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ι ( q γ + c λ c λ 0 ) 2 ( c λ c λ 0 ) 2 + γ 2 .

Metrics