Abstract

Diode-pumped alkali lasers (DPALs) have drawn much attention since they were proposed in 2001. The narrow-linewidth DPAL can be potentially applied in the fields of coherent communication, laser radar, and atomic spectroscopy. In this study, we propose a novel protocol to narrow the width of one kind of DPAL, diode-pumped rubidium vapor laser (DPRVL), by use of an injection locking technique. A kinetic model is first set up for an injection-locked DPRVL with the end-pumped configuration. The laser tunable duration is also analyzed for a continuous wave (CW) injection-locked DPRVL system. Then, the influences of the pump power, power of a master laser, and reflectance of an output coupler on the output performance are theoretically analyzed. The study should be useful for design of a narrow-linewidth DPAL with the relatively high output.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of physical conditions for a diode-pumped cesium vapor laser

Guofei An, You Wang, Juhong Han, He Cai, Shunyan Wang, Hang Yu, Kepeng Rong, Wei Zhang, Liangping Xue, Hongyuan Wang, and Jie Zhou
Opt. Express 25(4) 4335-4347 (2017)

Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers

Binglin Shen, Bailiang Pan, Jian Jiao, and Chunsheng Xia
Opt. Express 23(15) 19500-19511 (2015)

Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I

Juhong Han, You Wang, He Cai, Wei Zhang, Liangping Xue, and Hongyuan Wang
Opt. Express 22(11) 13988-14003 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
    [Crossref]
  2. B. D. Barmashenko and S. Rosenwaks, “Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas,” Opt. Lett. 37(17), 3615–3617 (2012).
    [Crossref] [PubMed]
  3. J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
    [Crossref] [PubMed]
  4. G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
    [Crossref]
  5. J. Zweiback and W. F. Krupke, “28W average power hydrocarbon-free rubidium diode pumped alkali laser,” Opt. Express 18(2), 1444–1449 (2010).
    [Crossref] [PubMed]
  6. B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2013).
    [Crossref]
  7. B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
    [Crossref]
  8. Z. N. Yang, H. Y. Wang, Q. S. Lu, Y. D. Li, W. H. Hua, X. J. Xu, and J. B. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28(6), 1353–1364 (2011).
    [Crossref]
  9. B. Shen, B. Pan, J. Jiao, and C. Xia, “Modeling of a diode four-side symmetrically pumped alkali vapor amplifier,” Opt. Express 23(5), 5941–5953 (2015).
    [Crossref] [PubMed]
  10. B. V. Zhdanov, M. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: Transverse pump, unstable cavity, MOPA,” Proc. SPIE 75810, 75810 (2010).
    [Crossref]
  11. A. C. Cefalas and T. A. King, “Injection locking of ArF excimer lasers,” Appl. Phys. B 37(3), 159–164 (1985).
    [Crossref]
  12. H. Chu, D. H. Kim, Y. M. Jhon, S. S. Choi, A. Z. Obidin, and D. Y. Park, “Injection Locking of a Modified-Unstable Resonator XeCl Laser, by Using a Line-Narrowed Hemi confocal Oscillator,” Jpn. J. Appl. Phys. 33(8), 4617–4621 (1994).
    [Crossref]
  13. S. T. Yang, Y. Imai, M. Oka, N. Eguchi, and S. Kubota, “Frequency-stabilized, 10-W continuous-wave, laser-diode end-pumped, injection-locked Nd:YAG laser,” Opt. Lett. 21(20), 1676–1678 (1996).
    [Crossref] [PubMed]
  14. C. T. Wu, F. Chen, T. Y. Dai, and Y. L. Ju, “Theoretical and experimental investigations of injection-locked signal extraction of Tm:YAG laser,” J. Mod. Opt. 62(19), 1535–1545 (2015).
    [Crossref]
  15. C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, and R. L. Byer, “Injection locking of a 13-W cw Nd:YAG ring laser,” Opt. Lett. 14(21), 1189–1191 (1989).
    [Crossref] [PubMed]
  16. R. F. Teehan, J. C. Bienfang, and C. A. Denman, “Power scaling and frequency stabilization of an injection-locked Nd:YAG rod laser,” Appl. Opt. 39(18), 3076–3084 (2000).
    [Crossref] [PubMed]
  17. G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
    [Crossref]
  18. R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19(8), 7894–7902 (2011).
    [Crossref] [PubMed]
  19. B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “Energy-Pooling Collisions of Rubidium Atoms: Rb (5PJ) + Rb (5PJ) -> Rb (5S) + Rb (nl=5D, 7S),” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2005).
  20. L. Barbier and M. Cheret, “Energy pooling process in rubidium vapour,” J. Phys. B 16(17), 3213–3228 (1983).
    [Crossref]
  21. L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionization of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20(6), 1229–1248 (1987).
    [Crossref]
  22. B. Sayer, J. C. Jeannet, J. Lozingot, and J. Berlande, “Collisional and Radiative Processes in a Cesium Afterglow,” Phys. Rev. A 8(6), 3012–3020 (1973).
    [Crossref]
  23. W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
    [Crossref]
  24. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
    [Crossref]
  25. H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Y. Wang, and G. F. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
    [Crossref]
  26. G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1–2), 45–56 (2010).
    [Crossref]
  27. U. Ganiel, A. Hardy, and D. Treves, “Analysis of injection locking in pulsed dye laser systems,” IEEE J. Quantum Electron. 12(11), 704–716 (1976).
    [Crossref]

2016 (2)

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

2015 (2)

C. T. Wu, F. Chen, T. Y. Dai, and Y. L. Ju, “Theoretical and experimental investigations of injection-locked signal extraction of Tm:YAG laser,” J. Mod. Opt. 62(19), 1535–1545 (2015).
[Crossref]

B. Shen, B. Pan, J. Jiao, and C. Xia, “Modeling of a diode four-side symmetrically pumped alkali vapor amplifier,” Opt. Express 23(5), 5941–5953 (2015).
[Crossref] [PubMed]

2014 (2)

J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
[Crossref] [PubMed]

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Y. Wang, and G. F. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (2)

2010 (3)

B. V. Zhdanov, M. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: Transverse pump, unstable cavity, MOPA,” Proc. SPIE 75810, 75810 (2010).
[Crossref]

J. Zweiback and W. F. Krupke, “28W average power hydrocarbon-free rubidium diode pumped alkali laser,” Opt. Express 18(2), 1444–1449 (2010).
[Crossref] [PubMed]

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1–2), 45–56 (2010).
[Crossref]

2006 (1)

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

2005 (1)

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “Energy-Pooling Collisions of Rubidium Atoms: Rb (5PJ) + Rb (5PJ) -> Rb (5S) + Rb (nl=5D, 7S),” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2005).

2004 (1)

2000 (1)

1996 (1)

1994 (1)

H. Chu, D. H. Kim, Y. M. Jhon, S. S. Choi, A. Z. Obidin, and D. Y. Park, “Injection Locking of a Modified-Unstable Resonator XeCl Laser, by Using a Line-Narrowed Hemi confocal Oscillator,” Jpn. J. Appl. Phys. 33(8), 4617–4621 (1994).
[Crossref]

1989 (1)

1987 (1)

L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionization of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20(6), 1229–1248 (1987).
[Crossref]

1985 (1)

A. C. Cefalas and T. A. King, “Injection locking of ArF excimer lasers,” Appl. Phys. B 37(3), 159–164 (1985).
[Crossref]

1983 (1)

L. Barbier and M. Cheret, “Energy pooling process in rubidium vapour,” J. Phys. B 16(17), 3213–3228 (1983).
[Crossref]

1976 (1)

U. Ganiel, A. Hardy, and D. Treves, “Analysis of injection locking in pulsed dye laser systems,” IEEE J. Quantum Electron. 12(11), 704–716 (1976).
[Crossref]

1973 (1)

B. Sayer, J. C. Jeannet, J. Lozingot, and J. Berlande, “Collisional and Radiative Processes in a Cesium Afterglow,” Phys. Rev. A 8(6), 3012–3020 (1973).
[Crossref]

An, G. F.

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Y. Wang, and G. F. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

Barbier, L.

L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionization of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20(6), 1229–1248 (1987).
[Crossref]

L. Barbier and M. Cheret, “Energy pooling process in rubidium vapour,” J. Phys. B 16(17), 3213–3228 (1983).
[Crossref]

Barmashenko, B. D.

Beach, R. J.

Berlande, J.

B. Sayer, J. C. Jeannet, J. Lozingot, and J. Berlande, “Collisional and Radiative Processes in a Cesium Afterglow,” Phys. Rev. A 8(6), 3012–3020 (1973).
[Crossref]

Bienfang, J. C.

Byer, R. L.

Cai, H.

J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
[Crossref] [PubMed]

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Y. Wang, and G. F. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

Cefalas, A. C.

A. C. Cefalas and T. A. King, “Injection locking of ArF excimer lasers,” Appl. Phys. B 37(3), 159–164 (1985).
[Crossref]

Chen, F.

C. T. Wu, F. Chen, T. Y. Dai, and Y. L. Ju, “Theoretical and experimental investigations of injection-locked signal extraction of Tm:YAG laser,” J. Mod. Opt. 62(19), 1535–1545 (2015).
[Crossref]

Chen, J. B.

Cheret, M.

L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionization of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20(6), 1229–1248 (1987).
[Crossref]

L. Barbier and M. Cheret, “Energy pooling process in rubidium vapour,” J. Phys. B 16(17), 3213–3228 (1983).
[Crossref]

Choi, S. S.

H. Chu, D. H. Kim, Y. M. Jhon, S. S. Choi, A. Z. Obidin, and D. Y. Park, “Injection Locking of a Modified-Unstable Resonator XeCl Laser, by Using a Line-Narrowed Hemi confocal Oscillator,” Jpn. J. Appl. Phys. 33(8), 4617–4621 (1994).
[Crossref]

Chu, H.

H. Chu, D. H. Kim, Y. M. Jhon, S. S. Choi, A. Z. Obidin, and D. Y. Park, “Injection Locking of a Modified-Unstable Resonator XeCl Laser, by Using a Line-Narrowed Hemi confocal Oscillator,” Jpn. J. Appl. Phys. 33(8), 4617–4621 (1994).
[Crossref]

Cui, X. H.

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “Energy-Pooling Collisions of Rubidium Atoms: Rb (5PJ) + Rb (5PJ) -> Rb (5S) + Rb (nl=5D, 7S),” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2005).

Dai, K.

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “Energy-Pooling Collisions of Rubidium Atoms: Rb (5PJ) + Rb (5PJ) -> Rb (5S) + Rb (nl=5D, 7S),” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2005).

Dai, T. Y.

C. T. Wu, F. Chen, T. Y. Dai, and Y. L. Ju, “Theoretical and experimental investigations of injection-locked signal extraction of Tm:YAG laser,” J. Mod. Opt. 62(19), 1535–1545 (2015).
[Crossref]

Day, T.

Denman, C. A.

Dubinskii, M. A.

Eguchi, N.

Farinas, A. D.

Fukuoka, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Ganiel, U.

U. Ganiel, A. Hardy, and D. Treves, “Analysis of injection locking in pulsed dye laser systems,” IEEE J. Quantum Electron. 12(11), 704–716 (1976).
[Crossref]

Guild, E. M.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Gustafson, E. K.

Hager, G. D.

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1–2), 45–56 (2010).
[Crossref]

Han, J.

Han, J. H.

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Y. Wang, and G. F. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

Hardy, A.

U. Ganiel, A. Hardy, and D. Treves, “Analysis of injection locking in pulsed dye laser systems,” IEEE J. Quantum Electron. 12(11), 704–716 (1976).
[Crossref]

Hiruma, T.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Hostutler, D. A.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Hua, W. H.

Imai, Y.

Jeannet, J. C.

B. Sayer, J. C. Jeannet, J. Lozingot, and J. Berlande, “Collisional and Radiative Processes in a Cesium Afterglow,” Phys. Rev. A 8(6), 3012–3020 (1973).
[Crossref]

Jhon, Y. M.

H. Chu, D. H. Kim, Y. M. Jhon, S. S. Choi, A. Z. Obidin, and D. Y. Park, “Injection Locking of a Modified-Unstable Resonator XeCl Laser, by Using a Line-Narrowed Hemi confocal Oscillator,” Jpn. J. Appl. Phys. 33(8), 4617–4621 (1994).
[Crossref]

Jiao, J.

Ju, Y. L.

C. T. Wu, F. Chen, T. Y. Dai, and Y. L. Ju, “Theoretical and experimental investigations of injection-locked signal extraction of Tm:YAG laser,” J. Mod. Opt. 62(19), 1535–1545 (2015).
[Crossref]

Kan, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Kanz, V. K.

Kasamatsu, T.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Kim, D. H.

H. Chu, D. H. Kim, Y. M. Jhon, S. S. Choi, A. Z. Obidin, and D. Y. Park, “Injection Locking of a Modified-Unstable Resonator XeCl Laser, by Using a Line-Narrowed Hemi confocal Oscillator,” Jpn. J. Appl. Phys. 33(8), 4617–4621 (1994).
[Crossref]

King, T. A.

A. C. Cefalas and T. A. King, “Injection locking of ArF excimer lasers,” Appl. Phys. B 37(3), 159–164 (1985).
[Crossref]

Knize, R. J.

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2013).
[Crossref]

R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19(8), 7894–7902 (2011).
[Crossref] [PubMed]

B. V. Zhdanov, M. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: Transverse pump, unstable cavity, MOPA,” Proc. SPIE 75810, 75810 (2010).
[Crossref]

Krupke, W. F.

Kubomura, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Kubota, S.

Li, Y. D.

Lozingot, J.

B. Sayer, J. C. Jeannet, J. Lozingot, and J. Berlande, “Collisional and Radiative Processes in a Cesium Afterglow,” Phys. Rev. A 8(6), 3012–3020 (1973).
[Crossref]

Lu, Q. S.

Matsuoka, S.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Merkle, L. D.

Miyajima, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Moran, P. J.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Mu, B. X.

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “Energy-Pooling Collisions of Rubidium Atoms: Rb (5PJ) + Rb (5PJ) -> Rb (5S) + Rb (nl=5D, 7S),” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2005).

Nabors, C. D.

Niigaki, M.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Obidin, A. Z.

H. Chu, D. H. Kim, Y. M. Jhon, S. S. Choi, A. Z. Obidin, and D. Y. Park, “Injection Locking of a Modified-Unstable Resonator XeCl Laser, by Using a Line-Narrowed Hemi confocal Oscillator,” Jpn. J. Appl. Phys. 33(8), 4617–4621 (1994).
[Crossref]

Oka, M.

Oliker, B. Q.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Pan, B.

Park, D. Y.

H. Chu, D. H. Kim, Y. M. Jhon, S. S. Choi, A. Z. Obidin, and D. Y. Park, “Injection Locking of a Modified-Unstable Resonator XeCl Laser, by Using a Line-Narrowed Hemi confocal Oscillator,” Jpn. J. Appl. Phys. 33(8), 4617–4621 (1994).
[Crossref]

Payne, S. A.

Perram, G. P.

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1–2), 45–56 (2010).
[Crossref]

Pitz, G. A.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Rosenwaks, S.

Sayer, B.

B. Sayer, J. C. Jeannet, J. Lozingot, and J. Berlande, “Collisional and Radiative Processes in a Cesium Afterglow,” Phys. Rev. A 8(6), 3012–3020 (1973).
[Crossref]

Shaffer, M.

B. V. Zhdanov, M. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: Transverse pump, unstable cavity, MOPA,” Proc. SPIE 75810, 75810 (2010).
[Crossref]

Shaffer, M. K.

Shen, B.

Shen, Y. F.

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “Energy-Pooling Collisions of Rubidium Atoms: Rb (5PJ) + Rb (5PJ) -> Rb (5S) + Rb (nl=5D, 7S),” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2005).

Stalnaker, D. M.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Teehan, R. F.

Townsend, S. W.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Treves, D.

U. Ganiel, A. Hardy, and D. Treves, “Analysis of injection locking in pulsed dye laser systems,” IEEE J. Quantum Electron. 12(11), 704–716 (1976).
[Crossref]

Wang, H.

Wang, H. Y.

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Y. Wang, and G. F. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

Z. N. Yang, H. Y. Wang, Q. S. Lu, Y. D. Li, W. H. Hua, X. J. Xu, and J. B. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28(6), 1353–1364 (2011).
[Crossref]

Wang, S. Y.

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “Energy-Pooling Collisions of Rubidium Atoms: Rb (5PJ) + Rb (5PJ) -> Rb (5S) + Rb (nl=5D, 7S),” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2005).

Wang, Y.

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Y. Wang, and G. F. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
[Crossref] [PubMed]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Wu, C. T.

C. T. Wu, F. Chen, T. Y. Dai, and Y. L. Ju, “Theoretical and experimental investigations of injection-locked signal extraction of Tm:YAG laser,” J. Mod. Opt. 62(19), 1535–1545 (2015).
[Crossref]

Xia, C.

Xu, X. J.

Xue, L.

Xue, L. P.

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Y. Wang, and G. F. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

Yang, S. T.

Yang, Z. N.

Yuan, Q. H.

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “Energy-Pooling Collisions of Rubidium Atoms: Rb (5PJ) + Rb (5PJ) -> Rb (5S) + Rb (nl=5D, 7S),” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2005).

Zhang, G. T.

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “Energy-Pooling Collisions of Rubidium Atoms: Rb (5PJ) + Rb (5PJ) -> Rb (5S) + Rb (nl=5D, 7S),” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2005).

Zhang, W.

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Y. Wang, and G. F. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
[Crossref] [PubMed]

Zhdanov, B. V.

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2013).
[Crossref]

R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19(8), 7894–7902 (2011).
[Crossref] [PubMed]

B. V. Zhdanov, M. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: Transverse pump, unstable cavity, MOPA,” Proc. SPIE 75810, 75810 (2010).
[Crossref]

Zheng, Y.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Zweiback, J.

Appl. Opt. (1)

Appl. Phys. B (3)

A. C. Cefalas and T. A. King, “Injection locking of ArF excimer lasers,” Appl. Phys. B 37(3), 159–164 (1985).
[Crossref]

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Y. Wang, and G. F. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1–2), 45–56 (2010).
[Crossref]

Appl. Phys. Lett. (1)

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Guangpuxue Yu Guangpu Fenxi (1)

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “Energy-Pooling Collisions of Rubidium Atoms: Rb (5PJ) + Rb (5PJ) -> Rb (5S) + Rb (nl=5D, 7S),” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2005).

IEEE J. Quantum Electron. (1)

U. Ganiel, A. Hardy, and D. Treves, “Analysis of injection locking in pulsed dye laser systems,” IEEE J. Quantum Electron. 12(11), 704–716 (1976).
[Crossref]

J. Mod. Opt. (1)

C. T. Wu, F. Chen, T. Y. Dai, and Y. L. Ju, “Theoretical and experimental investigations of injection-locked signal extraction of Tm:YAG laser,” J. Mod. Opt. 62(19), 1535–1545 (2015).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. B (2)

L. Barbier and M. Cheret, “Energy pooling process in rubidium vapour,” J. Phys. B 16(17), 3213–3228 (1983).
[Crossref]

L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionization of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20(6), 1229–1248 (1987).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Chu, D. H. Kim, Y. M. Jhon, S. S. Choi, A. Z. Obidin, and D. Y. Park, “Injection Locking of a Modified-Unstable Resonator XeCl Laser, by Using a Line-Narrowed Hemi confocal Oscillator,” Jpn. J. Appl. Phys. 33(8), 4617–4621 (1994).
[Crossref]

Opt. Eng. (1)

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (1)

B. Sayer, J. C. Jeannet, J. Lozingot, and J. Berlande, “Collisional and Radiative Processes in a Cesium Afterglow,” Phys. Rev. A 8(6), 3012–3020 (1973).
[Crossref]

Proc. SPIE (3)

B. V. Zhdanov, M. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: Transverse pump, unstable cavity, MOPA,” Proc. SPIE 75810, 75810 (2010).
[Crossref]

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Prog. Quantum Electron. (1)

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of an injection-locked laser.
Fig. 2
Fig. 2 Energy level diagram and main processes for a rubidium laser.
Fig. 3
Fig. 3 Linewidth features of D2 transition under cell tempreatures.
Fig. 4
Fig. 4 Master laser powers at different locations inside the laser cavity.
Fig. 5
Fig. 5 Output powers of both the slave laser and the free-running laser in time domain (a). Temporal population density at the ground and excited levels (b) as well as the inversed population density (c).
Fig. 6
Fig. 6 Slave laser power versus the frequency difference between the master laser and free-running laser.
Fig. 7
Fig. 7 Output power and tunable range under different pump powers (a). Output power versus pump power for different cell length (b) and different cell length (c).
Fig. 8
Fig. 8 Output power and tunable range under different powers of a master laser (a). Output power versus master laser power for different cell length (b) and different cell length (c).
Fig. 9
Fig. 9 Output power and tunable range under different output coupler reflectances.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

d n 1 ( t ) dt = Γ P ( t )+ Γ FL ( t )+ Γ SL ( t )+ n 2 ( t )×( A 21 + Q 21 )+ n 3 ( t )×( A 31 + Q 31 ) + n 4 ( t )× A 41 + k EP2 × ( n 2 (t) ) 2 + k EP3 × ( n 3 (t) ) 2 + k PI × n 4 (t)×( n 2 ( t )+ n 3 ( t ) ) d n 2 ( t ) dt = Γ FL ( t ) Γ SL ( t )+ γ 32 [ n 3 ( t )2 n 2 ( t )×exp( ΔE k b T ) ] n 2 ( t )×( A 21 + Q 21 ) 2 k EP2 × ( n 2 (t) ) 2 k PI × n 2 (t)× n 4 (t) d n 3 ( t ) dt = Γ P ( t ) γ 32 [ n 3 ( t )2 n 2 ( t )×exp( ΔE k b T ) ] n 3 ( t )×( A 31 + Q 31 ) 2 k EP3 × ( n 3 (t) ) 2 k PI × n 3 (t)× n 4 (t) d n 4 ( t ) dt = k EP2 × ( n 2 (t) ) 2 + k EP3 × ( n 3 (t) ) 2 n 4 ( t )× A 41 k PI × n 4 (t)×( n 2 ( t )+ n 3 ( t ) ) Γ photoionization ( t )+ k recombination ( t )× ( n 5 (t) ) 3 d n 5 ( t ) dt = k PI × n 4 (t)×( n 2 ( t )+ n 3 ( t ) )+ Γ photoionization ( t ) k recombination ( t )× ( n 5 (t) ) 3 n 0 = n 1 ( t )+ n 2 ( t )+ n 3 ( t )+ n 4 ( t )+ n 5 ( t ) Γ photoionization ( t )= n 4 (t)× σ photoionization ×( Γ FL ( t ) σ 21 ( λ FL )( n 2 ( t ) n 1 ( t ) ) + Γ SL ( t ) σ 21 ( λ ML )( n 2 ( t ) n 1 ( t ) ) + Γ P ( t ) σ 31 ( λ )( n 3 ( t ) 2 n 1 ( t ) ) ),
ν=γ P gas T T γ ,
σ 21 ( λ FL )= σ 21 0 ,
σ 21 ( λ ML )= σ 21 0 1+ ( ( λ ML λ D1 )2c Δ ν D1 λ ML 2 ) 2 ,
σ 31 (λ)= σ 31 0 1+ ( ( λ λ D2 )2c Δ ν D2 λ 2 ) 2 ,
Γ P ( t )= η mode η del V L λ hc P p (λ)×{ 1exp[ ( n 1 ( t ) n 3 ( t ) 2 ) σ 31 (λ) L g ] }, ×{ 1+ R p exp[ ( n 1 ( t ) n 3 ( t ) 2 ) σ 31 (λ) L g ] }dλ
Γ FL ( t )= σ 21 ( λ FL )( n 2 ( t ) n 1 ( t ) ) Ψ FL ( t ) λ D1 hc ,
Γ SL ( t )= σ 21 ( λ ML )( n 2 ( t ) n 1 ( t ) ) Ψ SL ( t ) λ ML hc ,
V L = z 1 z 2 π ( ω ML 1+ ( M 2 λ ML z/( π ω ML 2 ) ) 2 ) 2 dz ,
d Ψ FL ( t ) dt =( T T 4 R oc exp[ 2 L g σ 21 ( λ FL )( n 2 ( t ) n 1 ( t ) ) ]1 ) Ψ FL ( t ) t RT + Φ FL ( t ),
d Ψ SL ( t ) dt =( T T 4 R oc exp[ 2 L g σ 21 ( λ ML )( n 2 ( t ) n 1 ( t ) ) ]1 ) Ψ SL ( t ) t RT + Φ ML ( t ),
Φ FL ( t )= L g n 2 ( t ) c 2 σ 21 ( λ FL )hc[ Loss+Ln( R oc ) ] 2 L c 2 S λ D1 ,
Φ ML ( t )= 1 V L { P M1 ( t ) 0 L g exp[ σ 21 ( λ ML )( n 2 ( t ) n 1 ( t ) )zdz ] } + 1 V L { P M3 ( t ) 0 L g exp[ σ 21 ( λ ML )( n 2 ( t ) n 1 ( t ) )( L g z )dz ] }, =( exp[ σ 21 ( λ ML )( n 2 ( t ) n 1 ( t ) ) L g ]1 σ 21 ( λ ML )( n 2 ( t ) n 1 ( t ) ) V L )( P M1 ( t )+ P M3 ( t ) )
P M1 ( t )= P master ( t ),
P M3 ( t )= P M1 ( t )exp[ σ 21 ( λ ML )( n 2 ( t ) n 1 ( t ) ) L g ],
Φ ML ( t )= P master ( t )( exp[ 2 σ 21 ( λ ML )( n 2 ( t ) n 1 ( t ) ) L g ]1 ) σ 21 ( λ ML )( n 2 ( t ) n 1 ( t ) ) V L .
P slave ( t )= Ψ SL ( t )( 1 R oc ) σ 21 ( λ ML )( n 2 ( t ) n 1 ( t ) ) V L TTexp[ σ 21 ( λ ML )( n 2 ( t ) n 1 ( t ) ) L g ] ( exp[ σ 21 ( λ ML )( n 2 ( t ) n 1 ( t ) ) L g ]1 )( T T 2 R oc exp[ σ 21 ( λ ML )( n 2 ( t ) n 1 ( t ) ) L g ]+1 ) .
T T 4 R oc exp[ 2 L g σ 21 ( λ FL )( n 2 _f p n 1 _f p ) ]10,

Metrics