Abstract

Femtosecond petawatt (fs-PW) lasers, with femtosecond pulses and sub-meter-sized beams, could be easily distorted by spatiotemporal coupling (STC). In 2016, a femtosecond terawatt pulsed beam was experimentally reconstructed in the 3-dimensional (3D) space-time domain for the first time, and showing STC induced distortions. Referring to recently developed laser techniques, traditional first-order STCs can be controlled and then removed. However, the complex STC induced by wavefront errors in a meter-sized grating compressor, where the spatial and spectral coordinates of beams and pulses are coupled, would introduce a non-negligible and complicated distortion. Herein, we theoretically simulated this complex STC in the 3D space-time/spectrum domain and presented its evolution with various factors, which opens a new perspective to analyze CPA lasers in the 3D domain.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stable and near Fourier-transform-limit 30fs pulse compression with a tiled grating compressor scheme

Zhaoyang Li, Shuai Li, Cheng Wang, Yi Xu, Fengxiang Wu, Yanyan Li, and Yuxin Leng
Opt. Express 23(26) 33386-33395 (2015)

Spatiotemporal coherent noise in frequency-domain optical parametric amplification

Jing Wang, Jingui Ma, Peng Yuan, Daolong Tang, Bingjie Zhou, Guoqiang Xie, and Liejia Qian
Opt. Express 26(8) 10953-10967 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. Zeng, K. Zhou, Y. Zuo, Q. Zhu, J. Su, X. Wang, X. Wang, X. Huang, X. Jiang, D. Jiang, Y. Guo, N. Xie, S. Zhou, Z. Wu, J. Mu, H. Peng, and F. Jing, “Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification,” Opt. Lett. 42(10), 2014–2017 (2017).
    [Crossref] [PubMed]
  2. J. H. Sung, H. W. Lee, J. Y. Yoo, J. W. Yoon, C. W. Lee, J. M. Yang, Y. J. Son, Y. H. Jang, S. K. Lee, and C. H. Nam, “4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz,” Opt. Lett. 42(11), 2058–2061 (2017).
    [Crossref] [PubMed]
  3. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
    [Crossref]
  4. Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2–3), 41–155 (2006).
    [Crossref]
  5. D. Strickland and G. A. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [Crossref]
  6. A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4), 437–440 (1992).
    [Crossref]
  7. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
    [Crossref]
  8. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24(7), 493–495 (1999).
    [Crossref] [PubMed]
  9. M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14(9), 2348–2358 (1997).
    [Crossref]
  10. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25(8), 575–577 (2000).
    [Crossref] [PubMed]
  11. F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevičius, and F. Krausz, “Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier,” Opt. Lett. 32(15), 2227–2229 (2007).
    [Crossref] [PubMed]
  12. http://www.fastlite.com/en/
  13. Z. Li, S. Li, C. Wang, Y. Xu, F. Wu, Y. Li, and Y. Leng, “Stable and near Fourier-transform-limit 30fs pulse compression with a tiled grating compressor scheme,” Opt. Express 23(26), 33386–33395 (2015).
    [Crossref] [PubMed]
  14. D. Alessi, “High-average-power diffraction pulse-compression gratings enabling next-generation ultrafast laser systems,” LDRD Annual Report, LLNL-TR-707794, Nov. 2, 2016.
  15. O. E. Martinez, “Grating and prism compressors in the case of finite beam size,” J. Opt. Soc. Am. B 3(7), 929–934 (1986).
    [Crossref]
  16. Z. Wang, Z. Xu, and Z. Zhang, “A new theory for the treatment of a pulsed beam propagating through a grating pair,” IEEE J. Quantum Electron. 37(1), 1–11 (2001).
    [Crossref]
  17. Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
    [Crossref]
  18. C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
    [Crossref]
  19. G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).
    [Crossref]
  20. K. Osvay, A. P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatári, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
    [Crossref]
  21. X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242(4-6), 599–604 (2004).
    [Crossref]
  22. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
    [Crossref]
  23. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
    [Crossref] [PubMed]
  24. K. Varjú, A. P. Kovács, G. Kurdi, and K. Osvay, “High-precision measurement of angular dispersion in a CPA laser,” Appl. Phys. B 74(S1), S259–S263 (2002).
    [Crossref]
  25. S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE,” Opt. Express 11(5), 491–501 (2003).
    [Crossref] [PubMed]
  26. A. Börzsönyi, L. Mangin-Thro, G. Cheriaux, and K. Osvay, “Two-dimensional single-shot measurement of angular dispersion for compressor alignment,” Opt. Lett. 38(4), 410–412 (2013).
    [Crossref] [PubMed]
  27. M. J. Guardalben, “Littrow angle method to remove alignment errors in grating pulse compressors,” Appl. Opt. 47(27), 4959–4964 (2008).
    [Crossref] [PubMed]
  28. F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
    [Crossref]
  29. S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
    [Crossref]
  30. Z. Bor, Z. Gogolak, and G. Szabo, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14(16), 862–864 (1989).
    [Crossref] [PubMed]
  31. B. Sun, P. S. Salter, and M. J. Booth, “Pulse front adaptive optics: a new method for control of ultrashort laser pulses,” Opt. Express 23(15), 19348–19357 (2015).
    [Crossref] [PubMed]
  32. S. W. Bahk, J. Bromage, and J. D. Zuegel, “Offner radial group delay compensator for ultra-broadband laser beam transport,” Opt. Lett. 39(4), 1081–1084 (2014).
    [Crossref] [PubMed]
  33. M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry,” Opt. Lett. 39(17), 5142–5145 (2014).
    [Crossref] [PubMed]
  34. J. Qiao, J. Papa, and X. Liu, “Spatio-temporal modeling and optimization of a deformable-grating compressor for short high-energy laser pulses,” Opt. Express 23(20), 25923–25934 (2015).
    [Crossref] [PubMed]
  35. J. Ma, P. Yuan, J. Wang, Y. Wang, G. Xie, H. Zhu, and L. Qian, “Spatiotemporal noise characterization for chirped-pulse amplification systems,” Nat. Commun. 6(1), 6192 (2015).
    [Crossref] [PubMed]
  36. G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
    [Crossref]
  37. T. Nagy and G. Steinmeyer, “Ultrafast optics: A closer look at ultra-intense lasers,” Nat. Photonics 10(8), 502–504 (2016).
    [Crossref]
  38. Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10(10), 102702 (2017).
    [Crossref]
  39. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
    [Crossref]
  40. J. Bromage, C. Dorrer, and R. K. Jungquist, “Temporal contrast degradation at the focus of ultrafast pulses from high-frequency spectral phase modulation,” J. Opt. Soc. Am. B 29(5), 1125–1135 (2012).
    [Crossref]
  41. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [Crossref]
  42. P. Poole, S. Trendafilov, G. Shvets, D. Smith, and E. Chowdhury, “Femtosecond laser damage threshold of pulse compression gratings for petawatt scale laser systems,” Opt. Express 21(22), 26341–26351 (2013).
    [Crossref] [PubMed]

2017 (3)

2016 (3)

S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
[Crossref]

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

T. Nagy and G. Steinmeyer, “Ultrafast optics: A closer look at ultra-intense lasers,” Nat. Photonics 10(8), 502–504 (2016).
[Crossref]

2015 (4)

2014 (2)

2013 (2)

2012 (1)

2010 (2)

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

2008 (1)

2007 (1)

2006 (2)

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2–3), 41–155 (2006).
[Crossref]

2005 (1)

2004 (2)

K. Osvay, A. P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatári, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242(4-6), 599–604 (2004).
[Crossref]

2003 (1)

2002 (1)

K. Varjú, A. P. Kovács, G. Kurdi, and K. Osvay, “High-precision measurement of angular dispersion in a CPA laser,” Appl. Phys. B 74(S1), S259–S263 (2002).
[Crossref]

2001 (1)

Z. Wang, Z. Xu, and Z. Zhang, “A new theory for the treatment of a pulsed beam propagating through a grating pair,” IEEE J. Quantum Electron. 37(1), 1–11 (2001).
[Crossref]

2000 (2)

1999 (1)

1998 (1)

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

1997 (1)

1994 (1)

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

1993 (1)

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[Crossref]

1992 (2)

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4), 437–440 (1992).
[Crossref]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

1989 (1)

1986 (1)

1985 (1)

D. Strickland and G. A. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Akturk, S.

Arnold, C. L.

Backus, S.

Bahk, S. W.

Blanchot, N.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Booth, M. J.

Bor, Z.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[Crossref]

Z. Bor, Z. Gogolak, and G. Szabo, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14(16), 862–864 (1989).
[Crossref] [PubMed]

Borot, A.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

Börzsönyi, A.

Bowlan, P.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

Bromage, J.

Bulanov, S. V.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Chen, L.

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

Cheng, Z.

Cheriaux, G.

Chowdhury, E.

Csatári, M.

K. Osvay, A. P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatári, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

Dorrer, C.

Dubietis, A.

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4), 437–440 (1992).
[Crossref]

Dugan, M. A.

Durfee, C. G.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

Fiorini, C.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Gabolde, P.

Gallet, V.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

Gobert, O.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

Gogolak, Z.

Gu, X.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
[Crossref] [PubMed]

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242(4-6), 599–604 (2004).
[Crossref]

Guardalben, M. J.

Guo, C.

Guo, Y.

Harth, A.

Hatsagortsyan, K. Z.

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2–3), 41–155 (2006).
[Crossref]

Hazim, H. A.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[Crossref]

Heiner, Z.

K. Osvay, A. P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatári, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

Hilbert, M.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[Crossref]

Hu, S. X.

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2–3), 41–155 (2006).
[Crossref]

Huang, X.

Jang, Y. H.

Jiang, D.

Jiang, X.

Jing, F.

Jonušauskas, G.

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4), 437–440 (1992).
[Crossref]

Jungquist, R. K.

Kapteyn, H.

Kapteyn, H. C.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

Kasper, A.

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).
[Crossref]

Keitel, C. H.

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2–3), 41–155 (2006).
[Crossref]

Kimmel, M.

Klebniczki, J.

K. Osvay, A. P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatári, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

Kotur, M.

Kovács, A. P.

K. Osvay, A. P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatári, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

K. Varjú, A. P. Kovács, G. Kurdi, and K. Osvay, “High-precision measurement of angular dispersion in a CPA laser,” Appl. Phys. B 74(S1), S259–S263 (2002).
[Crossref]

Krausz, F.

Kurdi, G.

K. Osvay, A. P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatári, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

K. Varjú, A. P. Kovács, G. Kurdi, and K. Osvay, “High-precision measurement of angular dispersion in a CPA laser,” Appl. Phys. B 74(S1), S259–S263 (2002).
[Crossref]

L’Huillier, A.

Laude, V.

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Lee, C. W.

Lee, H. W.

Lee, S. K.

Leng, Y.

S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
[Crossref]

Z. Li, S. Li, C. Wang, Y. Xu, F. Wu, Y. Li, and Y. Leng, “Stable and near Fourier-transform-limit 30fs pulse compression with a tiled grating compressor scheme,” Opt. Express 23(26), 33386–33395 (2015).
[Crossref] [PubMed]

Li, R.

S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
[Crossref]

Li, S.

S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
[Crossref]

Z. Li, S. Li, C. Wang, Y. Xu, F. Wu, Y. Li, and Y. Leng, “Stable and near Fourier-transform-limit 30fs pulse compression with a tiled grating compressor scheme,” Opt. Express 23(26), 33386–33395 (2015).
[Crossref] [PubMed]

Li, Y.

S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
[Crossref]

Z. Li, S. Li, C. Wang, Y. Xu, F. Wu, Y. Li, and Y. Leng, “Stable and near Fourier-transform-limit 30fs pulse compression with a tiled grating compressor scheme,” Opt. Express 23(26), 33386–33395 (2015).
[Crossref] [PubMed]

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

Li, Z.

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10(10), 102702 (2017).
[Crossref]

S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
[Crossref]

Z. Li, S. Li, C. Wang, Y. Xu, F. Wu, Y. Li, and Y. Leng, “Stable and near Fourier-transform-limit 30fs pulse compression with a tiled grating compressor scheme,” Opt. Express 23(26), 33386–33395 (2015).
[Crossref] [PubMed]

Lin, X.

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

Liu, F.

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

Liu, X.

J. Qiao, J. Papa, and X. Liu, “Spatio-temporal modeling and optimization of a deformable-grating compressor for short high-energy laser pulses,” Opt. Express 23(20), 25923–25934 (2015).
[Crossref] [PubMed]

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

Ma, J.

J. Ma, P. Yuan, J. Wang, Y. Wang, G. Xie, H. Zhu, and L. Qian, “Spatiotemporal noise characterization for chirped-pulse amplification systems,” Nat. Commun. 6(1), 6192 (2015).
[Crossref] [PubMed]

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

Maginnis, K.

Mangin-Thro, L.

Marcinkevicius, A.

Martinez, O. E.

Migus, A.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Miranda, M.

Miyanaga, N.

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10(10), 102702 (2017).
[Crossref]

Mourou, G.

Mourou, G. A.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

D. Strickland and G. A. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Mu, J.

Murnane, M.

Murnane, M. M.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

Nagy, T.

T. Nagy and G. Steinmeyer, “Ultrafast optics: A closer look at ultra-intense lasers,” Nat. Photonics 10(8), 502–504 (2016).
[Crossref]

Nakata, Y.

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10(10), 102702 (2017).
[Crossref]

Nam, C. H.

Nomura, Y.

O’Shea, P.

Osvay, K.

A. Börzsönyi, L. Mangin-Thro, G. Cheriaux, and K. Osvay, “Two-dimensional single-shot measurement of angular dispersion for compressor alignment,” Opt. Lett. 38(4), 410–412 (2013).
[Crossref] [PubMed]

K. Osvay, A. P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatári, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

K. Varjú, A. P. Kovács, G. Kurdi, and K. Osvay, “High-precision measurement of angular dispersion in a CPA laser,” Appl. Phys. B 74(S1), S259–S263 (2002).
[Crossref]

Papa, J.

Pariente, G.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Peng, H.

Pervak, V.

Piskarskas, A.

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4), 437–440 (1992).
[Crossref]

Poole, P.

Pretzler, G.

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).
[Crossref]

Qian, L.

J. Ma, P. Yuan, J. Wang, Y. Wang, G. Xie, H. Zhu, and L. Qian, “Spatiotemporal noise characterization for chirped-pulse amplification systems,” Nat. Commun. 6(1), 6192 (2015).
[Crossref] [PubMed]

Qiao, J.

Quéré, F.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

Racz, B.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[Crossref]

Rouyer, C.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Rudawski, P.

Russek, U.

Salamin, Y. I.

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2–3), 41–155 (2006).
[Crossref]

Salter, P. S.

Sauteret, C.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Seznec, S.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Shvets, G.

Smith, D.

Son, Y. J.

Spielmann, C.

Steinmeyer, G.

T. Nagy and G. Steinmeyer, “Ultrafast optics: A closer look at ultra-intense lasers,” Nat. Photonics 10(8), 502–504 (2016).
[Crossref]

Strickland, D.

D. Strickland and G. A. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Su, J.

Sun, B.

Sung, J. H.

Szabo, G.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[Crossref]

Z. Bor, Z. Gogolak, and G. Szabo, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14(16), 862–864 (1989).
[Crossref] [PubMed]

Tajima, T.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Tavella, F.

Tournois, P.

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Trebino, R.

Trendafilov, S.

Tsubakimoto, K.

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10(10), 102702 (2017).
[Crossref]

Tull, J. X.

Varjú, K.

K. Varjú, A. P. Kovács, G. Kurdi, and K. Osvay, “High-precision measurement of angular dispersion in a CPA laser,” Appl. Phys. B 74(S1), S259–S263 (2002).
[Crossref]

Vdovin, G.

Veisz, L.

Verluise, F.

Wang, C.

S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
[Crossref]

Z. Li, S. Li, C. Wang, Y. Xu, F. Wu, Y. Li, and Y. Leng, “Stable and near Fourier-transform-limit 30fs pulse compression with a tiled grating compressor scheme,” Opt. Express 23(26), 33386–33395 (2015).
[Crossref] [PubMed]

Wang, J.

J. Ma, P. Yuan, J. Wang, Y. Wang, G. Xie, H. Zhu, and L. Qian, “Spatiotemporal noise characterization for chirped-pulse amplification systems,” Nat. Commun. 6(1), 6192 (2015).
[Crossref] [PubMed]

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

Wang, S.

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

Wang, X.

Wang, Y.

J. Ma, P. Yuan, J. Wang, Y. Wang, G. Xie, H. Zhu, and L. Qian, “Spatiotemporal noise characterization for chirped-pulse amplification systems,” Nat. Commun. 6(1), 6192 (2015).
[Crossref] [PubMed]

Wang, Z.

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

Z. Wang, Z. Xu, and Z. Zhang, “A new theory for the treatment of a pulsed beam propagating through a grating pair,” IEEE J. Quantum Electron. 37(1), 1–11 (2001).
[Crossref]

Warren, W. S.

Wei, Z.

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

Weiner, A. M.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Witte, K. J.

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).
[Crossref]

Wu, F.

Wu, Z.

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Xie, G.

J. Ma, P. Yuan, J. Wang, Y. Wang, G. Xie, H. Zhu, and L. Qian, “Spatiotemporal noise characterization for chirped-pulse amplification systems,” Nat. Commun. 6(1), 6192 (2015).
[Crossref] [PubMed]

Xie, N.

Xu, Y.

S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
[Crossref]

Z. Li, S. Li, C. Wang, Y. Xu, F. Wu, Y. Li, and Y. Leng, “Stable and near Fourier-transform-limit 30fs pulse compression with a tiled grating compressor scheme,” Opt. Express 23(26), 33386–33395 (2015).
[Crossref] [PubMed]

Xu, Z.

Z. Wang, Z. Xu, and Z. Zhang, “A new theory for the treatment of a pulsed beam propagating through a grating pair,” IEEE J. Quantum Electron. 37(1), 1–11 (2001).
[Crossref]

Yang, J. M.

Yoo, J. Y.

Yoon, J. W.

Yoshida, H.

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10(10), 102702 (2017).
[Crossref]

Yuan, P.

J. Ma, P. Yuan, J. Wang, Y. Wang, G. Xie, H. Zhu, and L. Qian, “Spatiotemporal noise characterization for chirped-pulse amplification systems,” Nat. Commun. 6(1), 6192 (2015).
[Crossref] [PubMed]

Zeek, E.

Zeng, X.

Zhang, J.

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

Zhang, L.

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

Zhang, Z.

Z. Wang, Z. Xu, and Z. Zhang, “A new theory for the treatment of a pulsed beam propagating through a grating pair,” IEEE J. Quantum Electron. 37(1), 1–11 (2001).
[Crossref]

Zhou, K.

Zhou, S.

Zhu, H.

J. Ma, P. Yuan, J. Wang, Y. Wang, G. Xie, H. Zhu, and L. Qian, “Spatiotemporal noise characterization for chirped-pulse amplification systems,” Nat. Commun. 6(1), 6192 (2015).
[Crossref] [PubMed]

Zhu, Q.

Zuegel, J. D.

Zuo, Y.

Appl. Opt. (1)

Appl. Phys. B (3)

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).
[Crossref]

K. Varjú, A. P. Kovács, G. Kurdi, and K. Osvay, “High-precision measurement of angular dispersion in a CPA laser,” Appl. Phys. B 74(S1), S259–S263 (2002).
[Crossref]

F. Liu, X. Liu, Z. Wang, J. Ma, X. Liu, L. Zhang, J. Wang, S. Wang, X. Lin, Y. Li, L. Chen, Z. Wei, and J. Zhang, “Compression grating alignment by far-field monitoring,” Appl. Phys. B 101(3), 587–591 (2010).
[Crossref]

Appl. Phys. Express (1)

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10(10), 102702 (2017).
[Crossref]

IEEE J. Quantum Electron. (4)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Z. Wang, Z. Xu, and Z. Zhang, “A new theory for the treatment of a pulsed beam propagating through a grating pair,” IEEE J. Quantum Electron. 37(1), 1–11 (2001).
[Crossref]

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Osvay, A. P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatári, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

J. Opt. (1)

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

J. Opt. Soc. Am. B (3)

Nat. Commun. (1)

J. Ma, P. Yuan, J. Wang, Y. Wang, G. Xie, H. Zhu, and L. Qian, “Spatiotemporal noise characterization for chirped-pulse amplification systems,” Nat. Commun. 6(1), 6192 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

T. Nagy and G. Steinmeyer, “Ultrafast optics: A closer look at ultra-intense lasers,” Nat. Photonics 10(8), 502–504 (2016).
[Crossref]

Opt. Commun. (3)

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242(4-6), 599–604 (2004).
[Crossref]

D. Strickland and G. A. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4), 437–440 (1992).
[Crossref]

Opt. Eng. (2)

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[Crossref]

S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
[Crossref]

Opt. Express (6)

Opt. Lett. (9)

F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevičius, and F. Krausz, “Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier,” Opt. Lett. 32(15), 2227–2229 (2007).
[Crossref] [PubMed]

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25(8), 575–577 (2000).
[Crossref] [PubMed]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24(7), 493–495 (1999).
[Crossref] [PubMed]

Z. Bor, Z. Gogolak, and G. Szabo, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14(16), 862–864 (1989).
[Crossref] [PubMed]

X. Zeng, K. Zhou, Y. Zuo, Q. Zhu, J. Su, X. Wang, X. Wang, X. Huang, X. Jiang, D. Jiang, Y. Guo, N. Xie, S. Zhou, Z. Wu, J. Mu, H. Peng, and F. Jing, “Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification,” Opt. Lett. 42(10), 2014–2017 (2017).
[Crossref] [PubMed]

J. H. Sung, H. W. Lee, J. Y. Yoo, J. W. Yoon, C. W. Lee, J. M. Yang, Y. J. Son, Y. H. Jang, S. K. Lee, and C. H. Nam, “4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz,” Opt. Lett. 42(11), 2058–2061 (2017).
[Crossref] [PubMed]

S. W. Bahk, J. Bromage, and J. D. Zuegel, “Offner radial group delay compensator for ultra-broadband laser beam transport,” Opt. Lett. 39(4), 1081–1084 (2014).
[Crossref] [PubMed]

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry,” Opt. Lett. 39(17), 5142–5145 (2014).
[Crossref] [PubMed]

A. Börzsönyi, L. Mangin-Thro, G. Cheriaux, and K. Osvay, “Two-dimensional single-shot measurement of angular dispersion for compressor alignment,” Opt. Lett. 38(4), 410–412 (2013).
[Crossref] [PubMed]

Phys. Rep. (1)

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2–3), 41–155 (2006).
[Crossref]

Rev. Mod. Phys. (1)

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

Other (2)

http://www.fastlite.com/en/

D. Alessi, “High-average-power diffraction pulse-compression gratings enabling next-generation ultrafast laser systems,” LDRD Annual Report, LLNL-TR-707794, Nov. 2, 2016.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Classified distortions in a CPA laser: on-axis spectral phase distortion (OSPD) and on-axis spectral amplitude distortion (OSAD) (♥ and ♠) for a ray-pulse, and spatio-spectral-phase distortion (SSPD) and spatio-spectral-amplitude distortion (SSAD) (♣ and ♦) for a beam-pulse. (b) Schematic of a general ultra-intense CPA laser. At the compressor, the angular dispersion and the large beam-aperture would induce SSPD and SSAD. Wavefronts of G2 and G3 induce different phase front distortions of three frequencies (ω1<ω2<ω3, and ω2 is the center frequency), and it shows how the beam-pulse is spatio-spectrally distorted.
Fig. 2
Fig. 2 Phase in the 3D space-frequency domain. (a) Phase of the uncompressed pulse. (b) After ideal pulse compression. Wavefront errors of only (c) G1&4 or (d) G2&3 are considered. When wavefront errors of both G1&4 and G2&3 are considered, (e, f) and (g, h) is the result without and with the spectral phase compensation (i.e., Wizzler and Dazzler). (f, h) illustrate distributions in two orthogonal sections of y = 0 and x = 0. The center frequency is 2.356 × 1015 rad/s (i.e., 800 nm).
Fig. 3
Fig. 3 Compressed pulse in the 3D space-time domain. (a) and (d) are compressed pulses corresponding to 3D phases shown in Figs. 2(b) and 2(g), respectively. (b, c) and (e, f) are temporal contrasts of (a) and (d), respectively.
Fig. 4
Fig. 4 Focused pulse in the 3D space-time domain. (a) and (d) are focused pulses corresponding to Figs. 3(a) and 3(d), respectively. (b, c) and (e, f) are temporal contrasts of (a) and (d), respectively.
Fig. 5
Fig. 5 Distortion induced by low and high spatial frequency wavefront errors. Only the (a-f) low and (g-l) high spatial frequency wavefront errors are considered. (a, g) are the compressed pulses in the near-field, and (b, h) and (c, i) are the temporal contrasts in the sections of y = 0 and x = 0. (d, j) are the focused pulses in the far-field, and (e, k) and (f, l) are the temporal contrasts in the sections of η = 0 and ξ = 0. The combination of Wizzler and Dazzler works.
Fig. 6
Fig. 6 Distortion induced by G2&3 or G1&4. When the wavefront errors of only (a-d) G2&3 or (e-h) G1&4 are considered, (a, e) are the compressed pulses in the near-field, (b, f) are the focused pulses in the far-field, and (c, g) and (d, h) are the far-field temporal contrasts in the sections of η = 0 and ξ = 0. The combination of Wizzler and Dazzler works.
Fig. 7
Fig. 7 Distortion induced by x- and y-axes wavefront errors of G2&3. When only the (a-d) x- and (e-h) y-axes wavefront errors of G2&3 are considered, (a, e) are the compressed pulses in the near-field, (b, f) are the focused pulses in the far-field, and (c, g) and (d, h) are the far-field temporal contrasts in the sections of η = 0 and ξ = 0. Wavefront errors of G1&4 are neglected, and the combination of Wizzler and Dazzler works. The x- and y-axis is the angular dispersion direction and its orthogonal direction, respectively
Fig. 8
Fig. 8 Results using (a-d) plane wave approximation and (e-h) Fourier angular spectrum methods, respectively. (a, e) compressed pulses in the near-field, (b, f) focused pulses in the far-field, and (c, d, g, h) relative intensities of (a, b, e, f). (i-k) GD, GVD and TOD vary with spatial frequency fx. The inset shows the distorted beam-pulse in spatial frequency fx and spectral frequency Δf. (l) Intensity modulation in space of the center frequency induced by spatial-phase modulation (wavefront errors) and propagation diffraction.
Fig. 9
Fig. 9 (a) Measured diffraction wavefronts of compression gratings in our laboratory [~0.075-0.32 wave (1064 nm) PV, and ~35-170 mm spatial period]. The x-axis is the angular dispersion direction. (b) (i, iii) Normalized focused peak intensity (FPI) and (ii, iv) on-axis far-field temporal contrast (OFTC) (800 fs before the 20 fs main pulse) as a function of (i, ii) wavefront PV and (iii, iv) beam diameter for various spatial frequencies (3.3, 10 and 20 m−1) of wavefront errors. Only the x-axis wavefront error of G2&3 is considered.

Tables (2)

Tables Icon

Table 1 Key properties of fs-PW CPA lasers and their major influence factors.

Tables Icon

Table 2 Quantitative requirements of PV for different spatial frequency wavefront errors.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

[ x( ω ) y( ω ) ]| G1/4 =[ x y ].
[ x( ω ) y( ω ) ]| G2/3 =[ x+δx( ω ) y ].
δx( ω )=±[ tan β 0 tanβ( ω ) ]cosα ω 0 d 2 cos 3 β 0 2π T Δλ ,
f( x,y )= H 1 2 [ sin( 2π x L x )+sin( 2π y L y ) ]+ H 2 2 δ( x,y ),
ϕ pd ( x,y,ω )=k( ω )[ f G1&4 ( x,y )+ f G2&3 ( x,y,ω ) ].
ϕ SSPD ( x,y,ω )= ϕ pd ( x,y,ω ) ϕ pd ( x,y,ω )| x=y=0 ,
E CPA ( x,y,ω )= E 0 ( ω )exp[ i ϕ CPA ( ω ) ]M( x,y ),
E( x,y,ω )= E CPA ( x,y,ω )exp[ i ϕ SSPD ( x,y,ω ) ].
E( x,y,t )=iFT[ E( x,y,ω ) ],
E( ξ,η,ω )=F T 2 [ E( x,y,ω ) ],
E( ξ,η,t )=iFT[ E( ξ,η,ω ) ].
ϕ( ω )=ϕ( ω 0 )+ ϕ ( ω 0 )( ω ω 0 )+ 1 2! ϕ ( ω 0 ) ( ω ω 0 ) 2 + 1 3! ϕ ( ω 0 ) ( ω ω 0 ) 3 +,

Metrics