Abstract

The refractive index is a basic parameter of materials which it is essential to know for the manipulation of electromagnetic waves. However, there are no naturally occurring materials with negative refractive indices, and high-performance materials with negative refractive indices and low losses are demanded in the terahertz waveband. In this paper, measurements by terahertz time-domain spectroscopy (THz-TDS) demonstrate a metamaterial with a negative refractive index n of −4.2 + j0.17, high transmitted power of 81.5%, low reflected power of 4.3%, and a high figure of merit (FOM = |Re(n)/Im(n)|) of 24.2 at 0.42 THz. The terahertz metamaterial with these unprecedented properties can provide various attractive terahertz applications such as superlenses with resolutions beyond the diffraction limit in terahertz continuous wave imaging.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Negative refractive index metasurface in the 2.0-THz band

Takehito Suzuki and Satoshi Kondoh
Opt. Mater. Express 8(7) 1916-1925 (2018)

Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths

C. García-Meca, R. Ortuño, R. Salvador, A. Martínez, and J. Martí
Opt. Express 15(15) 9320-9325 (2007)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
    [Crossref] [PubMed]
  2. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  3. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
    [Crossref] [PubMed]
  4. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  5. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  6. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [Crossref] [PubMed]
  7. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  8. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
    [Crossref] [PubMed]
  9. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  10. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  11. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
    [Crossref] [PubMed]
  12. T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. K. -Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(8422), 1–7 (2015).
  13. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  14. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [Crossref] [PubMed]
  15. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  16. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  17. A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92(7), 077401 (2004).
    [Crossref] [PubMed]
  18. M. Awad, M. Nagel, and H. Kurz, “Negative-index metamaterial with polymer-embedded wire-pair structures at terahertz frequencies,” Opt. Lett. 33(22), 2683–2685 (2008).
    [Crossref] [PubMed]
  19. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
    [Crossref] [PubMed]
  20. P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
    [Crossref]
  21. T. F. Gundogdu, N. Katsarakis, M. Kafesaki, R. S. Penciu, G. Konstantinidis, A. Kostopoulos, E. N. Economou, and C. M. Soukoulis, “Negative index short-slab pair and continuous wires metamaterials in the far infrared regime,” Opt. Express 16(12), 9173–9180 (2008).
    [Crossref] [PubMed]
  22. H. O. Moser, J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. B. Mahmood, and L. Wen, “Free-standing THz electromagnetic metamaterials,” Opt. Express 16(18), 13773–13780 (2008).
  23. J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009).
    [Crossref] [PubMed]
  24. K. Takano, Y. Yakiyama, K. Shibuya, K. Izumi, H. Miyazaki, Y. Jimba, F. Miyamaru, H. Kitahara, and M. Hangyo, “Fabrication and performance of TiO2-ceramic-based metamaterials for terahertz frequency range,” IEEE Trans. THz Sci. Technol. 3(6), 812–819 (2013).
  25. C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
    [Crossref]
  26. W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
    [Crossref]
  27. Q.-L. Zhang, L.-M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
    [Crossref]
  28. Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2(10), 618–621 (2008).
    [Crossref]
  29. T. Miyamoto, A. Yamaguchi, and T. Mukai, “Terahertz imaging system with resonant tunneling diodes,” Jpn. J. Appl. Phys. 55(3), 032201 (2016).
    [Crossref]
  30. K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. THz Sci. Technol. 5(4), 613–618 (2015).
  31. T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Express 9(2), 024101 (2016).
    [Crossref]
  32. K. Ishihara and T. Suzuki, “Metamaterial demonstrates both a high refractive index and extremely low reflection in the 0.3-THz band,” J. Infrared Millim. Te. 38(9), 1130–1139 (2017).
    [Crossref]
  33. B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B 79(7), 075121 (2009).
    [Crossref]
  34. H. Kubo, T. Yoshida, A. Sanada, and T. Yamamoto, “Propagation characteristics on the left-handed mode in the material composed of metal strips put alternately on front and back sides,” IEICE Trans. Electron. 95(10), 1658–1661 (2012).
    [Crossref]
  35. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
    [Crossref] [PubMed]
  36. O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96(24), 241110 (2010).
    [Crossref]
  37. M. Naftaly, “An international intercomparison of THz time-domain spectrometers,” inProceedings of IRMMW-THz (2016), paper T4E.3.
    [Crossref]
  38. Y. Minowa, T. Fujii, M. Nagai, T. Ochiai, K. Sakoda, K. Hirao, and K. Tanaka, “Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy,” Opt. Express 16(7), 4785–4796 (2008).
    [Crossref] [PubMed]
  39. Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz Laminated-structure Polarizer with High Extinction Ratio and Transmission Power,” Appl. Phys. Express 8(3), 032201 (2015).
    [Crossref]
  40. T. Suzuki, M. Nagai, and Y. Kishi, “Extreme-Sensitivity Terahertz Polarizer Inspired by an Anisotropic Cut-through Metamaterial,” Opt. Lett. 41(2), 325–328 (2016).
    [Crossref] [PubMed]
  41. R. Yahiaoui, H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, and P. Mounaix, “Broadband dielectric terahertz metamaterials with negative permeability,” Opt. Lett. 34(22), 3541–3543 (2009).
    [Crossref] [PubMed]
  42. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011).
    [Crossref] [PubMed]
  43. Y. Wang, Q. Wu, Y. M. Wu, K. Zhang, L. W. Li, and J. H. Yin, “Broadband Terahertz Left-Hand Material With Negative Permeability for Magnetic Response,” IEEE Trans. Magn. 47(10), 2592–2595 (2011).
    [Crossref]

2017 (1)

K. Ishihara and T. Suzuki, “Metamaterial demonstrates both a high refractive index and extremely low reflection in the 0.3-THz band,” J. Infrared Millim. Te. 38(9), 1130–1139 (2017).
[Crossref]

2016 (3)

T. Miyamoto, A. Yamaguchi, and T. Mukai, “Terahertz imaging system with resonant tunneling diodes,” Jpn. J. Appl. Phys. 55(3), 032201 (2016).
[Crossref]

T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Express 9(2), 024101 (2016).
[Crossref]

T. Suzuki, M. Nagai, and Y. Kishi, “Extreme-Sensitivity Terahertz Polarizer Inspired by an Anisotropic Cut-through Metamaterial,” Opt. Lett. 41(2), 325–328 (2016).
[Crossref] [PubMed]

2015 (3)

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz Laminated-structure Polarizer with High Extinction Ratio and Transmission Power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. THz Sci. Technol. 5(4), 613–618 (2015).

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. K. -Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(8422), 1–7 (2015).

2014 (2)

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Q.-L. Zhang, L.-M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
[Crossref]

2013 (3)

K. Takano, Y. Yakiyama, K. Shibuya, K. Izumi, H. Miyazaki, Y. Jimba, F. Miyamaru, H. Kitahara, and M. Hangyo, “Fabrication and performance of TiO2-ceramic-based metamaterials for terahertz frequency range,” IEEE Trans. THz Sci. Technol. 3(6), 812–819 (2013).

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

2012 (3)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

H. Kubo, T. Yoshida, A. Sanada, and T. Yamamoto, “Propagation characteristics on the left-handed mode in the material composed of metal strips put alternately on front and back sides,” IEICE Trans. Electron. 95(10), 1658–1661 (2012).
[Crossref]

2011 (2)

N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011).
[Crossref] [PubMed]

Y. Wang, Q. Wu, Y. M. Wu, K. Zhang, L. W. Li, and J. H. Yin, “Broadband Terahertz Left-Hand Material With Negative Permeability for Magnetic Response,” IEEE Trans. Magn. 47(10), 2592–2595 (2011).
[Crossref]

2010 (2)

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96(24), 241110 (2010).
[Crossref]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

2009 (6)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B 79(7), 075121 (2009).
[Crossref]

J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009).
[Crossref] [PubMed]

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
[Crossref]

R. Yahiaoui, H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, and P. Mounaix, “Broadband dielectric terahertz metamaterials with negative permeability,” Opt. Lett. 34(22), 3541–3543 (2009).
[Crossref] [PubMed]

2008 (9)

Y. Minowa, T. Fujii, M. Nagai, T. Ochiai, K. Sakoda, K. Hirao, and K. Tanaka, “Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy,” Opt. Express 16(7), 4785–4796 (2008).
[Crossref] [PubMed]

T. F. Gundogdu, N. Katsarakis, M. Kafesaki, R. S. Penciu, G. Konstantinidis, A. Kostopoulos, E. N. Economou, and C. M. Soukoulis, “Negative index short-slab pair and continuous wires metamaterials in the far infrared regime,” Opt. Express 16(12), 9173–9180 (2008).
[Crossref] [PubMed]

H. O. Moser, J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. B. Mahmood, and L. Wen, “Free-standing THz electromagnetic metamaterials,” Opt. Express 16(18), 13773–13780 (2008).

M. Awad, M. Nagel, and H. Kurz, “Negative-index metamaterial with polymer-embedded wire-pair structures at terahertz frequencies,” Opt. Lett. 33(22), 2683–2685 (2008).
[Crossref] [PubMed]

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[Crossref] [PubMed]

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2(10), 618–621 (2008).
[Crossref]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

2006 (2)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2004 (3)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92(7), 077401 (2004).
[Crossref] [PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Asada, M.

T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Express 9(2), 024101 (2016).
[Crossref]

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. THz Sci. Technol. 5(4), 613–618 (2015).

Averitt, R. D.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Awad, M.

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Bahou, M.

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Beigang, R.

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96(24), 241110 (2010).
[Crossref]

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
[Crossref]

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[Crossref] [PubMed]

Bingham, C. M.

Burokur, S. N.

B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B 79(7), 075121 (2009).
[Crossref]

Chan, C.-H.

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Chang, C.-L.

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Chen, A.

Chen, F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Chen, H. S.

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Chen, Z. C.

Cheng, X. X.

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

de Lustrac, A.

B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B 79(7), 075121 (2009).
[Crossref]

Economou, E. N.

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Fujii, T.

-Gonokami, M. K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. K. -Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(8422), 1–7 (2015).

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009).
[Crossref] [PubMed]

Gu, P. D.

Gundogdu, T. F.

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009).
[Crossref] [PubMed]

Han, N. R.

Hangyo, M.

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz Laminated-structure Polarizer with High Extinction Ratio and Transmission Power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

K. Takano, Y. Yakiyama, K. Shibuya, K. Izumi, H. Miyazaki, Y. Jimba, F. Miyamaru, H. Kitahara, and M. Hangyo, “Fabrication and performance of TiO2-ceramic-based metamaterials for terahertz frequency range,” IEEE Trans. THz Sci. Technol. 3(6), 812–819 (2013).

Heussler, S. P.

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Hirao, K.

Hong, M. H.

Hsieh, F. J.

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Huang, Y.

Q.-L. Zhang, L.-M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
[Crossref]

Imhof, C.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
[Crossref]

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[Crossref] [PubMed]

Ishibashi, K.

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2(10), 618–621 (2008).
[Crossref]

Ishihara, K.

K. Ishihara and T. Suzuki, “Metamaterial demonstrates both a high refractive index and extremely low reflection in the 0.3-THz band,” J. Infrared Millim. Te. 38(9), 1130–1139 (2017).
[Crossref]

Isozaki, A.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. K. -Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(8422), 1–7 (2015).

Izumi, K.

K. Takano, Y. Yakiyama, K. Shibuya, K. Izumi, H. Miyazaki, Y. Jimba, F. Miyamaru, H. Kitahara, and M. Hangyo, “Fabrication and performance of TiO2-ceramic-based metamaterials for terahertz frequency range,” IEEE Trans. THz Sci. Technol. 3(6), 812–819 (2013).

Jian, L. K.

Jimba, Y.

K. Takano, Y. Yakiyama, K. Shibuya, K. Izumi, H. Miyazaki, Y. Jimba, F. Miyamaru, H. Kitahara, and M. Hangyo, “Fabrication and performance of TiO2-ceramic-based metamaterials for terahertz frequency range,” IEEE Trans. THz Sci. Technol. 3(6), 812–819 (2013).

Kadlec, C.

Kadlec, F.

Kafesaki, M.

Kalaiselvi, S. M. P.

Kan, T.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. K. -Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(8422), 1–7 (2015).

Kanaya, H.

T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Express 9(2), 024101 (2016).
[Crossref]

Kanda, N.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. K. -Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(8422), 1–7 (2015).

Kang, M.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Kanté, B.

B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B 79(7), 075121 (2009).
[Crossref]

Kasagi, K.

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. THz Sci. Technol. 5(4), 613–618 (2015).

Katsarakis, N.

Kawano, Y.

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2(10), 618–621 (2008).
[Crossref]

Kishi, Y.

T. Suzuki, M. Nagai, and Y. Kishi, “Extreme-Sensitivity Terahertz Polarizer Inspired by an Anisotropic Cut-through Metamaterial,” Opt. Lett. 41(2), 325–328 (2016).
[Crossref] [PubMed]

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz Laminated-structure Polarizer with High Extinction Ratio and Transmission Power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

Kissel, V. N.

A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92(7), 077401 (2004).
[Crossref] [PubMed]

Kitahara, H.

K. Takano, Y. Yakiyama, K. Shibuya, K. Izumi, H. Miyazaki, Y. Jimba, F. Miyamaru, H. Kitahara, and M. Hangyo, “Fabrication and performance of TiO2-ceramic-based metamaterials for terahertz frequency range,” IEEE Trans. THz Sci. Technol. 3(6), 812–819 (2013).

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Kong, J. A.

H. O. Moser, J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. B. Mahmood, and L. Wen, “Free-standing THz electromagnetic metamaterials,” Opt. Express 16(18), 13773–13780 (2008).

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Konishi, K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. K. -Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(8422), 1–7 (2015).

Konstantinidis, G.

Kostopoulos, A.

Krolla, B.

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96(24), 241110 (2010).
[Crossref]

Kubo, H.

H. Kubo, T. Yoshida, A. Sanada, and T. Yamamoto, “Propagation characteristics on the left-handed mode in the material composed of metal strips put alternately on front and back sides,” IEICE Trans. Electron. 95(10), 1658–1661 (2012).
[Crossref]

Kurz, H.

Kuzel, P.

Lagarkov, A. N.

A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92(7), 077401 (2004).
[Crossref] [PubMed]

Landy, N. I.

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Li, L. W.

Y. Wang, Q. Wu, Y. M. Wu, K. Zhang, L. W. Li, and J. H. Yin, “Broadband Terahertz Left-Hand Material With Negative Permeability for Magnetic Response,” IEEE Trans. Magn. 47(10), 2592–2595 (2011).
[Crossref]

Lim, C. S.

Lin, H.-R.

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Liu, G.

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Lourtioz, J.-M.

B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B 79(7), 075121 (2009).
[Crossref]

Lu, X.

Lv, X.

Q.-L. Zhang, L.-M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
[Crossref]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

Maekawa, T.

T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Express 9(2), 024101 (2016).
[Crossref]

Mahmood, S. B.

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

Maniam, S. M.

Matsumoto, K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. K. -Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(8422), 1–7 (2015).

Minowa, Y.

Miyamaru, F.

K. Takano, Y. Yakiyama, K. Shibuya, K. Izumi, H. Miyazaki, Y. Jimba, F. Miyamaru, H. Kitahara, and M. Hangyo, “Fabrication and performance of TiO2-ceramic-based metamaterials for terahertz frequency range,” IEEE Trans. THz Sci. Technol. 3(6), 812–819 (2013).

Miyamoto, T.

T. Miyamoto, A. Yamaguchi, and T. Mukai, “Terahertz imaging system with resonant tunneling diodes,” Jpn. J. Appl. Phys. 55(3), 032201 (2016).
[Crossref]

Miyazaki, H.

K. Takano, Y. Yakiyama, K. Shibuya, K. Izumi, H. Miyazaki, Y. Jimba, F. Miyamaru, H. Kitahara, and M. Hangyo, “Fabrication and performance of TiO2-ceramic-based metamaterials for terahertz frequency range,” IEEE Trans. THz Sci. Technol. 3(6), 812–819 (2013).

Moser, H. O.

Mounaix, P.

Mukai, T.

T. Miyamoto, A. Yamaguchi, and T. Mukai, “Terahertz imaging system with resonant tunneling diodes,” Jpn. J. Appl. Phys. 55(3), 032201 (2016).
[Crossref]

Nagai, M.

Nagel, M.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Nemec, H.

Nemoto, N.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. K. -Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(8422), 1–7 (2015).

Ng, B.

O’Hara, J. F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Ochiai, T.

Okada, K.

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. THz Sci. Technol. 5(4), 613–618 (2015).

Oshima, N.

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. THz Sci. Technol. 5(4), 613–618 (2015).

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Paul, O.

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96(24), 241110 (2010).
[Crossref]

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
[Crossref]

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[Crossref] [PubMed]

Penciu, R. S.

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Premaratne, M.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Pun, Y.-B.

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Rahm, M.

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96(24), 241110 (2010).
[Crossref]

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
[Crossref]

Reinhard, B.

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96(24), 241110 (2010).
[Crossref]

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[Crossref] [PubMed]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Sakoda, K.

Sanada, A.

H. Kubo, T. Yoshida, A. Sanada, and T. Yamamoto, “Propagation characteristics on the left-handed mode in the material composed of metal strips put alternately on front and back sides,” IEICE Trans. Electron. 95(10), 1658–1661 (2012).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Sellier, A.

B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B 79(7), 075121 (2009).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shibuya, K.

K. Takano, Y. Yakiyama, K. Shibuya, K. Izumi, H. Miyazaki, Y. Jimba, F. Miyamaru, H. Kitahara, and M. Hangyo, “Fabrication and performance of TiO2-ceramic-based metamaterials for terahertz frequency range,” IEEE Trans. THz Sci. Technol. 3(6), 812–819 (2013).

Shimoyama, I.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. K. -Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(8422), 1–7 (2015).

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Si, L.-M.

Q.-L. Zhang, L.-M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
[Crossref]

Sikdar, D.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009).
[Crossref] [PubMed]

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Soukoulis, C. M.

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Suzuki, S.

T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Express 9(2), 024101 (2016).
[Crossref]

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. THz Sci. Technol. 5(4), 613–618 (2015).

Suzuki, T.

K. Ishihara and T. Suzuki, “Metamaterial demonstrates both a high refractive index and extremely low reflection in the 0.3-THz band,” J. Infrared Millim. Te. 38(9), 1130–1139 (2017).
[Crossref]

T. Suzuki, M. Nagai, and Y. Kishi, “Extreme-Sensitivity Terahertz Polarizer Inspired by an Anisotropic Cut-through Metamaterial,” Opt. Lett. 41(2), 325–328 (2016).
[Crossref] [PubMed]

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz Laminated-structure Polarizer with High Extinction Ratio and Transmission Power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

Takahashi, H.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. K. -Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(8422), 1–7 (2015).

Takano, K.

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz Laminated-structure Polarizer with High Extinction Ratio and Transmission Power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

K. Takano, Y. Yakiyama, K. Shibuya, K. Izumi, H. Miyazaki, Y. Jimba, F. Miyamaru, H. Kitahara, and M. Hangyo, “Fabrication and performance of TiO2-ceramic-based metamaterials for terahertz frequency range,” IEEE Trans. THz Sci. Technol. 3(6), 812–819 (2013).

Tanaka, K.

Tao, H.

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009).
[Crossref] [PubMed]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, W.-C.

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Wang, Y.

Y. Wang, Q. Wu, Y. M. Wu, K. Zhang, L. W. Li, and J. H. Yin, “Broadband Terahertz Left-Hand Material With Negative Permeability for Magnetic Response,” IEEE Trans. Magn. 47(10), 2592–2595 (2011).
[Crossref]

Weis, P.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
[Crossref]

Wen, L.

Wu, B. I.

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Wu, Q.

Y. Wang, Q. Wu, Y. M. Wu, K. Zhang, L. W. Li, and J. H. Yin, “Broadband Terahertz Left-Hand Material With Negative Permeability for Magnetic Response,” IEEE Trans. Magn. 47(10), 2592–2595 (2011).
[Crossref]

Wu, Y. M.

Y. Wang, Q. Wu, Y. M. Wu, K. Zhang, L. W. Li, and J. H. Yin, “Broadband Terahertz Left-Hand Material With Negative Permeability for Magnetic Response,” IEEE Trans. Magn. 47(10), 2592–2595 (2011).
[Crossref]

Xiao, F.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Xing, Q.

Yahiaoui, R.

Yakiyama, Y.

K. Takano, Y. Yakiyama, K. Shibuya, K. Izumi, H. Miyazaki, Y. Jimba, F. Miyamaru, H. Kitahara, and M. Hangyo, “Fabrication and performance of TiO2-ceramic-based metamaterials for terahertz frequency range,” IEEE Trans. THz Sci. Technol. 3(6), 812–819 (2013).

Yamaguchi, A.

T. Miyamoto, A. Yamaguchi, and T. Mukai, “Terahertz imaging system with resonant tunneling diodes,” Jpn. J. Appl. Phys. 55(3), 032201 (2016).
[Crossref]

Yamamoto, T.

H. Kubo, T. Yoshida, A. Sanada, and T. Yamamoto, “Propagation characteristics on the left-handed mode in the material composed of metal strips put alternately on front and back sides,” IEICE Trans. Electron. 95(10), 1658–1661 (2012).
[Crossref]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Yin, J. H.

Y. Wang, Q. Wu, Y. M. Wu, K. Zhang, L. W. Li, and J. H. Yin, “Broadband Terahertz Left-Hand Material With Negative Permeability for Magnetic Response,” IEEE Trans. Magn. 47(10), 2592–2595 (2011).
[Crossref]

Yoshida, T.

H. Kubo, T. Yoshida, A. Sanada, and T. Yamamoto, “Propagation characteristics on the left-handed mode in the material composed of metal strips put alternately on front and back sides,” IEICE Trans. Electron. 95(10), 1658–1661 (2012).
[Crossref]

Young, J. C.

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz Laminated-structure Polarizer with High Extinction Ratio and Transmission Power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zengerle, R.

Zhang, K.

Y. Wang, Q. Wu, Y. M. Wu, K. Zhang, L. W. Li, and J. H. Yin, “Broadband Terahertz Left-Hand Material With Negative Permeability for Magnetic Response,” IEEE Trans. Magn. 47(10), 2592–2595 (2011).
[Crossref]

Zhang, Q.-L.

Q.-L. Zhang, L.-M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
[Crossref]

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

Zhang, W.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009).
[Crossref] [PubMed]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Zhou, J.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Zhu, W.

Q.-L. Zhang, L.-M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
[Crossref]

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

AIP Adv. (1)

Q.-L. Zhang, L.-M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
[Crossref]

Appl. Phys. Express (2)

T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Express 9(2), 024101 (2016).
[Crossref]

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz Laminated-structure Polarizer with High Extinction Ratio and Transmission Power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

Appl. Phys. Lett. (4)

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96(24), 241110 (2010).
[Crossref]

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
[Crossref]

IEEE Trans. Magn. (1)

Y. Wang, Q. Wu, Y. M. Wu, K. Zhang, L. W. Li, and J. H. Yin, “Broadband Terahertz Left-Hand Material With Negative Permeability for Magnetic Response,” IEEE Trans. Magn. 47(10), 2592–2595 (2011).
[Crossref]

IEEE Trans. THz Sci. Technol. (2)

K. Takano, Y. Yakiyama, K. Shibuya, K. Izumi, H. Miyazaki, Y. Jimba, F. Miyamaru, H. Kitahara, and M. Hangyo, “Fabrication and performance of TiO2-ceramic-based metamaterials for terahertz frequency range,” IEEE Trans. THz Sci. Technol. 3(6), 812–819 (2013).

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. THz Sci. Technol. 5(4), 613–618 (2015).

IEICE Trans. Electron. (1)

H. Kubo, T. Yoshida, A. Sanada, and T. Yamamoto, “Propagation characteristics on the left-handed mode in the material composed of metal strips put alternately on front and back sides,” IEICE Trans. Electron. 95(10), 1658–1661 (2012).
[Crossref]

J. Infrared Millim. Te. (1)

K. Ishihara and T. Suzuki, “Metamaterial demonstrates both a high refractive index and extremely low reflection in the 0.3-THz band,” J. Infrared Millim. Te. 38(9), 1130–1139 (2017).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Miyamoto, A. Yamaguchi, and T. Mukai, “Terahertz imaging system with resonant tunneling diodes,” Jpn. J. Appl. Phys. 55(3), 032201 (2016).
[Crossref]

Nat. Commun. (2)

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. K. -Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(8422), 1–7 (2015).

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1151), 1151 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Nat. Photonics (3)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2(10), 618–621 (2008).
[Crossref]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Express (7)

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[Crossref] [PubMed]

H. O. Moser, J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. B. Mahmood, and L. Wen, “Free-standing THz electromagnetic metamaterials,” Opt. Express 16(18), 13773–13780 (2008).

J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009).
[Crossref] [PubMed]

T. F. Gundogdu, N. Katsarakis, M. Kafesaki, R. S. Penciu, G. Konstantinidis, A. Kostopoulos, E. N. Economou, and C. M. Soukoulis, “Negative index short-slab pair and continuous wires metamaterials in the far infrared regime,” Opt. Express 16(12), 9173–9180 (2008).
[Crossref] [PubMed]

Y. Minowa, T. Fujii, M. Nagai, T. Ochiai, K. Sakoda, K. Hirao, and K. Tanaka, “Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy,” Opt. Express 16(7), 4785–4796 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (1)

B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B 79(7), 075121 (2009).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (6)

A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92(7), 077401 (2004).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Other (1)

M. Naftaly, “An international intercomparison of THz time-domain spectrometers,” inProceedings of IRMMW-THz (2016), paper T4E.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The metamaterial with a negative refractive index, high transmission power, and low reflection power consisting of asymmetrically aligned paired cut metal wires. (b) Design model of one meta-atom with the periodic boundary conditions.
Fig. 2
Fig. 2 Contour maps for (a) the real part of refractive indices, (b) the imaginary part of the refractive indices, (c) transmission power, and (d) reflection power.
Fig. 3
Fig. 3 Top row: Frequency characteristics of (a) refractive indices and (b) permittivity and permeability for the symmetrically aligned paired cut metal wires. Row two: Frequency characteristics of (c) refractive indices and (d) permittivity and permeability for asymmetrical structures with 1/6 shifted alignment. Row three: Frequency characteristics of (e) refractive indices and (f) permittivity and permeability for asymmetrical structures with 2/6 shifted alignment. Bottom row: Frequency characteristics of (g) refractive indices and (h) permittivity and permeability for asymmetrical structures with 3/6 shifted alignment.
Fig. 4
Fig. 4 (a) Photograph of the fabricated metamaterial with a negative refractive index. (b) Microscope view of the asymmetrically aligned paired cut metal wires with the 3/6 shifted.
Fig. 5
Fig. 5 Measured (dots) and simulated (solid curves) values of the (a) Real and imaginary parts of the refractive index; (b) Transmitted power and reflected power; (c) Real and imaginary parts of the relative permittivity; (d) Real and imaginary parts of the relative permeability; (e) Relative wave impedance.
Fig. 6
Fig. 6 Measured and simulated values of the figure of merit expressed as the real part over the imaginary part of a complex refractive index.
Fig. 7
Fig. 7 Measured and simulated values of the frequency characteristics of (a) the sum of the dielectric energy loss and magnetic energy loss, (b) the dielectric energy loss and magnetic energy loss, and (c) the power loss from measurements and simulations.

Tables (1)

Tables Icon

Table 1 Parameters of the cut metal wires

Metrics