Abstract

Light absorption at the surface of a photodiode can be enhanced by employing nanostructures smaller than the wavelength of interest. In this study, a ZnO quantum dot (QD) coating layer was investigated for improving the light absorption of gallium nitride (GaN) ultraviolet (UV) photodiodes. A GaN surface coated with a ZnO QD solution exhibited significantly lower surface reflection than an uncoated GaN surface, which, in turn, improved the responsivity of the GaN photodiode. In comparison with other nanostructure or multilayer thin film processes, the proposed ZnO QD coating process is simple and effective in enhancing UV light absorption.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Light transmission enhancement from hybrid ZnO micro-mesh and nanorod arrays with application to GaN-based light-emitting diodes

Zhengmao Yin, Xiaoyan Liu, Huining Wang, Yongzhong Wu, Xiaopeng Hao, Ziwu Ji, and Xiangang Xu
Opt. Express 21(23) 28531-28542 (2013)

Coupling of spontaneous emission from GaN–AlN quantum dots into silver surface plasmons

Arup Neogi, Hadis Morkoç, Takamasa Kuroda, and Atsushi Tackeuchi
Opt. Lett. 30(1) 93-95 (2005)

Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector

Yang Liu, Xianghui Zhang, Jun Su, Haixia Li, Qi Zhang, and Yihua Gao
Opt. Express 22(24) 30148-30155 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Choi, H. J. Kim, Y. Zhang, X. Bai, D. Yoo, J. Limb, and R. D. Dupuis, “Geiger-mode operation of GaN avalanche photodiodes grown on GaN substrates,” IEEE Photonics Technol. Lett. 21(20), 1526–1528 (2009).
    [Crossref]
  2. S. Soloviev, A. Vert, A. Bolotnikov, and P. Sandvik, “UV SiC avalanche photodetectors for photon counting,” IEEE Sensors J. 2009, 1897–1900 (2009)
  3. H. Liu, D. Mcintosh, X. Bai, H. Pan, M. Liu, J. C. Campbell, and H. Y. Cha, “4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency,” IEEE Photonics Technol. Lett. 20(18), 1551–1553 (2008).
    [Crossref]
  4. H. Y. Cha, “Structural optimization of silicon carbide PIN avalanche photodiodes for UV detection,” J. Korean Phys. Soc. 56(2), 672–676 (2010).
    [Crossref]
  5. J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
    [Crossref]
  6. S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photonics Technol. Lett. 19(21), 1744–1746 (2007).
    [Crossref]
  7. K. Rabinovitch and A. Pagis, “Multilayer antireflection coatings: theoretical model and design parameters,” Appl. Opt. 14(6), 1326–1334 (1975).
    [Crossref] [PubMed]
  8. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
    [Crossref]
  9. R. P. Rocha, M. J. Maciel, J. M. Gomes, J. P. Carmo, and J. H. Correia, “Fabricating microlenses on photodiodes to increase the light-current conversion efficiency,” IEEE Sens. J. 14(5), 1343–1344 (2014).
    [Crossref]
  10. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31(19), 3821–3835 (1992).
    [Crossref] [PubMed]
  11. J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
    [Crossref]
  12. S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
    [Crossref]
  13. Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
    [Crossref]
  14. D. Maikhuri, S. P. Purohit, and K. C. Mathur, “Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO2 matrix,” AIP Adv. 2(1), 012160 (2012).
    [Crossref]
  15. İ. Karabulut and S. Baskoutas, “Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity,” J. Appl. Phys. 103(7), 073512 (2008).
    [Crossref]
  16. B. Çakır, Y. Yakar, and A. Özmen, “Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential,” J. Lumin. 132(10), 2659–2664 (2012).
    [Crossref]
  17. T. J. Jacobsson and T. Edvinsson, “Antireflective coatings of ZnO quantum dots and their photocatalytic activity,” RSC Advances 2(27), 10298–10305 (2012).
    [Crossref]
  18. Y. F. Makableh, A. I. Nusir, H. Morris, K. McKenzie, and O. Manasreh, “Performance enhancement of InAs quantum dots solar cells by using nanostructured antireflection coating with hydrophobic properties,” J. Nanophotonics 10(4), 046018 (2016).
    [Crossref]
  19. Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
    [Crossref] [PubMed]
  20. S. Sawyer, L. Qin, and C. Shing, “nanoparticles for ultraviolet photodetection,” Int. J. High Speed Electron. Syst. 20(01), 183–194 (2011).
    [Crossref]
  21. J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27(1), 197–204 (2014).
    [Crossref]

2016 (1)

Y. F. Makableh, A. I. Nusir, H. Morris, K. McKenzie, and O. Manasreh, “Performance enhancement of InAs quantum dots solar cells by using nanostructured antireflection coating with hydrophobic properties,” J. Nanophotonics 10(4), 046018 (2016).
[Crossref]

2015 (1)

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

2014 (2)

R. P. Rocha, M. J. Maciel, J. M. Gomes, J. P. Carmo, and J. H. Correia, “Fabricating microlenses on photodiodes to increase the light-current conversion efficiency,” IEEE Sens. J. 14(5), 1343–1344 (2014).
[Crossref]

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27(1), 197–204 (2014).
[Crossref]

2012 (3)

D. Maikhuri, S. P. Purohit, and K. C. Mathur, “Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO2 matrix,” AIP Adv. 2(1), 012160 (2012).
[Crossref]

B. Çakır, Y. Yakar, and A. Özmen, “Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential,” J. Lumin. 132(10), 2659–2664 (2012).
[Crossref]

T. J. Jacobsson and T. Edvinsson, “Antireflective coatings of ZnO quantum dots and their photocatalytic activity,” RSC Advances 2(27), 10298–10305 (2012).
[Crossref]

2011 (2)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

S. Sawyer, L. Qin, and C. Shing, “nanoparticles for ultraviolet photodetection,” Int. J. High Speed Electron. Syst. 20(01), 183–194 (2011).
[Crossref]

2010 (2)

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

H. Y. Cha, “Structural optimization of silicon carbide PIN avalanche photodiodes for UV detection,” J. Korean Phys. Soc. 56(2), 672–676 (2010).
[Crossref]

2009 (3)

S. Choi, H. J. Kim, Y. Zhang, X. Bai, D. Yoo, J. Limb, and R. D. Dupuis, “Geiger-mode operation of GaN avalanche photodiodes grown on GaN substrates,” IEEE Photonics Technol. Lett. 21(20), 1526–1528 (2009).
[Crossref]

S. Soloviev, A. Vert, A. Bolotnikov, and P. Sandvik, “UV SiC avalanche photodetectors for photon counting,” IEEE Sensors J. 2009, 1897–1900 (2009)

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

2008 (3)

İ. Karabulut and S. Baskoutas, “Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity,” J. Appl. Phys. 103(7), 073512 (2008).
[Crossref]

H. Liu, D. Mcintosh, X. Bai, H. Pan, M. Liu, J. C. Campbell, and H. Y. Cha, “4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency,” IEEE Photonics Technol. Lett. 20(18), 1551–1553 (2008).
[Crossref]

Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
[Crossref] [PubMed]

2007 (1)

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photonics Technol. Lett. 19(21), 1744–1746 (2007).
[Crossref]

2004 (1)

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

1992 (1)

1975 (1)

Algra, R. E.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

An, K. S.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27(1), 197–204 (2014).
[Crossref]

Bai, X.

S. Choi, H. J. Kim, Y. Zhang, X. Bai, D. Yoo, J. Limb, and R. D. Dupuis, “Geiger-mode operation of GaN avalanche photodiodes grown on GaN substrates,” IEEE Photonics Technol. Lett. 21(20), 1526–1528 (2009).
[Crossref]

H. Liu, D. Mcintosh, X. Bai, H. Pan, M. Liu, J. C. Campbell, and H. Y. Cha, “4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency,” IEEE Photonics Technol. Lett. 20(18), 1551–1553 (2008).
[Crossref]

Bakkers, E. P. A. M.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Baskoutas, S.

İ. Karabulut and S. Baskoutas, “Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity,” J. Appl. Phys. 103(7), 073512 (2008).
[Crossref]

Beck, A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Beck, J. D.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Blakesley, J. C.

Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
[Crossref] [PubMed]

Bolotnikov, A.

S. Soloviev, A. Vert, A. Bolotnikov, and P. Sandvik, “UV SiC avalanche photodetectors for photon counting,” IEEE Sensors J. 2009, 1897–1900 (2009)

Cai, J.

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

Çakir, B.

B. Çakır, Y. Yakar, and A. Özmen, “Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential,” J. Lumin. 132(10), 2659–2664 (2012).
[Crossref]

Campbell, J. C.

H. Liu, D. Mcintosh, X. Bai, H. Pan, M. Liu, J. C. Campbell, and H. Y. Cha, “4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency,” IEEE Photonics Technol. Lett. 20(18), 1551–1553 (2008).
[Crossref]

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Carmo, J. P.

R. P. Rocha, M. J. Maciel, J. M. Gomes, J. P. Carmo, and J. H. Correia, “Fabricating microlenses on photodiodes to increase the light-current conversion efficiency,” IEEE Sens. J. 14(5), 1343–1344 (2014).
[Crossref]

Cha, H. Y.

H. Y. Cha, “Structural optimization of silicon carbide PIN avalanche photodiodes for UV detection,” J. Korean Phys. Soc. 56(2), 672–676 (2010).
[Crossref]

H. Liu, D. Mcintosh, X. Bai, H. Pan, M. Liu, J. C. Campbell, and H. Y. Cha, “4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency,” IEEE Photonics Technol. Lett. 20(18), 1551–1553 (2008).
[Crossref]

Choi, S.

S. Choi, H. J. Kim, Y. Zhang, X. Bai, D. Yoo, J. Limb, and R. D. Dupuis, “Geiger-mode operation of GaN avalanche photodiodes grown on GaN substrates,” IEEE Photonics Technol. Lett. 21(20), 1526–1528 (2009).
[Crossref]

Coldren, L. A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Correia, J. H.

R. P. Rocha, M. J. Maciel, J. M. Gomes, J. P. Carmo, and J. H. Correia, “Fabricating microlenses on photodiodes to increase the light-current conversion efficiency,” IEEE Sens. J. 14(5), 1343–1344 (2014).
[Crossref]

Decobert, J.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Demiguel, S.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Diedenhofen, S. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Do, Y. R.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27(1), 197–204 (2014).
[Crossref]

Dobrowolski, J. A.

Dupuis, R. D.

S. Choi, H. J. Kim, Y. Zhang, X. Bai, D. Yoo, J. Limb, and R. D. Dupuis, “Geiger-mode operation of GaN avalanche photodiodes grown on GaN substrates,” IEEE Photonics Technol. Lett. 21(20), 1526–1528 (2009).
[Crossref]

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photonics Technol. Lett. 19(21), 1744–1746 (2007).
[Crossref]

Edvinsson, T.

T. J. Jacobsson and T. Edvinsson, “Antireflective coatings of ZnO quantum dots and their photocatalytic activity,” RSC Advances 2(27), 10298–10305 (2012).
[Crossref]

Ganesh, V. A.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Gomes, J. M.

R. P. Rocha, M. J. Maciel, J. M. Gomes, J. P. Carmo, and J. H. Correia, “Fabricating microlenses on photodiodes to increase the light-current conversion efficiency,” IEEE Sens. J. 14(5), 1343–1344 (2014).
[Crossref]

Greenham, N. C.

Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
[Crossref] [PubMed]

Guo, X.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Han, C. Y.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27(1), 197–204 (2014).
[Crossref]

Hartsuiker, A.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Huntington, A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Immink, G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Jacobsson, T. J.

T. J. Jacobsson and T. Edvinsson, “Antireflective coatings of ZnO quantum dots and their photocatalytic activity,” RSC Advances 2(27), 10298–10305 (2012).
[Crossref]

Jin, Y.

Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
[Crossref] [PubMed]

Karabulut, I.

İ. Karabulut and S. Baskoutas, “Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity,” J. Appl. Phys. 103(7), 073512 (2008).
[Crossref]

Kim, H. J.

S. Choi, H. J. Kim, Y. Zhang, X. Bai, D. Yoo, J. Limb, and R. D. Dupuis, “Geiger-mode operation of GaN avalanche photodiodes grown on GaN substrates,” IEEE Photonics Technol. Lett. 21(20), 1526–1528 (2009).
[Crossref]

Kim, J.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27(1), 197–204 (2014).
[Crossref]

Kim, J. H.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27(1), 197–204 (2014).
[Crossref]

Lee, K. H.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27(1), 197–204 (2014).
[Crossref]

Li, X.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Li, Y.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Limb, J.

S. Choi, H. J. Kim, Y. Zhang, X. Bai, D. Yoo, J. Limb, and R. D. Dupuis, “Geiger-mode operation of GaN avalanche photodiodes grown on GaN substrates,” IEEE Photonics Technol. Lett. 21(20), 1526–1528 (2009).
[Crossref]

Limb, J. B.

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photonics Technol. Lett. 19(21), 1744–1746 (2007).
[Crossref]

Liu, H.

H. Liu, D. Mcintosh, X. Bai, H. Pan, M. Liu, J. C. Campbell, and H. Y. Cha, “4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency,” IEEE Photonics Technol. Lett. 20(18), 1551–1553 (2008).
[Crossref]

Liu, M.

H. Liu, D. Mcintosh, X. Bai, H. Pan, M. Liu, J. C. Campbell, and H. Y. Cha, “4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency,” IEEE Photonics Technol. Lett. 20(18), 1551–1553 (2008).
[Crossref]

Ma, F.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Maciel, M. J.

R. P. Rocha, M. J. Maciel, J. M. Gomes, J. P. Carmo, and J. H. Correia, “Fabricating microlenses on photodiodes to increase the light-current conversion efficiency,” IEEE Sens. J. 14(5), 1343–1344 (2014).
[Crossref]

Maikhuri, D.

D. Maikhuri, S. P. Purohit, and K. C. Mathur, “Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO2 matrix,” AIP Adv. 2(1), 012160 (2012).
[Crossref]

Makableh, Y. F.

Y. F. Makableh, A. I. Nusir, H. Morris, K. McKenzie, and O. Manasreh, “Performance enhancement of InAs quantum dots solar cells by using nanostructured antireflection coating with hydrophobic properties,” J. Nanophotonics 10(4), 046018 (2016).
[Crossref]

Manasreh, O.

Y. F. Makableh, A. I. Nusir, H. Morris, K. McKenzie, and O. Manasreh, “Performance enhancement of InAs quantum dots solar cells by using nanostructured antireflection coating with hydrophobic properties,” J. Nanophotonics 10(4), 046018 (2016).
[Crossref]

Mathur, K. C.

D. Maikhuri, S. P. Purohit, and K. C. Mathur, “Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO2 matrix,” AIP Adv. 2(1), 012160 (2012).
[Crossref]

Mcintosh, D.

H. Liu, D. Mcintosh, X. Bai, H. Pan, M. Liu, J. C. Campbell, and H. Y. Cha, “4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency,” IEEE Photonics Technol. Lett. 20(18), 1551–1553 (2008).
[Crossref]

McKenzie, K.

Y. F. Makableh, A. I. Nusir, H. Morris, K. McKenzie, and O. Manasreh, “Performance enhancement of InAs quantum dots solar cells by using nanostructured antireflection coating with hydrophobic properties,” J. Nanophotonics 10(4), 046018 (2016).
[Crossref]

Morris, H.

Y. F. Makableh, A. I. Nusir, H. Morris, K. McKenzie, and O. Manasreh, “Performance enhancement of InAs quantum dots solar cells by using nanostructured antireflection coating with hydrophobic properties,” J. Nanophotonics 10(4), 046018 (2016).
[Crossref]

Muskens, O. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Nair, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Nusir, A. I.

Y. F. Makableh, A. I. Nusir, H. Morris, K. McKenzie, and O. Manasreh, “Performance enhancement of InAs quantum dots solar cells by using nanostructured antireflection coating with hydrophobic properties,” J. Nanophotonics 10(4), 046018 (2016).
[Crossref]

Oh, M. S.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27(1), 197–204 (2014).
[Crossref]

Özmen, A.

B. Çakır, Y. Yakar, and A. Özmen, “Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential,” J. Lumin. 132(10), 2659–2664 (2012).
[Crossref]

Pagis, A.

Pan, H.

H. Liu, D. Mcintosh, X. Bai, H. Pan, M. Liu, J. C. Campbell, and H. Y. Cha, “4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency,” IEEE Photonics Technol. Lett. 20(18), 1551–1553 (2008).
[Crossref]

Purohit, S. P.

D. Maikhuri, S. P. Purohit, and K. C. Mathur, “Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO2 matrix,” AIP Adv. 2(1), 012160 (2012).
[Crossref]

Qi, L.

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

Qin, L.

S. Sawyer, L. Qin, and C. Shing, “nanoparticles for ultraviolet photodetection,” Int. J. High Speed Electron. Syst. 20(01), 183–194 (2011).
[Crossref]

Rabinovitch, K.

Ramakrishna, S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Raut, H. K.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Rivas, J. G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Rocha, R. P.

R. P. Rocha, M. J. Maciel, J. M. Gomes, J. P. Carmo, and J. H. Correia, “Fabricating microlenses on photodiodes to increase the light-current conversion efficiency,” IEEE Sens. J. 14(5), 1343–1344 (2014).
[Crossref]

Ryou, J. H.

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photonics Technol. Lett. 19(21), 1744–1746 (2007).
[Crossref]

Sandvik, P.

S. Soloviev, A. Vert, A. Bolotnikov, and P. Sandvik, “UV SiC avalanche photodetectors for photon counting,” IEEE Sensors J. 2009, 1897–1900 (2009)

Sawyer, S.

S. Sawyer, L. Qin, and C. Shing, “nanoparticles for ultraviolet photodetection,” Int. J. High Speed Electron. Syst. 20(01), 183–194 (2011).
[Crossref]

Shen, S. C.

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photonics Technol. Lett. 19(21), 1744–1746 (2007).
[Crossref]

Shing, C.

S. Sawyer, L. Qin, and C. Shing, “nanoparticles for ultraviolet photodetection,” Int. J. High Speed Electron. Syst. 20(01), 183–194 (2011).
[Crossref]

Soloviev, S.

S. Soloviev, A. Vert, A. Bolotnikov, and P. Sandvik, “UV SiC avalanche photodetectors for photon counting,” IEEE Sensors J. 2009, 1897–1900 (2009)

Song, W.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27(1), 197–204 (2014).
[Crossref]

Sullivan, B. T.

Sun, B.

Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
[Crossref] [PubMed]

Tscherptner, N.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Vecchi, G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Vert, A.

S. Soloviev, A. Vert, A. Bolotnikov, and P. Sandvik, “UV SiC avalanche photodetectors for photon counting,” IEEE Sensors J. 2009, 1897–1900 (2009)

Vos, W. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Wang, J.

Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
[Crossref] [PubMed]

Wang, S.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Yakar, Y.

B. Çakır, Y. Yakar, and A. Özmen, “Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential,” J. Lumin. 132(10), 2659–2664 (2012).
[Crossref]

Yang, B.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Yang, H.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27(1), 197–204 (2014).
[Crossref]

Yoder, P. D.

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photonics Technol. Lett. 19(21), 1744–1746 (2007).
[Crossref]

Yoo, D.

S. Choi, H. J. Kim, Y. Zhang, X. Bai, D. Yoo, J. Limb, and R. D. Dupuis, “Geiger-mode operation of GaN avalanche photodiodes grown on GaN substrates,” IEEE Photonics Technol. Lett. 21(20), 1526–1528 (2009).
[Crossref]

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photonics Technol. Lett. 19(21), 1744–1746 (2007).
[Crossref]

Zhang, J.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Zhang, Y.

S. Choi, H. J. Kim, Y. Zhang, X. Bai, D. Yoo, J. Limb, and R. D. Dupuis, “Geiger-mode operation of GaN avalanche photodiodes grown on GaN substrates,” IEEE Photonics Technol. Lett. 21(20), 1526–1528 (2009).
[Crossref]

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photonics Technol. Lett. 19(21), 1744–1746 (2007).
[Crossref]

Zheng, X.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Adv. Mater. (1)

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

AIP Adv. (1)

D. Maikhuri, S. P. Purohit, and K. C. Mathur, “Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO2 matrix,” AIP Adv. 2(1), 012160 (2012).
[Crossref]

Appl. Opt. (2)

Chem. Mater. (1)

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27(1), 197–204 (2014).
[Crossref]

Energy Environ. Sci. (1)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (3)

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photonics Technol. Lett. 19(21), 1744–1746 (2007).
[Crossref]

S. Choi, H. J. Kim, Y. Zhang, X. Bai, D. Yoo, J. Limb, and R. D. Dupuis, “Geiger-mode operation of GaN avalanche photodiodes grown on GaN substrates,” IEEE Photonics Technol. Lett. 21(20), 1526–1528 (2009).
[Crossref]

H. Liu, D. Mcintosh, X. Bai, H. Pan, M. Liu, J. C. Campbell, and H. Y. Cha, “4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency,” IEEE Photonics Technol. Lett. 20(18), 1551–1553 (2008).
[Crossref]

IEEE Sens. J. (1)

R. P. Rocha, M. J. Maciel, J. M. Gomes, J. P. Carmo, and J. H. Correia, “Fabricating microlenses on photodiodes to increase the light-current conversion efficiency,” IEEE Sens. J. 14(5), 1343–1344 (2014).
[Crossref]

IEEE Sensors J. (1)

S. Soloviev, A. Vert, A. Bolotnikov, and P. Sandvik, “UV SiC avalanche photodetectors for photon counting,” IEEE Sensors J. 2009, 1897–1900 (2009)

Int. J. High Speed Electron. Syst. (1)

S. Sawyer, L. Qin, and C. Shing, “nanoparticles for ultraviolet photodetection,” Int. J. High Speed Electron. Syst. 20(01), 183–194 (2011).
[Crossref]

J. Appl. Phys. (1)

İ. Karabulut and S. Baskoutas, “Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity,” J. Appl. Phys. 103(7), 073512 (2008).
[Crossref]

J. Korean Phys. Soc. (1)

H. Y. Cha, “Structural optimization of silicon carbide PIN avalanche photodiodes for UV detection,” J. Korean Phys. Soc. 56(2), 672–676 (2010).
[Crossref]

J. Lumin. (1)

B. Çakır, Y. Yakar, and A. Özmen, “Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential,” J. Lumin. 132(10), 2659–2664 (2012).
[Crossref]

J. Nanophotonics (1)

Y. F. Makableh, A. I. Nusir, H. Morris, K. McKenzie, and O. Manasreh, “Performance enhancement of InAs quantum dots solar cells by using nanostructured antireflection coating with hydrophobic properties,” J. Nanophotonics 10(4), 046018 (2016).
[Crossref]

Mater. Horiz. (1)

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

Nano Lett. (1)

Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
[Crossref] [PubMed]

Nano Today (1)

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

RSC Advances (1)

T. J. Jacobsson and T. Edvinsson, “Antireflective coatings of ZnO quantum dots and their photocatalytic activity,” RSC Advances 2(27), 10298–10305 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 ZnO QD process and structural illustration.
Fig. 2
Fig. 2 (a) Definition of “incident angle (θ)” and surface reflection characteristics as functions of wavelength and incident angle for (b) bare GaN-on-sapphire, (c) SiO2/GaN-on-sapphire, and (d) ZnO QD/GaN-on-sapphire wafers.
Fig. 3
Fig. 3 (a) Cross-sectional schematic and (b) microscopic image of a fabricated ZnO QD/GaN-on-sapphire photodiode and (c) cross-sectional TEM image of the ZnO QD layer.
Fig. 4
Fig. 4 Photoresponsivity characteristics of GaN photodiodes with and without ZnO QD coating layer.

Metrics