Abstract

Real-time imaging of CO in vehicle exhaust was demonstrated using a gas correlation spectrometry based mid-infrared camera for the first time. The novel gas-correlation imaging technique is used to eliminate the spectral interferences from background radiation and other major combustion products, and reduce the influences of the optical jitter and temperature variations, thereby identifying and quantifying the gas. We take several spectral factors into account for the instrument design, concentration calibration and data evaluation, including atmospheric transmission, radiation interference, as well as the spectral response of infrared camera, filter and gas cell. A calibration method based on the molecular spectroscopy and radiative transfer equation is developed to identify the numerical relationship between the CO concentration × length and the measured image intensity. Two-dimensional CO distribution of vehicle exhaust with a time resolution of 50 Hz and detection limit of 20 ppm × meter is achieved when the distance between optical equipment and engine nozzle is 3 m. The gas correlation spectrometry based mid-infrared camera shows a great potential as a future technique to monitor vehicle pollution emissions quantitatively and visually.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hyperspectral quantitative imaging of gas sources in the mid-infrared

M. A. Rodríguez-Conejo and Juan Meléndez
Appl. Opt. 54(2) 141-149 (2015)

2D visualization of hot gas based on a mid-infrared molecular Faraday imaging filter

Kuijun Wu, Zhongjie Luo, Yutao Feng, Guangbao Yu, Linmei Liu, Yuanhui Xiong, and Faquan Li
Opt. Lett. 43(15) 3686-3689 (2018)

Real-time gas-correlation imaging employing thermal background radiation

Jonas Sandsten, Petter Weibring, Hans Edner, and Sune Svanberg
Opt. Express 6(4) 92-103 (2000)

References

  • View by:
  • |
  • |
  • |

  1. United States Environmental Protection Agency, “Air emissions inventories,” https://www.epa.gov/air-emissions-inventories .
  2. C. L. Townsend and R. L. Maynard, “Effects on health of prolonged exposure to low concentrations of carbon monoxide,” Occup. Environ. Med. 59(10), 708–711 (2002).
    [Crossref] [PubMed]
  3. D. A. Lashof and D. R. Ahuja, “Relative contributions of greenhouse gas emissions to global warming,” Nature 344(6266), 529–531 (1990).
    [Crossref]
  4. P. C. Novelli, K. A. Masarie, P. P. Tans, and P. M. Lang, “Recent changes in atmospheric carbon monoxide,” Science 263(5153), 1587–1590 (1994).
    [Crossref] [PubMed]
  5. R. D. Stephens and S. H. Cadle, “Remote sensing measurements of Carbon Monoxide emissions from on-road vehicles,” J. Air Waste Manage. 41(1), 39–46 (1991).
    [Crossref]
  6. L. J. Medhurst, “FTIR determination of pollutants in automobile exhaust: An environmental chemistry experiment comparing cold-start and warm-engine conditions,” J. Chem. Educ. 82(2), 278–281 (2005).
    [Crossref]
  7. J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm diode lasers,” Meas. Sci. Technol. 11(11), 1576–1584 (2000).
    [Crossref]
  8. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B-Lasers O 67(4), 433–441 (1998).
    [Crossref]
  9. J. Li, U. Parchatka, R. Königstedt, and H. Fischer, “Real-time measurements of atmospheric CO using a continuous-wave room temperature quantum cascade laser based spectrometer,” Opt. Express 20(7), 7590–7601 (2012).
    [Crossref] [PubMed]
  10. L. Tao, K. Sun, M. A. Khan, D. J. Miller, and M. A. Zondlo, “Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser,” Opt. Express 20(27), 28106–28118 (2012).
    [Crossref] [PubMed]
  11. P. Nau, J. Koppmann, A. Lackner, K. Kohse-Hoinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B-Lasers O 118(3), 361–368 (2015).
    [Crossref]
  12. R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B-Lasers O 117(2), 689–698 (2014).
    [Crossref]
  13. Z. Liu, Y. Hong, G. Wang, and D. Qu, “Study on the influence of discrete distribution model on gas temperature 2-dimensional reconstruction measurement,” in International Conference on Mechanical and Aerospace Engineering, 2016), 460–464.
  14. T. C. Wilkes, T. D. Pering, A. J. S. McGonigle, G. Tamburello, and J. R. Willmott, “A low-cost smartphone sensor-based UV camera for volcanic SO2 emission measurements,” Remote Sens. (Basel) 9(12), 27 (2017).
    [Crossref]
  15. T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
    [Crossref]
  16. A. M. Elbaz and W. L. Roberts, “Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV,” Fuel 165, 447–461 (2016).
    [Crossref]
  17. U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes — Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
    [Crossref]
  18. N. Bobrowski, G. Hönninger, F. Lohberger, and U. Platt, “IDOAS: A new monitoring technique to study the 2D distribution of volcanic gas emissions,” J. Volcanol. Geotherm. Res. 150(4), 329–338 (2006).
    [Crossref]
  19. J. Sandsten, H. Edner, and S. Svanberg, “Gas imaging by infrared gas-correlation spectrometry,” Opt. Lett. 21(23), 1945–1947 (1996).
    [Crossref] [PubMed]
  20. J. Sandsten, P. Weibring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express 6(4), 92–103 (2000).
    [Crossref] [PubMed]
  21. J. Sandsten, H. Edner, and S. Svanberg, “Gas visualization of industrial hydrocarbon emissions,” Opt. Express 12(7), 1443–1451 (2004).
    [Crossref] [PubMed]
  22. J. Sandsten and M. Andersson, “Volume flow calculations on gas leaks imaged with infrared gas-correlation,” Opt. Express 20(18), 20318–20329 (2012).
    [Crossref] [PubMed]
  23. J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
    [Crossref]
  24. J. Niu, M. N. Deeter, J. C. Gille, D. P. Edwards, D. C. Ziskin, G. L. Francis, A. J. Hills, and M. W. Smith, “Carbon monoxide total column retrievals by use of the measurements of pollution in the troposphere airborne test radiometer,” Appl. Opt. 43(24), 4685–4696 (2004).
    [Crossref] [PubMed]
  25. J. A. Sinclair, P. G. J. Irwin, S. B. Calcutt, and E. L. Wilson, “On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry,” Icarus 260, 103–127 (2015).
    [Crossref]
  26. L. L. Gordley and B. T. Marshall, “Doppler wind and temperature sounder: new approach using gas filter radiometry,” J. Appl. Remote Sens. 5(1), 053570 (2011).
    [Crossref]
  27. W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm,” Appl. Phys. B-Lasers O 107(3), 849–860 (2012).
    [Crossref]
  28. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.-M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.-A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.-M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. (posted 5 July 2017, in press).
    [Crossref]
  29. M. Cerminara, T. E. Ongaro, S. Valade, and A. J. L. Harris, “Volcanic plume vent conditions retrieved from infrared images: A forward and inverse modeling approach,” J. Volcanol. Geotherm. Res. 300, 129–147 (2015).
    [Crossref]
  30. J. Li, W. Jin, X. Wang, and X. Zhang, “MRGC performance evaluation model of gas leak infrared imaging detection system,” Opt. Express 22(S7), A1701–A1712 (2014).
    [Crossref] [PubMed]

2017 (1)

T. C. Wilkes, T. D. Pering, A. J. S. McGonigle, G. Tamburello, and J. R. Willmott, “A low-cost smartphone sensor-based UV camera for volcanic SO2 emission measurements,” Remote Sens. (Basel) 9(12), 27 (2017).
[Crossref]

2016 (1)

A. M. Elbaz and W. L. Roberts, “Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV,” Fuel 165, 447–461 (2016).
[Crossref]

2015 (5)

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes — Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

P. Nau, J. Koppmann, A. Lackner, K. Kohse-Hoinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B-Lasers O 118(3), 361–368 (2015).
[Crossref]

J. A. Sinclair, P. G. J. Irwin, S. B. Calcutt, and E. L. Wilson, “On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry,” Icarus 260, 103–127 (2015).
[Crossref]

M. Cerminara, T. E. Ongaro, S. Valade, and A. J. L. Harris, “Volcanic plume vent conditions retrieved from infrared images: A forward and inverse modeling approach,” J. Volcanol. Geotherm. Res. 300, 129–147 (2015).
[Crossref]

2014 (2)

J. Li, W. Jin, X. Wang, and X. Zhang, “MRGC performance evaluation model of gas leak infrared imaging detection system,” Opt. Express 22(S7), A1701–A1712 (2014).
[Crossref] [PubMed]

R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B-Lasers O 117(2), 689–698 (2014).
[Crossref]

2012 (4)

2011 (1)

L. L. Gordley and B. T. Marshall, “Doppler wind and temperature sounder: new approach using gas filter radiometry,” J. Appl. Remote Sens. 5(1), 053570 (2011).
[Crossref]

2008 (1)

J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
[Crossref]

2006 (1)

N. Bobrowski, G. Hönninger, F. Lohberger, and U. Platt, “IDOAS: A new monitoring technique to study the 2D distribution of volcanic gas emissions,” J. Volcanol. Geotherm. Res. 150(4), 329–338 (2006).
[Crossref]

2005 (1)

L. J. Medhurst, “FTIR determination of pollutants in automobile exhaust: An environmental chemistry experiment comparing cold-start and warm-engine conditions,” J. Chem. Educ. 82(2), 278–281 (2005).
[Crossref]

2004 (2)

2002 (1)

C. L. Townsend and R. L. Maynard, “Effects on health of prolonged exposure to low concentrations of carbon monoxide,” Occup. Environ. Med. 59(10), 708–711 (2002).
[Crossref] [PubMed]

2000 (2)

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm diode lasers,” Meas. Sci. Technol. 11(11), 1576–1584 (2000).
[Crossref]

J. Sandsten, P. Weibring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express 6(4), 92–103 (2000).
[Crossref] [PubMed]

1998 (1)

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B-Lasers O 67(4), 433–441 (1998).
[Crossref]

1996 (1)

1994 (1)

P. C. Novelli, K. A. Masarie, P. P. Tans, and P. M. Lang, “Recent changes in atmospheric carbon monoxide,” Science 263(5153), 1587–1590 (1994).
[Crossref] [PubMed]

1991 (1)

R. D. Stephens and S. H. Cadle, “Remote sensing measurements of Carbon Monoxide emissions from on-road vehicles,” J. Air Waste Manage. 41(1), 39–46 (1991).
[Crossref]

1990 (1)

D. A. Lashof and D. R. Ahuja, “Relative contributions of greenhouse gas emissions to global warming,” Nature 344(6266), 529–531 (1990).
[Crossref]

Ahuja, D. R.

D. A. Lashof and D. R. Ahuja, “Relative contributions of greenhouse gas emissions to global warming,” Nature 344(6266), 529–531 (1990).
[Crossref]

Amigo, A.

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

Andersson, M.

Attie, J. L.

J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
[Crossref]

Bobrowski, N.

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes — Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

N. Bobrowski, G. Hönninger, F. Lohberger, and U. Platt, “IDOAS: A new monitoring technique to study the 2D distribution of volcanic gas emissions,” J. Volcanol. Geotherm. Res. 150(4), 329–338 (2006).
[Crossref]

Brockhinke, A.

P. Nau, J. Koppmann, A. Lackner, K. Kohse-Hoinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B-Lasers O 118(3), 361–368 (2015).
[Crossref]

Burton, M.

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes — Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

Cadle, S. H.

R. D. Stephens and S. H. Cadle, “Remote sensing measurements of Carbon Monoxide emissions from on-road vehicles,” J. Air Waste Manage. 41(1), 39–46 (1991).
[Crossref]

Calcutt, S. B.

J. A. Sinclair, P. G. J. Irwin, S. B. Calcutt, and E. L. Wilson, “On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry,” Icarus 260, 103–127 (2015).
[Crossref]

Cerminara, M.

M. Cerminara, T. E. Ongaro, S. Valade, and A. J. L. Harris, “Volcanic plume vent conditions retrieved from infrared images: A forward and inverse modeling approach,” J. Volcanol. Geotherm. Res. 300, 129–147 (2015).
[Crossref]

Connolly, J. C.

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm diode lasers,” Meas. Sci. Technol. 11(11), 1576–1584 (2000).
[Crossref]

Davidson, D. F.

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm,” Appl. Phys. B-Lasers O 107(3), 849–860 (2012).
[Crossref]

Deeter, M. N.

J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
[Crossref]

J. Niu, M. N. Deeter, J. C. Gille, D. P. Edwards, D. C. Ziskin, G. L. Francis, A. J. Hills, and M. W. Smith, “Carbon monoxide total column retrievals by use of the measurements of pollution in the troposphere airborne test radiometer,” Appl. Opt. 43(24), 4685–4696 (2004).
[Crossref] [PubMed]

Drummond, J. R.

J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
[Crossref]

Edner, H.

Edwards, D. P.

J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
[Crossref]

J. Niu, M. N. Deeter, J. C. Gille, D. P. Edwards, D. C. Ziskin, G. L. Francis, A. J. Hills, and M. W. Smith, “Carbon monoxide total column retrievals by use of the measurements of pollution in the troposphere airborne test radiometer,” Appl. Opt. 43(24), 4685–4696 (2004).
[Crossref] [PubMed]

Elbaz, A. M.

A. M. Elbaz and W. L. Roberts, “Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV,” Fuel 165, 447–461 (2016).
[Crossref]

Farooq, A.

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm,” Appl. Phys. B-Lasers O 107(3), 849–860 (2012).
[Crossref]

Fee, D.

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

Fischer, H.

Francis, G. L.

Garbuzov, D. Z.

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm diode lasers,” Meas. Sci. Technol. 11(11), 1576–1584 (2000).
[Crossref]

Gille, J. C.

J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
[Crossref]

J. Niu, M. N. Deeter, J. C. Gille, D. P. Edwards, D. C. Ziskin, G. L. Francis, A. J. Hills, and M. W. Smith, “Carbon monoxide total column retrievals by use of the measurements of pollution in the troposphere airborne test radiometer,” Appl. Opt. 43(24), 4685–4696 (2004).
[Crossref] [PubMed]

Goldenstein, C. S.

R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B-Lasers O 117(2), 689–698 (2014).
[Crossref]

Gordley, L. L.

L. L. Gordley and B. T. Marshall, “Doppler wind and temperature sounder: new approach using gas filter radiometry,” J. Appl. Remote Sens. 5(1), 053570 (2011).
[Crossref]

Hanson, R. K.

R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B-Lasers O 117(2), 689–698 (2014).
[Crossref]

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm,” Appl. Phys. B-Lasers O 107(3), 849–860 (2012).
[Crossref]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm diode lasers,” Meas. Sci. Technol. 11(11), 1576–1584 (2000).
[Crossref]

Harris, A. J. L.

M. Cerminara, T. E. Ongaro, S. Valade, and A. J. L. Harris, “Volcanic plume vent conditions retrieved from infrared images: A forward and inverse modeling approach,” J. Volcanol. Geotherm. Res. 300, 129–147 (2015).
[Crossref]

Hills, A. J.

Hong, Y.

Z. Liu, Y. Hong, G. Wang, and D. Qu, “Study on the influence of discrete distribution model on gas temperature 2-dimensional reconstruction measurement,” in International Conference on Mechanical and Aerospace Engineering, 2016), 460–464.

Hönninger, G.

N. Bobrowski, G. Hönninger, F. Lohberger, and U. Platt, “IDOAS: A new monitoring technique to study the 2D distribution of volcanic gas emissions,” J. Volcanol. Geotherm. Res. 150(4), 329–338 (2006).
[Crossref]

Irwin, P. G. J.

J. A. Sinclair, P. G. J. Irwin, S. B. Calcutt, and E. L. Wilson, “On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry,” Icarus 260, 103–127 (2015).
[Crossref]

Jeffries, J. B.

R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B-Lasers O 117(2), 689–698 (2014).
[Crossref]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm diode lasers,” Meas. Sci. Technol. 11(11), 1576–1584 (2000).
[Crossref]

Jimenez, J. L.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B-Lasers O 67(4), 433–441 (1998).
[Crossref]

Jin, W.

Jones, D. B. A.

J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
[Crossref]

Kar, J.

J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
[Crossref]

Kern, C.

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes — Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

Khan, M. A.

Kohse-Hoinghaus, K.

P. Nau, J. Koppmann, A. Lackner, K. Kohse-Hoinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B-Lasers O 118(3), 361–368 (2015).
[Crossref]

Kolb, C. E.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B-Lasers O 67(4), 433–441 (1998).
[Crossref]

Königstedt, R.

Koppmann, J.

P. Nau, J. Koppmann, A. Lackner, K. Kohse-Hoinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B-Lasers O 118(3), 361–368 (2015).
[Crossref]

Kuhn, J.

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes — Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

Lackner, A.

P. Nau, J. Koppmann, A. Lackner, K. Kohse-Hoinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B-Lasers O 118(3), 361–368 (2015).
[Crossref]

Lang, P. M.

P. C. Novelli, K. A. Masarie, P. P. Tans, and P. M. Lang, “Recent changes in atmospheric carbon monoxide,” Science 263(5153), 1587–1590 (1994).
[Crossref] [PubMed]

Lashof, D. A.

D. A. Lashof and D. R. Ahuja, “Relative contributions of greenhouse gas emissions to global warming,” Nature 344(6266), 529–531 (1990).
[Crossref]

Li, J.

Liu, J.

J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
[Crossref]

Liu, Z.

Z. Liu, Y. Hong, G. Wang, and D. Qu, “Study on the influence of discrete distribution model on gas temperature 2-dimensional reconstruction measurement,” in International Conference on Mechanical and Aerospace Engineering, 2016), 460–464.

Lohberger, F.

N. Bobrowski, G. Hönninger, F. Lohberger, and U. Platt, “IDOAS: A new monitoring technique to study the 2D distribution of volcanic gas emissions,” J. Volcanol. Geotherm. Res. 150(4), 329–338 (2006).
[Crossref]

Lopez, T.

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

Lübcke, P.

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes — Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

Maiorov, M.

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm diode lasers,” Meas. Sci. Technol. 11(11), 1576–1584 (2000).
[Crossref]

Marshall, B. T.

L. L. Gordley and B. T. Marshall, “Doppler wind and temperature sounder: new approach using gas filter radiometry,” J. Appl. Remote Sens. 5(1), 053570 (2011).
[Crossref]

Masarie, K. A.

P. C. Novelli, K. A. Masarie, P. P. Tans, and P. M. Lang, “Recent changes in atmospheric carbon monoxide,” Science 263(5153), 1587–1590 (1994).
[Crossref] [PubMed]

Maynard, R. L.

C. L. Townsend and R. L. Maynard, “Effects on health of prolonged exposure to low concentrations of carbon monoxide,” Occup. Environ. Med. 59(10), 708–711 (2002).
[Crossref] [PubMed]

McGonigle, A. J. S.

T. C. Wilkes, T. D. Pering, A. J. S. McGonigle, G. Tamburello, and J. R. Willmott, “A low-cost smartphone sensor-based UV camera for volcanic SO2 emission measurements,” Remote Sens. (Basel) 9(12), 27 (2017).
[Crossref]

McManus, J. B.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B-Lasers O 67(4), 433–441 (1998).
[Crossref]

Medhurst, L. J.

L. J. Medhurst, “FTIR determination of pollutants in automobile exhaust: An environmental chemistry experiment comparing cold-start and warm-engine conditions,” J. Chem. Educ. 82(2), 278–281 (2005).
[Crossref]

Miller, D. J.

Moriano, D.

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

Nau, P.

P. Nau, J. Koppmann, A. Lackner, K. Kohse-Hoinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B-Lasers O 118(3), 361–368 (2015).
[Crossref]

Nelson, D. D.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B-Lasers O 67(4), 433–441 (1998).
[Crossref]

Nichitiu, F.

J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
[Crossref]

Niu, J.

Novelli, P. C.

P. C. Novelli, K. A. Masarie, P. P. Tans, and P. M. Lang, “Recent changes in atmospheric carbon monoxide,” Science 263(5153), 1587–1590 (1994).
[Crossref] [PubMed]

Ongaro, T. E.

M. Cerminara, T. E. Ongaro, S. Valade, and A. J. L. Harris, “Volcanic plume vent conditions retrieved from infrared images: A forward and inverse modeling approach,” J. Volcanol. Geotherm. Res. 300, 129–147 (2015).
[Crossref]

Parchatka, U.

Pering, T. D.

T. C. Wilkes, T. D. Pering, A. J. S. McGonigle, G. Tamburello, and J. R. Willmott, “A low-cost smartphone sensor-based UV camera for volcanic SO2 emission measurements,” Remote Sens. (Basel) 9(12), 27 (2017).
[Crossref]

Platt, U.

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes — Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

N. Bobrowski, G. Hönninger, F. Lohberger, and U. Platt, “IDOAS: A new monitoring technique to study the 2D distribution of volcanic gas emissions,” J. Volcanol. Geotherm. Res. 150(4), 329–338 (2006).
[Crossref]

Prata, A. J.

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

Prata, F.

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes — Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

Qu, D.

Z. Liu, Y. Hong, G. Wang, and D. Qu, “Study on the influence of discrete distribution model on gas temperature 2-dimensional reconstruction measurement,” in International Conference on Mechanical and Aerospace Engineering, 2016), 460–464.

Ren, W.

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm,” Appl. Phys. B-Lasers O 107(3), 849–860 (2012).
[Crossref]

Richter, A.

J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
[Crossref]

Roberts, W. L.

A. M. Elbaz and W. L. Roberts, “Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV,” Fuel 165, 447–461 (2016).
[Crossref]

Sandsten, J.

Schultz, I. A.

R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B-Lasers O 117(2), 689–698 (2014).
[Crossref]

Seymour, M. D.

J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
[Crossref]

Sinclair, J. A.

J. A. Sinclair, P. G. J. Irwin, S. B. Calcutt, and E. L. Wilson, “On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry,” Icarus 260, 103–127 (2015).
[Crossref]

Smith, M. W.

Spearrin, R. M.

R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B-Lasers O 117(2), 689–698 (2014).
[Crossref]

Stephens, R. D.

R. D. Stephens and S. H. Cadle, “Remote sensing measurements of Carbon Monoxide emissions from on-road vehicles,” J. Air Waste Manage. 41(1), 39–46 (1991).
[Crossref]

Sun, K.

Svanberg, S.

Tamburello, G.

T. C. Wilkes, T. D. Pering, A. J. S. McGonigle, G. Tamburello, and J. R. Willmott, “A low-cost smartphone sensor-based UV camera for volcanic SO2 emission measurements,” Remote Sens. (Basel) 9(12), 27 (2017).
[Crossref]

Tans, P. P.

P. C. Novelli, K. A. Masarie, P. P. Tans, and P. M. Lang, “Recent changes in atmospheric carbon monoxide,” Science 263(5153), 1587–1590 (1994).
[Crossref] [PubMed]

Tao, L.

Thomas, H. E.

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

Townsend, C. L.

C. L. Townsend and R. L. Maynard, “Effects on health of prolonged exposure to low concentrations of carbon monoxide,” Occup. Environ. Med. 59(10), 708–711 (2002).
[Crossref] [PubMed]

Valade, S.

M. Cerminara, T. E. Ongaro, S. Valade, and A. J. L. Harris, “Volcanic plume vent conditions retrieved from infrared images: A forward and inverse modeling approach,” J. Volcanol. Geotherm. Res. 300, 129–147 (2015).
[Crossref]

Wang, G.

Z. Liu, Y. Hong, G. Wang, and D. Qu, “Study on the influence of discrete distribution model on gas temperature 2-dimensional reconstruction measurement,” in International Conference on Mechanical and Aerospace Engineering, 2016), 460–464.

Wang, J.

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm diode lasers,” Meas. Sci. Technol. 11(11), 1576–1584 (2000).
[Crossref]

Wang, X.

Weibring, P.

Wilkes, T. C.

T. C. Wilkes, T. D. Pering, A. J. S. McGonigle, G. Tamburello, and J. R. Willmott, “A low-cost smartphone sensor-based UV camera for volcanic SO2 emission measurements,” Remote Sens. (Basel) 9(12), 27 (2017).
[Crossref]

Willmott, J. R.

T. C. Wilkes, T. D. Pering, A. J. S. McGonigle, G. Tamburello, and J. R. Willmott, “A low-cost smartphone sensor-based UV camera for volcanic SO2 emission measurements,” Remote Sens. (Basel) 9(12), 27 (2017).
[Crossref]

Wilson, E. L.

J. A. Sinclair, P. G. J. Irwin, S. B. Calcutt, and E. L. Wilson, “On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry,” Icarus 260, 103–127 (2015).
[Crossref]

Zahniser, M. S.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B-Lasers O 67(4), 433–441 (1998).
[Crossref]

Zhang, X.

Ziskin, D. C.

Zondlo, M. A.

Zou, J.

J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B-Lasers O (4)

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm,” Appl. Phys. B-Lasers O 107(3), 849–860 (2012).
[Crossref]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B-Lasers O 67(4), 433–441 (1998).
[Crossref]

P. Nau, J. Koppmann, A. Lackner, K. Kohse-Hoinghaus, and A. Brockhinke, “Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames,” Appl. Phys. B-Lasers O 118(3), 361–368 (2015).
[Crossref]

R. M. Spearrin, C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy,” Appl. Phys. B-Lasers O 117(2), 689–698 (2014).
[Crossref]

Fuel (1)

A. M. Elbaz and W. L. Roberts, “Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV,” Fuel 165, 447–461 (2016).
[Crossref]

Icarus (1)

J. A. Sinclair, P. G. J. Irwin, S. B. Calcutt, and E. L. Wilson, “On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry,” Icarus 260, 103–127 (2015).
[Crossref]

J. Air Waste Manage. (1)

R. D. Stephens and S. H. Cadle, “Remote sensing measurements of Carbon Monoxide emissions from on-road vehicles,” J. Air Waste Manage. 41(1), 39–46 (1991).
[Crossref]

J. Appl. Remote Sens. (1)

L. L. Gordley and B. T. Marshall, “Doppler wind and temperature sounder: new approach using gas filter radiometry,” J. Appl. Remote Sens. 5(1), 053570 (2011).
[Crossref]

J. Chem. Educ. (1)

L. J. Medhurst, “FTIR determination of pollutants in automobile exhaust: An environmental chemistry experiment comparing cold-start and warm-engine conditions,” J. Chem. Educ. 82(2), 278–281 (2005).
[Crossref]

J. Geophys. Res. Atmos. (1)

J. Kar, D. B. A. Jones, J. R. Drummond, J. L. Attie, J. Liu, J. Zou, F. Nichitiu, M. D. Seymour, D. P. Edwards, M. N. Deeter, J. C. Gille, and A. Richter, “Measurement of low-altitude CO over the Indian subcontinent by MOPITT,” J. Geophys. Res. Atmos. 113(D16), D16307 (2008).
[Crossref]

J. Volcanol. Geotherm. Res. (4)

M. Cerminara, T. E. Ongaro, S. Valade, and A. J. L. Harris, “Volcanic plume vent conditions retrieved from infrared images: A forward and inverse modeling approach,” J. Volcanol. Geotherm. Res. 300, 129–147 (2015).
[Crossref]

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes — Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

N. Bobrowski, G. Hönninger, F. Lohberger, and U. Platt, “IDOAS: A new monitoring technique to study the 2D distribution of volcanic gas emissions,” J. Volcanol. Geotherm. Res. 150(4), 329–338 (2006).
[Crossref]

Meas. Sci. Technol. (1)

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm diode lasers,” Meas. Sci. Technol. 11(11), 1576–1584 (2000).
[Crossref]

Nature (1)

D. A. Lashof and D. R. Ahuja, “Relative contributions of greenhouse gas emissions to global warming,” Nature 344(6266), 529–531 (1990).
[Crossref]

Occup. Environ. Med. (1)

C. L. Townsend and R. L. Maynard, “Effects on health of prolonged exposure to low concentrations of carbon monoxide,” Occup. Environ. Med. 59(10), 708–711 (2002).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Remote Sens. (Basel) (1)

T. C. Wilkes, T. D. Pering, A. J. S. McGonigle, G. Tamburello, and J. R. Willmott, “A low-cost smartphone sensor-based UV camera for volcanic SO2 emission measurements,” Remote Sens. (Basel) 9(12), 27 (2017).
[Crossref]

Science (1)

P. C. Novelli, K. A. Masarie, P. P. Tans, and P. M. Lang, “Recent changes in atmospheric carbon monoxide,” Science 263(5153), 1587–1590 (1994).
[Crossref] [PubMed]

Other (3)

United States Environmental Protection Agency, “Air emissions inventories,” https://www.epa.gov/air-emissions-inventories .

Z. Liu, Y. Hong, G. Wang, and D. Qu, “Study on the influence of discrete distribution model on gas temperature 2-dimensional reconstruction measurement,” in International Conference on Mechanical and Aerospace Engineering, 2016), 460–464.

I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.-M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.-A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.-M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. (posted 5 July 2017, in press).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Movie of two-dimensional concentration × length of CO in vehicle exhausts for Visualization 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Top traces: atmosphere transmittance through 3 meters of urban air. Middle traces: background radiance emitted by surface, as well as the reflected solar radiation. Bottom traces: the spectral response of the IR camera, spectral transmission curve of the filter, and spectral radiance of vehicle exhausts and blackbody, which is calculated based on HITRAN [28].
Fig. 2
Fig. 2 Spectral radiances of H2O, CO, background (BG) and the total radiance.
Fig. 3
Fig. 3 Spectral radiance of vehicle exhausts at typical exhaust temperatures of 330, 360, 390, 420 and 450 K with a spectral resolution of 0.001 cm−1.
Fig. 4
Fig. 4 Schematic diagram of detection of vehicle exhausts using gas correlation spectrometry based mid-infrared imager.
Fig. 5
Fig. 5 Top traces: The spectral response of the reference channel (Frc). Middle traces: The spectral response of the correlation channel (Fcc). Bottom traces: the ESR function of the gas correlation spectrometry based mid-infrared imager (ΔF).
Fig. 6
Fig. 6 Left: 3D representation of normalized correlation for different temperature and CO concentration × length values. Right: normalized correlation varies with temperature at CO concentration × length of 1000 ppm·m.
Fig. 7
Fig. 7 The reference, CO gas-filter and correlation images. Top: the direct image. Middle: the CO gas-filter image. Bottom: the correlation image.
Fig. 8
Fig. 8 Two-dimensional concentration × length of CO in vehicle exhausts (Visualization 1).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

B υ ( T ) = 2 h υ 3 c 2 1 ( e h υ κ B T 1 )
I υ ( L ) = I 0 e τ υ ( L ) + 0 L d τ υ ( s ) d s B υ ( s ) e τ υ ( s ) d s
τ υ ( s ) = 0 L j = 1 m α υ j ( s ) X j ( s ) d s
I υ = ( I 0 B υ ) e τ υ + B υ = ( B υ I 0 ) ( 1 e τ υ ) + I 0
τ υ = j = 1 m α υ j X j L
Δ F = F r c F c c = f ( υ ) τ ( υ ) [ 1 e α ( υ ) ]
Δ S S = S r c S g c S r c = A Ω ξ Δ F I υ d v A Ω ξ F r c I υ d v = Δ F I υ d v F r c I υ d v
Δ S S = L M α ¯ CO X CO

Metrics