Abstract

A fast-reconfigurable and actively-stabilized fiber-optic interference lithography system is demonstrated in this paper. Employment of fiber-optic components greatly enhances the flexibility of the whole system, simplifies its optical alignment, and suppresses the interference of mechanical vibrations. Active stabilization is implemented in the system and evaluated through modeling and experiment. We demonstrate 3-inch-diameter wafer-scale patterning of 240-nm-period grating lines with a sub-50-nm linewidth and an aspect ratio over 3. Two-dimensional patterns of different geometries and dimensions are also demonstrated to show the versatility of our system. Step-and-repeat exposure is demonstrated with independently controlled patterning fields of 2×2cm2 large.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable two-mirror interference lithography system for wafer-scale nanopatterning

Weidong Mao, Ishan Wathuthanthri, and Chang-Hwan Choi
Opt. Lett. 36(16) 3176-3178 (2011)

“Double” displacement Talbot lithography: fast, wafer-scale, direct-writing of complex periodic nanopatterns

Pierre Chausse, Emmanuel Le Boulbar, Pierre-Marie Coulon, and Philip A. Shields
Opt. Express 27(22) 32037-32046 (2019)

Single step fabrication of nano scale optical devices using binary contact mask deep UV interference lithography

David Lombardo, Piyush Shah, and Andrew Sarangan
Opt. Express 27(16) 22917-22922 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. I. Smith, “Low cost nanolithography with nanoaccuracy,” Physica E 11(2-3), 104–109 (2001).
  2. P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C.-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).
  3. J. Spallas, A. Hawryluk, and D. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13(5), 1973–1978 (1995).
  4. H. Liu, Y. H. Yao, Y. F. Wang, and W. Wu, “Full-color reflective display system based on high contrast gratings,” J. Vac. Sci. Technol. B 32, 4901416 (2014).
  5. M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology 21(39), 395701 (2010).
  6. L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
  7. P. Wong, G. Balakrishnan, N. Nuntawong, J. Tatebayashi, and D. Huffaker, “Controlled InAs quantum dot nucleation on faceted nanopatterned pyramids,” Appl. Phys. Lett. 90(18), 183103 (2007).
  8. S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. De Pablo, and P. F. Nealey, “Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates,” Nature 424(6947), 411–414 (2003).
  9. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
  10. W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
  11. X. Chen, Z. Ren, Y. Shimizu, Y. L. Chen, and W. Gao, “Optimal polarization modulation for orthogonal two-axis Lloyd’s mirror interference lithography,” Opt. Express 25(19), 22237–22252 (2017).
  12. E. C. Chang, Y. L. Sun, P. T. Lin, D. G. Mikolas, and C. C. Fu, “Lloyd’s Mirror Interference Lithography Using a Single Mode Fiber Spatial Filter,” IEEE Sens. J. 2012, 1416–1419 (2012).
  13. Y. L. Sun, D. Mikolas, E. C. Chang, P. T. Lin, and C. C. Fu, “Lloyd’s mirror interferometer using a single-mode fiber spatial filter,” J. Vac. Sci. Technol. B 31, 4790660 (2013).
  14. Y. J. Hung, P. C. Chang, Y. N. Lin, and J. J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34, 4955172 (2016).
  15. J. He, X. Fang, Y. Lin, and X. Zhang, “Polarization control in flexible interference lithography for nano-patterning of different photonic structures with optimized contrast,” Opt. Express 23(9), 11518–11525 (2015).
  16. J. Xu, Z. B. Wang, Z. K. Weng, Z. M. Li, X. J. Sun, L. J. Liu, L. Zhao, Y. Yue, and J. Zhang, “Laser Interference Nanolithography with a 405nm Fiber Semiconductor Laser,” Key Eng. Mater. 552, 262–267 (2013).
  17. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18(9), 1445–1448 (1979).
  18. L. S. Schuetz, J. H. Cole, J. Jarzynski, N. Lagakos, and J. A. Bucaro, “Dynamic Thermal Response of Single-Mode Optical Fiber for Interferometric Sensors,” Appl. Opt. 22(3), 478–483 (1983).

2017 (1)

2016 (1)

Y. J. Hung, P. C. Chang, Y. N. Lin, and J. J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34, 4955172 (2016).

2015 (1)

2014 (1)

H. Liu, Y. H. Yao, Y. F. Wang, and W. Wu, “Full-color reflective display system based on high contrast gratings,” J. Vac. Sci. Technol. B 32, 4901416 (2014).

2013 (2)

J. Xu, Z. B. Wang, Z. K. Weng, Z. M. Li, X. J. Sun, L. J. Liu, L. Zhao, Y. Yue, and J. Zhang, “Laser Interference Nanolithography with a 405nm Fiber Semiconductor Laser,” Key Eng. Mater. 552, 262–267 (2013).

Y. L. Sun, D. Mikolas, E. C. Chang, P. T. Lin, and C. C. Fu, “Lloyd’s mirror interferometer using a single-mode fiber spatial filter,” J. Vac. Sci. Technol. B 31, 4790660 (2013).

2012 (1)

E. C. Chang, Y. L. Sun, P. T. Lin, D. G. Mikolas, and C. C. Fu, “Lloyd’s Mirror Interference Lithography Using a Single Mode Fiber Spatial Filter,” IEEE Sens. J. 2012, 1416–1419 (2012).

2010 (1)

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology 21(39), 395701 (2010).

2008 (1)

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).

2007 (2)

P. Wong, G. Balakrishnan, N. Nuntawong, J. Tatebayashi, and D. Huffaker, “Controlled InAs quantum dot nucleation on faceted nanopatterned pyramids,” Appl. Phys. Lett. 90(18), 183103 (2007).

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).

2003 (2)

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C.-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).

S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. De Pablo, and P. F. Nealey, “Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates,” Nature 424(6947), 411–414 (2003).

2001 (1)

H. I. Smith, “Low cost nanolithography with nanoaccuracy,” Physica E 11(2-3), 104–109 (2001).

1998 (1)

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).

1995 (1)

J. Spallas, A. Hawryluk, and D. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13(5), 1973–1978 (1995).

1983 (1)

1979 (1)

Alamariu, B.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).

Balakrishnan, G.

P. Wong, G. Balakrishnan, N. Nuntawong, J. Tatebayashi, and D. Huffaker, “Controlled InAs quantum dot nucleation on faceted nanopatterned pyramids,” Appl. Phys. Lett. 90(18), 183103 (2007).

Behymer, E.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology 21(39), 395701 (2010).

Bermel, P.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).

Bond, T. C.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology 21(39), 395701 (2010).

Bora, M.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology 21(39), 395701 (2010).

Britten, J. A.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology 21(39), 395701 (2010).

Broderick, K.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).

Bucaro, J. A.

Chang, A. S. P.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology 21(39), 395701 (2010).

Chang, C.-H.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C.-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).

Chang, E. C.

Y. L. Sun, D. Mikolas, E. C. Chang, P. T. Lin, and C. C. Fu, “Lloyd’s mirror interferometer using a single-mode fiber spatial filter,” J. Vac. Sci. Technol. B 31, 4790660 (2013).

E. C. Chang, Y. L. Sun, P. T. Lin, D. G. Mikolas, and C. C. Fu, “Lloyd’s Mirror Interference Lithography Using a Single Mode Fiber Spatial Filter,” IEEE Sens. J. 2012, 1416–1419 (2012).

Chang, P. C.

Y. J. Hung, P. C. Chang, Y. N. Lin, and J. J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34, 4955172 (2016).

Chen, C. G.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C.-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).

Chen, X.

Chen, Y. L.

Chou, S. Y.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).

Cole, J. H.

Cui, B.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).

De Pablo, J. J.

S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. De Pablo, and P. F. Nealey, “Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates,” Nature 424(6947), 411–414 (2003).

Duan, X.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).

Fang, X.

Ferrier, N. J.

S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. De Pablo, and P. F. Nealey, “Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates,” Nature 424(6947), 411–414 (2003).

Fu, C. C.

Y. L. Sun, D. Mikolas, E. C. Chang, P. T. Lin, and C. C. Fu, “Lloyd’s mirror interferometer using a single-mode fiber spatial filter,” J. Vac. Sci. Technol. B 31, 4790660 (2013).

E. C. Chang, Y. L. Sun, P. T. Lin, D. G. Mikolas, and C. C. Fu, “Lloyd’s Mirror Interference Lithography Using a Single Mode Fiber Spatial Filter,” IEEE Sens. J. 2012, 1416–1419 (2012).

Gao, W.

Gartia, M. R.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology 21(39), 395701 (2010).

Guo, L. J.

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).

Hawryluk, A.

J. Spallas, A. Hawryluk, and D. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13(5), 1973–1978 (1995).

He, J.

Heilmann, R. K.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C.-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).

Hocker, G. B.

Hong, C.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).

Huffaker, D.

P. Wong, G. Balakrishnan, N. Nuntawong, J. Tatebayashi, and D. Huffaker, “Controlled InAs quantum dot nucleation on faceted nanopatterned pyramids,” Appl. Phys. Lett. 90(18), 183103 (2007).

Hung, Y. J.

Y. J. Hung, P. C. Chang, Y. N. Lin, and J. J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34, 4955172 (2016).

Jarzynski, J.

Joannopoulos, J.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).

Joo, C.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C.-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).

Kania, D.

J. Spallas, A. Hawryluk, and D. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13(5), 1973–1978 (1995).

Kim, S. O.

S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. De Pablo, and P. F. Nealey, “Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates,” Nature 424(6947), 411–414 (2003).

Kimerling, L.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).

Kong, L. S.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).

Konkola, P. T.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C.-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).

Lagakos, N.

Larson, C.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology 21(39), 395701 (2010).

Li, Z. M.

J. Xu, Z. B. Wang, Z. K. Weng, Z. M. Li, X. J. Sun, L. J. Liu, L. Zhao, Y. Yue, and J. Zhang, “Laser Interference Nanolithography with a 405nm Fiber Semiconductor Laser,” Key Eng. Mater. 552, 262–267 (2013).

Lin, J. J.

Y. J. Hung, P. C. Chang, Y. N. Lin, and J. J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34, 4955172 (2016).

Lin, P. T.

Y. L. Sun, D. Mikolas, E. C. Chang, P. T. Lin, and C. C. Fu, “Lloyd’s mirror interferometer using a single-mode fiber spatial filter,” J. Vac. Sci. Technol. B 31, 4790660 (2013).

E. C. Chang, Y. L. Sun, P. T. Lin, D. G. Mikolas, and C. C. Fu, “Lloyd’s Mirror Interference Lithography Using a Single Mode Fiber Spatial Filter,” IEEE Sens. J. 2012, 1416–1419 (2012).

Lin, Y.

Lin, Y. N.

Y. J. Hung, P. C. Chang, Y. N. Lin, and J. J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34, 4955172 (2016).

Liu, G. L.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology 21(39), 395701 (2010).

Liu, H.

H. Liu, Y. H. Yao, Y. F. Wang, and W. Wu, “Full-color reflective display system based on high contrast gratings,” J. Vac. Sci. Technol. B 32, 4901416 (2014).

Liu, J.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).

Liu, L. J.

J. Xu, Z. B. Wang, Z. K. Weng, Z. M. Li, X. J. Sun, L. J. Liu, L. Zhao, Y. Yue, and J. Zhang, “Laser Interference Nanolithography with a 405nm Fiber Semiconductor Laser,” Key Eng. Mater. 552, 262–267 (2013).

Mikolas, D.

Y. L. Sun, D. Mikolas, E. C. Chang, P. T. Lin, and C. C. Fu, “Lloyd’s mirror interferometer using a single-mode fiber spatial filter,” J. Vac. Sci. Technol. B 31, 4790660 (2013).

Mikolas, D. G.

E. C. Chang, Y. L. Sun, P. T. Lin, D. G. Mikolas, and C. C. Fu, “Lloyd’s Mirror Interference Lithography Using a Single Mode Fiber Spatial Filter,” IEEE Sens. J. 2012, 1416–1419 (2012).

Miles, R.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology 21(39), 395701 (2010).

Montoya, J. C.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C.-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).

Nealey, P. F.

S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. De Pablo, and P. F. Nealey, “Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates,” Nature 424(6947), 411–414 (2003).

Nguyen, H.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology 21(39), 395701 (2010).

Nuntawong, N.

P. Wong, G. Balakrishnan, N. Nuntawong, J. Tatebayashi, and D. Huffaker, “Controlled InAs quantum dot nucleation on faceted nanopatterned pyramids,” Appl. Phys. Lett. 90(18), 183103 (2007).

Ren, Z.

Schattenburg, M. L.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C.-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).

Schuetz, L. S.

Shimizu, Y.

Smith, H. I.

H. I. Smith, “Low cost nanolithography with nanoaccuracy,” Physica E 11(2-3), 104–109 (2001).

Solak, H. H.

S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. De Pablo, and P. F. Nealey, “Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates,” Nature 424(6947), 411–414 (2003).

Spallas, J.

J. Spallas, A. Hawryluk, and D. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13(5), 1973–1978 (1995).

Stoykovich, M. P.

S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. De Pablo, and P. F. Nealey, “Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates,” Nature 424(6947), 411–414 (2003).

Sun, X. J.

J. Xu, Z. B. Wang, Z. K. Weng, Z. M. Li, X. J. Sun, L. J. Liu, L. Zhao, Y. Yue, and J. Zhang, “Laser Interference Nanolithography with a 405nm Fiber Semiconductor Laser,” Key Eng. Mater. 552, 262–267 (2013).

Sun, X. Y.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).

Sun, Y. L.

Y. L. Sun, D. Mikolas, E. C. Chang, P. T. Lin, and C. C. Fu, “Lloyd’s mirror interferometer using a single-mode fiber spatial filter,” J. Vac. Sci. Technol. B 31, 4790660 (2013).

E. C. Chang, Y. L. Sun, P. T. Lin, D. G. Mikolas, and C. C. Fu, “Lloyd’s Mirror Interference Lithography Using a Single Mode Fiber Spatial Filter,” IEEE Sens. J. 2012, 1416–1419 (2012).

Tatebayashi, J.

P. Wong, G. Balakrishnan, N. Nuntawong, J. Tatebayashi, and D. Huffaker, “Controlled InAs quantum dot nucleation on faceted nanopatterned pyramids,” Appl. Phys. Lett. 90(18), 183103 (2007).

Wang, Y. F.

H. Liu, Y. H. Yao, Y. F. Wang, and W. Wu, “Full-color reflective display system based on high contrast gratings,” J. Vac. Sci. Technol. B 32, 4901416 (2014).

Wang, Z. B.

J. Xu, Z. B. Wang, Z. K. Weng, Z. M. Li, X. J. Sun, L. J. Liu, L. Zhao, Y. Yue, and J. Zhang, “Laser Interference Nanolithography with a 405nm Fiber Semiconductor Laser,” Key Eng. Mater. 552, 262–267 (2013).

Weng, Z. K.

J. Xu, Z. B. Wang, Z. K. Weng, Z. M. Li, X. J. Sun, L. J. Liu, L. Zhao, Y. Yue, and J. Zhang, “Laser Interference Nanolithography with a 405nm Fiber Semiconductor Laser,” Key Eng. Mater. 552, 262–267 (2013).

Wong, P.

P. Wong, G. Balakrishnan, N. Nuntawong, J. Tatebayashi, and D. Huffaker, “Controlled InAs quantum dot nucleation on faceted nanopatterned pyramids,” Appl. Phys. Lett. 90(18), 183103 (2007).

Wu, W.

H. Liu, Y. H. Yao, Y. F. Wang, and W. Wu, “Full-color reflective display system based on high contrast gratings,” J. Vac. Sci. Technol. B 32, 4901416 (2014).

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).

Xu, J.

J. Xu, Z. B. Wang, Z. K. Weng, Z. M. Li, X. J. Sun, L. J. Liu, L. Zhao, Y. Yue, and J. Zhang, “Laser Interference Nanolithography with a 405nm Fiber Semiconductor Laser,” Key Eng. Mater. 552, 262–267 (2013).

Xu, Z.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology 21(39), 395701 (2010).

Yao, Y. H.

H. Liu, Y. H. Yao, Y. F. Wang, and W. Wu, “Full-color reflective display system based on high contrast gratings,” J. Vac. Sci. Technol. B 32, 4901416 (2014).

Yi, Y.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).

Yue, Y.

J. Xu, Z. B. Wang, Z. K. Weng, Z. M. Li, X. J. Sun, L. J. Liu, L. Zhao, Y. Yue, and J. Zhang, “Laser Interference Nanolithography with a 405nm Fiber Semiconductor Laser,” Key Eng. Mater. 552, 262–267 (2013).

Zeng, L.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).

Zhang, J.

J. Xu, Z. B. Wang, Z. K. Weng, Z. M. Li, X. J. Sun, L. J. Liu, L. Zhao, Y. Yue, and J. Zhang, “Laser Interference Nanolithography with a 405nm Fiber Semiconductor Laser,” Key Eng. Mater. 552, 262–267 (2013).

Zhang, W.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).

Zhang, X.

Zhao, L.

J. Xu, Z. B. Wang, Z. K. Weng, Z. M. Li, X. J. Sun, L. J. Liu, L. Zhao, Y. Yue, and J. Zhang, “Laser Interference Nanolithography with a 405nm Fiber Semiconductor Laser,” Key Eng. Mater. 552, 262–267 (2013).

Zhuang, L.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).

Adv. Mater. (1)

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).

P. Wong, G. Balakrishnan, N. Nuntawong, J. Tatebayashi, and D. Huffaker, “Controlled InAs quantum dot nucleation on faceted nanopatterned pyramids,” Appl. Phys. Lett. 90(18), 183103 (2007).

IEEE Sens. J. (1)

E. C. Chang, Y. L. Sun, P. T. Lin, D. G. Mikolas, and C. C. Fu, “Lloyd’s Mirror Interference Lithography Using a Single Mode Fiber Spatial Filter,” IEEE Sens. J. 2012, 1416–1419 (2012).

J. Vac. Sci. Technol. B (6)

Y. L. Sun, D. Mikolas, E. C. Chang, P. T. Lin, and C. C. Fu, “Lloyd’s mirror interferometer using a single-mode fiber spatial filter,” J. Vac. Sci. Technol. B 31, 4790660 (2013).

Y. J. Hung, P. C. Chang, Y. N. Lin, and J. J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34, 4955172 (2016).

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C.-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).

J. Spallas, A. Hawryluk, and D. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13(5), 1973–1978 (1995).

H. Liu, Y. H. Yao, Y. F. Wang, and W. Wu, “Full-color reflective display system based on high contrast gratings,” J. Vac. Sci. Technol. B 32, 4901416 (2014).

Key Eng. Mater. (1)

J. Xu, Z. B. Wang, Z. K. Weng, Z. M. Li, X. J. Sun, L. J. Liu, L. Zhao, Y. Yue, and J. Zhang, “Laser Interference Nanolithography with a 405nm Fiber Semiconductor Laser,” Key Eng. Mater. 552, 262–267 (2013).

Nanotechnology (1)

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology 21(39), 395701 (2010).

Nature (1)

S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. De Pablo, and P. F. Nealey, “Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates,” Nature 424(6947), 411–414 (2003).

Opt. Express (2)

Physica E (1)

H. I. Smith, “Low cost nanolithography with nanoaccuracy,” Physica E 11(2-3), 104–109 (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Two-beam fiber-optic interference lithography setup. (a) System schematic. (b) Photograph of an actual setup with a homemade vacuum chuck (red box). (c) Photograph of a 3-inch fused silica wafer carrying 440-nm-period gratings patterned by the setup shown in (b).
Fig. 2
Fig. 2 Variation of the phase difference between the two sub-beams. (a) The varying phase difference and (b) its occurrence frequency for open-loop operation without active stabilization. (c) The varying phase difference and (d) its occurrence frequency for closed-loop operation with active stabilization. Calculated pattern contrasts are labeled in (b) and (d).
Fig. 3
Fig. 3 (a) The simulated intensity patterns with (A) and without (A’) active stabilization. The simulation was based on recorded phase difference variation. (b) The AFM images of the actual grating patterns corresponding to simulated patterns in (a). (c) SEM images of 240-nm-period, 40-nm-linewidth grating. The scale bars are 200 nm.
Fig. 4
Fig. 4 Large-area patterning of periodic nanostructures on 3-inch wafers. (a) SEM images on 4 different locations across a 3-inch wafer with 240-nm-pitch gratings show good uniformity of grating linewidth. Scale bars in (a) are 200 nm. (b) Two-dimensional dot array and (c) hole array fabricated using 2-FOIL setup on 3-inch wafers. Scale bars in (b) and (c) are 1 μm.
Fig. 5
Fig. 5 Step-and-repeat exposure. (a) Photograph of a 3-inch silicon wafer with pillar arrays of hexagonal lattice (Period: left column: 500 nm, middle column: 900 nm, right column: 700 nm) patterned by the step-and-repeat exposure configuration. (b)(c)(d) The SEM images from a top view of position A, B, and C. The scale bars are 1 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I( x,t )=2 I 0 { 1+cos[ 4π λ sinθx+Δφ( t ) ] }
Contrast= MAX[ 0 T I( x,t )dt ]MIN[ o T I( x,t )dt ] MAX[ 0 T I( x,t )dt ]+MIN[ o T I( x,t )dt ]

Metrics