Abstract

Generally, it is difficult for the common backward wave oscillator (BWO) to produce powerful THz radiation when the operating frequency increases to a high level such as over 1 THz due to the very small structural dimensions. The concept of generating powerful THz radiation from the interaction between high-order mode THz wave and multiple sheet electron beams is a promising solution to address the issue. For the high-order mode operation, a novel orthogonal grating waveguide is proposed, which is relatively ease of fabrication compared with the overmoded structure based on the double staggered grating waveguide. A high-order mode BWO based on the orthogonal grating waveguide and multiple sheet electron beams is studied by simulations. Particle-in-cell simulations show that the BWO can provide over 1.08 W power in the frequency range of 1.18-1.30 THz. Such a methodology opens up a new way to extend the BWO’s operating frequency to a higher level and provides a potential solution for developing compact powerful THz radiation sources with wide tunable bandwidth.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broad-tunable terahertz source with over-mode waveguide driven by train of electron bunches

Weihao Liu, Yalin Lu, Zhigang He, Weiwei Li, Lin Wang, and Qika Jia
Opt. Express 24(4) 4109-4116 (2016)

High-harmonic terahertz Smith-Purcell free-electron-laser with two tandem cylindrical-gratings

Linbo Liang, Weihao Liu, Qika Jia, Lin Wang, and Yalin Lu
Opt. Express 25(3) 2960-2968 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
    [Crossref]
  3. C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
    [Crossref]
  4. M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Dev. 57(6), 1481–1484 (2010).
    [Crossref]
  5. W. He, C. R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, and A. W. Cross, “High power wideband gyrotron backward wave oscillator operating towards the terahertz region,” Phys. Rev. Lett. 110(16), 165101 (2013).
    [Crossref] [PubMed]
  6. G. X. Shu, G. Liu, L. Chen, H. Bambarandage, and Z. F. Qian, “Terahertz backward wave radiation from the interaction of high-order mode and double sheet electron beams,” J. Phys. D Appl. Phys. 51(5), 055107 (2018).
    [Crossref]
  7. D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, “Practical aspects of EIK technology,” IEEE Trans. Electron Dev. 61(6), 1830–1835 (2014).
    [Crossref]
  8. G. X. Shu, L. Zhang, H. Yin, J. Zhao, A. D. R. Phelps, A. W. Cross, G. Liu, Y. Luo, Z. F. Qian, and W. He, “Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” Appl. Phys. Lett. 112(3), 033504 (2018).
    [Crossref]
  9. W. X. Liu, Z. C. Zhang, C. Zhao, X. Guo, Z. X. Zhang, and S. Y. Liao, “Development of a subterahertz folded-waveguide extended interaction oscillator,” IEEE Trans. Plasma Sci. 45(7), 1731–1738 (2017).
    [Crossref]
  10. W. He, C. R. Donaldson, L. Zhang, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Broadband amplification of low-terahertz signals using axis-encircling electrons in a helically corrugated interaction region,” Phys. Rev. Lett. 119(18), 184801 (2017).
    [Crossref] [PubMed]
  11. M. Y. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R. Pu, “A 670 GHz gyrotron with record power and efficiency,” Appl. Phys. Lett. 101(15), 153503 (2012).
    [Crossref]
  12. A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann., “Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier,” IEEE Trans. Electron Dev. 64(5), 2390–2397 (2017).
    [Crossref]
  13. C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
    [Crossref]
  14. Y. Zhang, L. Dong, and Y. Zhou, “Enhanced coherent terahertz Smith-Purcell superradiation excited by two electron-beams,” Opt. Express 20(20), 22627–22635 (2012).
    [Crossref] [PubMed]
  15. L. Liang, W. Liu, Q. Jia, L. Wang, and Y. Lu, “High-harmonic terahertz Smith-Purcell free-electron-laser with two tandem cylindrical-gratings,” Opt. Express 25(3), 2960–2968 (2017).
    [Crossref] [PubMed]
  16. P. Zhang, Y. Zhang, and M. Tang, “Enhanced THz Smith-Purcell radiation based on the grating grooves with holes array,” Opt. Express 25(10), 10901–10910 (2017).
    [Crossref] [PubMed]
  17. D. Y. Sergeeva, A. P. Potylitsyn, A. A. Tishchenko, and M. N. Strikhanov, “Smith-Purcell radiation from periodic beams,” Opt. Express 25(21), 26310–26328 (2017).
    [Crossref] [PubMed]
  18. B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements,” Meas. Sci. Technol. 21(5), 054017 (2010).
    [Crossref]
  19. K. C. Zhang, X. X. Chen, C. J. Sheng, K. J. A. Ooi, L. K. Ang, and X. S. Yuan, “Transition radiation from graphene plasmons by a bunch beam in the terahertz regime,” Opt. Express 25(17), 20477–20485 (2017).
    [Crossref] [PubMed]
  20. W. Liu, “Terahertz radiation from high-order guided mode excited by a train of electron bunches,” Opt. Lett. 40(17), 3974–3977 (2015).
    [Crossref] [PubMed]
  21. Y. B. Gong, H. R. Yin, L. N. Yue, Z. G. Lu, Y. Y. Wei, J. J. Feng, Z. Y. Duan, and X. Xu, “A 140 GHz two beam overmoded folded-waveguide travelling-wave tube,” IEEE Trans. Plasma Sci. 39(3), 847–851 (2011).
    [Crossref]
  22. A. Gee and Y. M. Shin, “Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure,” Phys. Plasmas 20(7), 073106 (2013).
    [Crossref]
  23. Y. M. Shin, “Superimposed coherent terahertz wave radiation from mono-energetically bunched multi-beam,” Phys. Plasmas 19(6), 063115 (2012).
    [Crossref]
  24. Y. M. Shin, “Frequency-selective plasmonic wave propagation through the overmoded waveguide with photonic-band-gap slab arrays,” Phys. Plasmas 19(5), 053102 (2012).
    [Crossref]
  25. J. X. Wang, L. R. Barnett, N. C. Luhmann, Y. M. Shin, and S. Humphries, “Electron beam transport analysis of W-band sheet beam klystron,” Phys. Plasmas 17(4), 043111 (2010).
    [Crossref]
  26. B. McVey, M. Basten, J. Booske, J. Joe, and J. Scharer, “Analysis of rectangular waveguide-gratings for amplifier applications,” IEEE Trans. Microw. Theory Tech. 42(6), 995–1003 (1994).
    [Crossref]
  27. C. S. T. Corp, “CST Tutorials,” http://www.cst-china.cn/ .
  28. S. K. Datta, L. Kumar, and B. N. Basu, “A simple and accurate analysis of conductivity loss in millimeter-wave helical slow-wave structures,” J. Infrared Millim. Terahertz Waves 30(4), 381–392 (2009).
    [Crossref]
  29. J. Zhao, D. Gamzina, N. Li, J. Li, A. G. Spear, L. Barnett, M. Banducci, S. Risbud, and N. C. Luhmann., “Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun,” IEEE Trans. Electron Dev. 59(6), 1792–1798 (2012).
    [Crossref]
  30. Y. Wang, L. Wang, G. Liu, G. X. Shu, K. Dong, J. X. Wang, R. Yan, H. Fu, Y. Yao, Y. Luo, and S. F. Wang, “Wideband circular TE21 and TE01 mode converters with same exciting topologies,” IEEE Trans. Electron Dev. 63(10), 4088–4095 (2016).
    [Crossref]

2018 (2)

G. X. Shu, L. Zhang, H. Yin, J. Zhao, A. D. R. Phelps, A. W. Cross, G. Liu, Y. Luo, Z. F. Qian, and W. He, “Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” Appl. Phys. Lett. 112(3), 033504 (2018).
[Crossref]

G. X. Shu, G. Liu, L. Chen, H. Bambarandage, and Z. F. Qian, “Terahertz backward wave radiation from the interaction of high-order mode and double sheet electron beams,” J. Phys. D Appl. Phys. 51(5), 055107 (2018).
[Crossref]

2017 (7)

A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann., “Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier,” IEEE Trans. Electron Dev. 64(5), 2390–2397 (2017).
[Crossref]

L. Liang, W. Liu, Q. Jia, L. Wang, and Y. Lu, “High-harmonic terahertz Smith-Purcell free-electron-laser with two tandem cylindrical-gratings,” Opt. Express 25(3), 2960–2968 (2017).
[Crossref] [PubMed]

P. Zhang, Y. Zhang, and M. Tang, “Enhanced THz Smith-Purcell radiation based on the grating grooves with holes array,” Opt. Express 25(10), 10901–10910 (2017).
[Crossref] [PubMed]

D. Y. Sergeeva, A. P. Potylitsyn, A. A. Tishchenko, and M. N. Strikhanov, “Smith-Purcell radiation from periodic beams,” Opt. Express 25(21), 26310–26328 (2017).
[Crossref] [PubMed]

W. X. Liu, Z. C. Zhang, C. Zhao, X. Guo, Z. X. Zhang, and S. Y. Liao, “Development of a subterahertz folded-waveguide extended interaction oscillator,” IEEE Trans. Plasma Sci. 45(7), 1731–1738 (2017).
[Crossref]

W. He, C. R. Donaldson, L. Zhang, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Broadband amplification of low-terahertz signals using axis-encircling electrons in a helically corrugated interaction region,” Phys. Rev. Lett. 119(18), 184801 (2017).
[Crossref] [PubMed]

K. C. Zhang, X. X. Chen, C. J. Sheng, K. J. A. Ooi, L. K. Ang, and X. S. Yuan, “Transition radiation from graphene plasmons by a bunch beam in the terahertz regime,” Opt. Express 25(17), 20477–20485 (2017).
[Crossref] [PubMed]

2016 (2)

Y. Wang, L. Wang, G. Liu, G. X. Shu, K. Dong, J. X. Wang, R. Yan, H. Fu, Y. Yao, Y. Luo, and S. F. Wang, “Wideband circular TE21 and TE01 mode converters with same exciting topologies,” IEEE Trans. Electron Dev. 63(10), 4088–4095 (2016).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

2015 (1)

2014 (2)

C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
[Crossref]

D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, “Practical aspects of EIK technology,” IEEE Trans. Electron Dev. 61(6), 1830–1835 (2014).
[Crossref]

2013 (2)

W. He, C. R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, and A. W. Cross, “High power wideband gyrotron backward wave oscillator operating towards the terahertz region,” Phys. Rev. Lett. 110(16), 165101 (2013).
[Crossref] [PubMed]

A. Gee and Y. M. Shin, “Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure,” Phys. Plasmas 20(7), 073106 (2013).
[Crossref]

2012 (5)

Y. M. Shin, “Superimposed coherent terahertz wave radiation from mono-energetically bunched multi-beam,” Phys. Plasmas 19(6), 063115 (2012).
[Crossref]

Y. M. Shin, “Frequency-selective plasmonic wave propagation through the overmoded waveguide with photonic-band-gap slab arrays,” Phys. Plasmas 19(5), 053102 (2012).
[Crossref]

J. Zhao, D. Gamzina, N. Li, J. Li, A. G. Spear, L. Barnett, M. Banducci, S. Risbud, and N. C. Luhmann., “Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun,” IEEE Trans. Electron Dev. 59(6), 1792–1798 (2012).
[Crossref]

Y. Zhang, L. Dong, and Y. Zhou, “Enhanced coherent terahertz Smith-Purcell superradiation excited by two electron-beams,” Opt. Express 20(20), 22627–22635 (2012).
[Crossref] [PubMed]

M. Y. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R. Pu, “A 670 GHz gyrotron with record power and efficiency,” Appl. Phys. Lett. 101(15), 153503 (2012).
[Crossref]

2011 (2)

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Y. B. Gong, H. R. Yin, L. N. Yue, Z. G. Lu, Y. Y. Wei, J. J. Feng, Z. Y. Duan, and X. Xu, “A 140 GHz two beam overmoded folded-waveguide travelling-wave tube,” IEEE Trans. Plasma Sci. 39(3), 847–851 (2011).
[Crossref]

2010 (3)

J. X. Wang, L. R. Barnett, N. C. Luhmann, Y. M. Shin, and S. Humphries, “Electron beam transport analysis of W-band sheet beam klystron,” Phys. Plasmas 17(4), 043111 (2010).
[Crossref]

M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Dev. 57(6), 1481–1484 (2010).
[Crossref]

B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements,” Meas. Sci. Technol. 21(5), 054017 (2010).
[Crossref]

2009 (1)

S. K. Datta, L. Kumar, and B. N. Basu, “A simple and accurate analysis of conductivity loss in millimeter-wave helical slow-wave structures,” J. Infrared Millim. Terahertz Waves 30(4), 381–392 (2009).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

1994 (1)

B. McVey, M. Basten, J. Booske, J. Joe, and J. Scharer, “Analysis of rectangular waveguide-gratings for amplifier applications,” IEEE Trans. Microw. Theory Tech. 42(6), 995–1003 (1994).
[Crossref]

Abe, D. K.

C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
[Crossref]

Ang, L. K.

Atkinson, J.

A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann., “Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier,” IEEE Trans. Electron Dev. 64(5), 2390–2397 (2017).
[Crossref]

Baig, A.

A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann., “Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier,” IEEE Trans. Electron Dev. 64(5), 2390–2397 (2017).
[Crossref]

Bambarandage, H.

G. X. Shu, G. Liu, L. Chen, H. Bambarandage, and Z. F. Qian, “Terahertz backward wave radiation from the interaction of high-order mode and double sheet electron beams,” J. Phys. D Appl. Phys. 51(5), 055107 (2018).
[Crossref]

Banducci, M.

J. Zhao, D. Gamzina, N. Li, J. Li, A. G. Spear, L. Barnett, M. Banducci, S. Risbud, and N. C. Luhmann., “Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun,” IEEE Trans. Electron Dev. 59(6), 1792–1798 (2012).
[Crossref]

Barchfeld, R.

A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann., “Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier,” IEEE Trans. Electron Dev. 64(5), 2390–2397 (2017).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

Barnett, L.

J. Zhao, D. Gamzina, N. Li, J. Li, A. G. Spear, L. Barnett, M. Banducci, S. Risbud, and N. C. Luhmann., “Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun,” IEEE Trans. Electron Dev. 59(6), 1792–1798 (2012).
[Crossref]

Barnett, L. R.

J. X. Wang, L. R. Barnett, N. C. Luhmann, Y. M. Shin, and S. Humphries, “Electron beam transport analysis of W-band sheet beam klystron,” Phys. Plasmas 17(4), 043111 (2010).
[Crossref]

Basten, M.

B. McVey, M. Basten, J. Booske, J. Joe, and J. Scharer, “Analysis of rectangular waveguide-gratings for amplifier applications,” IEEE Trans. Microw. Theory Tech. 42(6), 995–1003 (1994).
[Crossref]

Basu, B. N.

S. K. Datta, L. Kumar, and B. N. Basu, “A simple and accurate analysis of conductivity loss in millimeter-wave helical slow-wave structures,” J. Infrared Millim. Terahertz Waves 30(4), 381–392 (2009).
[Crossref]

Berry, D.

D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, “Practical aspects of EIK technology,” IEEE Trans. Electron Dev. 61(6), 1830–1835 (2014).
[Crossref]

Booske, J.

B. McVey, M. Basten, J. Booske, J. Joe, and J. Scharer, “Analysis of rectangular waveguide-gratings for amplifier applications,” IEEE Trans. Microw. Theory Tech. 42(6), 995–1003 (1994).
[Crossref]

Booske, J. H.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Calame, J. P.

C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
[Crossref]

Chen, L.

G. X. Shu, G. Liu, L. Chen, H. Bambarandage, and Z. F. Qian, “Terahertz backward wave radiation from the interaction of high-order mode and double sheet electron beams,” J. Phys. D Appl. Phys. 51(5), 055107 (2018).
[Crossref]

Chen, X. X.

Chernyavskiy, I. A.

C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
[Crossref]

Cook, A. M.

C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
[Crossref]

Cross, A. W.

G. X. Shu, L. Zhang, H. Yin, J. Zhao, A. D. R. Phelps, A. W. Cross, G. Liu, Y. Luo, Z. F. Qian, and W. He, “Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” Appl. Phys. Lett. 112(3), 033504 (2018).
[Crossref]

W. He, C. R. Donaldson, L. Zhang, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Broadband amplification of low-terahertz signals using axis-encircling electrons in a helically corrugated interaction region,” Phys. Rev. Lett. 119(18), 184801 (2017).
[Crossref] [PubMed]

W. He, C. R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, and A. W. Cross, “High power wideband gyrotron backward wave oscillator operating towards the terahertz region,” Phys. Rev. Lett. 110(16), 165101 (2013).
[Crossref] [PubMed]

Datta, S. K.

S. K. Datta, L. Kumar, and B. N. Basu, “A simple and accurate analysis of conductivity loss in millimeter-wave helical slow-wave structures,” J. Infrared Millim. Terahertz Waves 30(4), 381–392 (2009).
[Crossref]

Deng, H.

D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, “Practical aspects of EIK technology,” IEEE Trans. Electron Dev. 61(6), 1830–1835 (2014).
[Crossref]

Dobbs, R.

D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, “Practical aspects of EIK technology,” IEEE Trans. Electron Dev. 61(6), 1830–1835 (2014).
[Crossref]

Dobbs, R. J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Domier, C.

A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann., “Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier,” IEEE Trans. Electron Dev. 64(5), 2390–2397 (2017).
[Crossref]

Donaldson, C. R.

W. He, C. R. Donaldson, L. Zhang, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Broadband amplification of low-terahertz signals using axis-encircling electrons in a helically corrugated interaction region,” Phys. Rev. Lett. 119(18), 184801 (2017).
[Crossref] [PubMed]

W. He, C. R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, and A. W. Cross, “High power wideband gyrotron backward wave oscillator operating towards the terahertz region,” Phys. Rev. Lett. 110(16), 165101 (2013).
[Crossref] [PubMed]

Dong, K.

Y. Wang, L. Wang, G. Liu, G. X. Shu, K. Dong, J. X. Wang, R. Yan, H. Fu, Y. Yao, Y. Luo, and S. F. Wang, “Wideband circular TE21 and TE01 mode converters with same exciting topologies,” IEEE Trans. Electron Dev. 63(10), 4088–4095 (2016).
[Crossref]

Dong, L.

Duan, Z. Y.

Y. B. Gong, H. R. Yin, L. N. Yue, Z. G. Lu, Y. Y. Wei, J. J. Feng, Z. Y. Duan, and X. Xu, “A 140 GHz two beam overmoded folded-waveguide travelling-wave tube,” IEEE Trans. Plasma Sci. 39(3), 847–851 (2011).
[Crossref]

Feng, J. J.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

Y. B. Gong, H. R. Yin, L. N. Yue, Z. G. Lu, Y. Y. Wei, J. J. Feng, Z. Y. Duan, and X. Xu, “A 140 GHz two beam overmoded folded-waveguide travelling-wave tube,” IEEE Trans. Plasma Sci. 39(3), 847–851 (2011).
[Crossref]

Field, M.

A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann., “Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier,” IEEE Trans. Electron Dev. 64(5), 2390–2397 (2017).
[Crossref]

Fu, H.

Y. Wang, L. Wang, G. Liu, G. X. Shu, K. Dong, J. X. Wang, R. Yan, H. Fu, Y. Yao, Y. Luo, and S. F. Wang, “Wideband circular TE21 and TE01 mode converters with same exciting topologies,” IEEE Trans. Electron Dev. 63(10), 4088–4095 (2016).
[Crossref]

Gamzina, D.

A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann., “Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier,” IEEE Trans. Electron Dev. 64(5), 2390–2397 (2017).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

J. Zhao, D. Gamzina, N. Li, J. Li, A. G. Spear, L. Barnett, M. Banducci, S. Risbud, and N. C. Luhmann., “Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun,” IEEE Trans. Electron Dev. 59(6), 1792–1798 (2012).
[Crossref]

Gee, A.

A. Gee and Y. M. Shin, “Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure,” Phys. Plasmas 20(7), 073106 (2013).
[Crossref]

Glyavin, M. Y.

M. Y. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R. Pu, “A 670 GHz gyrotron with record power and efficiency,” Appl. Phys. Lett. 101(15), 153503 (2012).
[Crossref]

Gong, Y. B.

Y. B. Gong, H. R. Yin, L. N. Yue, Z. G. Lu, Y. Y. Wei, J. J. Feng, Z. Y. Duan, and X. Xu, “A 140 GHz two beam overmoded folded-waveguide travelling-wave tube,” IEEE Trans. Plasma Sci. 39(3), 847–851 (2011).
[Crossref]

Guo, X.

W. X. Liu, Z. C. Zhang, C. Zhao, X. Guo, Z. X. Zhang, and S. Y. Liao, “Development of a subterahertz folded-waveguide extended interaction oscillator,” IEEE Trans. Plasma Sci. 45(7), 1731–1738 (2017).
[Crossref]

He, W.

G. X. Shu, L. Zhang, H. Yin, J. Zhao, A. D. R. Phelps, A. W. Cross, G. Liu, Y. Luo, Z. F. Qian, and W. He, “Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” Appl. Phys. Lett. 112(3), 033504 (2018).
[Crossref]

W. He, C. R. Donaldson, L. Zhang, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Broadband amplification of low-terahertz signals using axis-encircling electrons in a helically corrugated interaction region,” Phys. Rev. Lett. 119(18), 184801 (2017).
[Crossref] [PubMed]

W. He, C. R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, and A. W. Cross, “High power wideband gyrotron backward wave oscillator operating towards the terahertz region,” Phys. Rev. Lett. 110(16), 165101 (2013).
[Crossref] [PubMed]

Himes, L.

A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann., “Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier,” IEEE Trans. Electron Dev. 64(5), 2390–2397 (2017).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

Horoyski, P.

D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, “Practical aspects of EIK technology,” IEEE Trans. Electron Dev. 61(6), 1830–1835 (2014).
[Crossref]

Humphries, S.

J. X. Wang, L. R. Barnett, N. C. Luhmann, Y. M. Shin, and S. Humphries, “Electron beam transport analysis of W-band sheet beam klystron,” Phys. Plasmas 17(4), 043111 (2010).
[Crossref]

Hyttinen, M.

D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, “Practical aspects of EIK technology,” IEEE Trans. Electron Dev. 61(6), 1830–1835 (2014).
[Crossref]

C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
[Crossref]

Jia, Q.

Joe, J.

B. McVey, M. Basten, J. Booske, J. Joe, and J. Scharer, “Analysis of rectangular waveguide-gratings for amplifier applications,” IEEE Trans. Microw. Theory Tech. 42(6), 995–1003 (1994).
[Crossref]

Joye, C. D.

C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
[Crossref]

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Kashyn, D. G.

M. Y. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R. Pu, “A 670 GHz gyrotron with record power and efficiency,” Appl. Phys. Lett. 101(15), 153503 (2012).
[Crossref]

Kimura, T.

A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann., “Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier,” IEEE Trans. Electron Dev. 64(5), 2390–2397 (2017).
[Crossref]

C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
[Crossref]

Kingsmill, A.

D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, “Practical aspects of EIK technology,” IEEE Trans. Electron Dev. 61(6), 1830–1835 (2014).
[Crossref]

Knyazev, B. A.

B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements,” Meas. Sci. Technol. 21(5), 054017 (2010).
[Crossref]

Kory, C. L.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Kulipanov, G. N.

B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements,” Meas. Sci. Technol. 21(5), 054017 (2010).
[Crossref]

Kumar, L.

S. K. Datta, L. Kumar, and B. N. Basu, “A simple and accurate analysis of conductivity loss in millimeter-wave helical slow-wave structures,” J. Infrared Millim. Terahertz Waves 30(4), 381–392 (2009).
[Crossref]

Letizia, R.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

Levush, B.

C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
[Crossref]

Li, H. Y.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

Li, J.

J. Zhao, D. Gamzina, N. Li, J. Li, A. G. Spear, L. Barnett, M. Banducci, S. Risbud, and N. C. Luhmann., “Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun,” IEEE Trans. Electron Dev. 59(6), 1792–1798 (2012).
[Crossref]

Li, N.

J. Zhao, D. Gamzina, N. Li, J. Li, A. G. Spear, L. Barnett, M. Banducci, S. Risbud, and N. C. Luhmann., “Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun,” IEEE Trans. Electron Dev. 59(6), 1792–1798 (2012).
[Crossref]

Liang, L.

Liao, S. Y.

W. X. Liu, Z. C. Zhang, C. Zhao, X. Guo, Z. X. Zhang, and S. Y. Liao, “Development of a subterahertz folded-waveguide extended interaction oscillator,” IEEE Trans. Plasma Sci. 45(7), 1731–1738 (2017).
[Crossref]

Liu, G.

G. X. Shu, L. Zhang, H. Yin, J. Zhao, A. D. R. Phelps, A. W. Cross, G. Liu, Y. Luo, Z. F. Qian, and W. He, “Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” Appl. Phys. Lett. 112(3), 033504 (2018).
[Crossref]

G. X. Shu, G. Liu, L. Chen, H. Bambarandage, and Z. F. Qian, “Terahertz backward wave radiation from the interaction of high-order mode and double sheet electron beams,” J. Phys. D Appl. Phys. 51(5), 055107 (2018).
[Crossref]

Y. Wang, L. Wang, G. Liu, G. X. Shu, K. Dong, J. X. Wang, R. Yan, H. Fu, Y. Yao, Y. Luo, and S. F. Wang, “Wideband circular TE21 and TE01 mode converters with same exciting topologies,” IEEE Trans. Electron Dev. 63(10), 4088–4095 (2016).
[Crossref]

Liu, W.

Liu, W. X.

W. X. Liu, Z. C. Zhang, C. Zhao, X. Guo, Z. X. Zhang, and S. Y. Liao, “Development of a subterahertz folded-waveguide extended interaction oscillator,” IEEE Trans. Plasma Sci. 45(7), 1731–1738 (2017).
[Crossref]

Lu, Y.

Lu, Z. G.

Y. B. Gong, H. R. Yin, L. N. Yue, Z. G. Lu, Y. Y. Wei, J. J. Feng, Z. Y. Duan, and X. Xu, “A 140 GHz two beam overmoded folded-waveguide travelling-wave tube,” IEEE Trans. Plasma Sci. 39(3), 847–851 (2011).
[Crossref]

Luchinin, A. G.

M. Y. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R. Pu, “A 670 GHz gyrotron with record power and efficiency,” Appl. Phys. Lett. 101(15), 153503 (2012).
[Crossref]

Luhmann, N. C.

A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann., “Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier,” IEEE Trans. Electron Dev. 64(5), 2390–2397 (2017).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

J. Zhao, D. Gamzina, N. Li, J. Li, A. G. Spear, L. Barnett, M. Banducci, S. Risbud, and N. C. Luhmann., “Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun,” IEEE Trans. Electron Dev. 59(6), 1792–1798 (2012).
[Crossref]

J. X. Wang, L. R. Barnett, N. C. Luhmann, Y. M. Shin, and S. Humphries, “Electron beam transport analysis of W-band sheet beam klystron,” Phys. Plasmas 17(4), 043111 (2010).
[Crossref]

Luo, Y.

G. X. Shu, L. Zhang, H. Yin, J. Zhao, A. D. R. Phelps, A. W. Cross, G. Liu, Y. Luo, Z. F. Qian, and W. He, “Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” Appl. Phys. Lett. 112(3), 033504 (2018).
[Crossref]

Y. Wang, L. Wang, G. Liu, G. X. Shu, K. Dong, J. X. Wang, R. Yan, H. Fu, Y. Yao, Y. Luo, and S. F. Wang, “Wideband circular TE21 and TE01 mode converters with same exciting topologies,” IEEE Trans. Electron Dev. 63(10), 4088–4095 (2016).
[Crossref]

MacHattie, R.

D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, “Practical aspects of EIK technology,” IEEE Trans. Electron Dev. 61(6), 1830–1835 (2014).
[Crossref]

McElhinney, P.

W. He, C. R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, and A. W. Cross, “High power wideband gyrotron backward wave oscillator operating towards the terahertz region,” Phys. Rev. Lett. 110(16), 165101 (2013).
[Crossref] [PubMed]

McVey, B.

B. McVey, M. Basten, J. Booske, J. Joe, and J. Scharer, “Analysis of rectangular waveguide-gratings for amplifier applications,” IEEE Trans. Microw. Theory Tech. 42(6), 995–1003 (1994).
[Crossref]

Mineo, M.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Dev. 57(6), 1481–1484 (2010).
[Crossref]

Neil, G. R.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Nguyen, K. T.

C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
[Crossref]

Nusinovich, G. S.

M. Y. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R. Pu, “A 670 GHz gyrotron with record power and efficiency,” Appl. Phys. Lett. 101(15), 153503 (2012).
[Crossref]

Ooi, K. J. A.

Pan, P.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

Paoloni, C.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Dev. 57(6), 1481–1484 (2010).
[Crossref]

Park, G. S.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Park, J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Pershing, D. E.

C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
[Crossref]

Phelps, A. D. R.

G. X. Shu, L. Zhang, H. Yin, J. Zhao, A. D. R. Phelps, A. W. Cross, G. Liu, Y. Luo, Z. F. Qian, and W. He, “Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” Appl. Phys. Lett. 112(3), 033504 (2018).
[Crossref]

W. He, C. R. Donaldson, L. Zhang, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Broadband amplification of low-terahertz signals using axis-encircling electrons in a helically corrugated interaction region,” Phys. Rev. Lett. 119(18), 184801 (2017).
[Crossref] [PubMed]

Popovic, B.

A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann., “Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier,” IEEE Trans. Electron Dev. 64(5), 2390–2397 (2017).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

Potylitsyn, A. P.

Pu, R.

M. Y. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R. Pu, “A 670 GHz gyrotron with record power and efficiency,” Appl. Phys. Lett. 101(15), 153503 (2012).
[Crossref]

Qian, Z. F.

G. X. Shu, L. Zhang, H. Yin, J. Zhao, A. D. R. Phelps, A. W. Cross, G. Liu, Y. Luo, Z. F. Qian, and W. He, “Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” Appl. Phys. Lett. 112(3), 033504 (2018).
[Crossref]

G. X. Shu, G. Liu, L. Chen, H. Bambarandage, and Z. F. Qian, “Terahertz backward wave radiation from the interaction of high-order mode and double sheet electron beams,” J. Phys. D Appl. Phys. 51(5), 055107 (2018).
[Crossref]

Risbud, S.

J. Zhao, D. Gamzina, N. Li, J. Li, A. G. Spear, L. Barnett, M. Banducci, S. Risbud, and N. C. Luhmann., “Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun,” IEEE Trans. Electron Dev. 59(6), 1792–1798 (2012).
[Crossref]

Rodgers, J.

M. Y. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R. Pu, “A 670 GHz gyrotron with record power and efficiency,” Appl. Phys. Lett. 101(15), 153503 (2012).
[Crossref]

Roitman, A.

D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, “Practical aspects of EIK technology,” IEEE Trans. Electron Dev. 61(6), 1830–1835 (2014).
[Crossref]

Romero-Talamas, C. A.

M. Y. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R. Pu, “A 670 GHz gyrotron with record power and efficiency,” Appl. Phys. Lett. 101(15), 153503 (2012).
[Crossref]

Ronald, K.

W. He, C. R. Donaldson, L. Zhang, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Broadband amplification of low-terahertz signals using axis-encircling electrons in a helically corrugated interaction region,” Phys. Rev. Lett. 119(18), 184801 (2017).
[Crossref] [PubMed]

W. He, C. R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, and A. W. Cross, “High power wideband gyrotron backward wave oscillator operating towards the terahertz region,” Phys. Rev. Lett. 110(16), 165101 (2013).
[Crossref] [PubMed]

Scharer, J.

B. McVey, M. Basten, J. Booske, J. Joe, and J. Scharer, “Analysis of rectangular waveguide-gratings for amplifier applications,” IEEE Trans. Microw. Theory Tech. 42(6), 995–1003 (1994).
[Crossref]

Sergeeva, D. Y.

Sheng, C. J.

Shin, Y. M.

A. Gee and Y. M. Shin, “Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure,” Phys. Plasmas 20(7), 073106 (2013).
[Crossref]

Y. M. Shin, “Superimposed coherent terahertz wave radiation from mono-energetically bunched multi-beam,” Phys. Plasmas 19(6), 063115 (2012).
[Crossref]

Y. M. Shin, “Frequency-selective plasmonic wave propagation through the overmoded waveguide with photonic-band-gap slab arrays,” Phys. Plasmas 19(5), 053102 (2012).
[Crossref]

J. X. Wang, L. R. Barnett, N. C. Luhmann, Y. M. Shin, and S. Humphries, “Electron beam transport analysis of W-band sheet beam klystron,” Phys. Plasmas 17(4), 043111 (2010).
[Crossref]

Shu, G. X.

G. X. Shu, G. Liu, L. Chen, H. Bambarandage, and Z. F. Qian, “Terahertz backward wave radiation from the interaction of high-order mode and double sheet electron beams,” J. Phys. D Appl. Phys. 51(5), 055107 (2018).
[Crossref]

G. X. Shu, L. Zhang, H. Yin, J. Zhao, A. D. R. Phelps, A. W. Cross, G. Liu, Y. Luo, Z. F. Qian, and W. He, “Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” Appl. Phys. Lett. 112(3), 033504 (2018).
[Crossref]

Y. Wang, L. Wang, G. Liu, G. X. Shu, K. Dong, J. X. Wang, R. Yan, H. Fu, Y. Yao, Y. Luo, and S. F. Wang, “Wideband circular TE21 and TE01 mode converters with same exciting topologies,” IEEE Trans. Electron Dev. 63(10), 4088–4095 (2016).
[Crossref]

Sokol, E.

D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, “Practical aspects of EIK technology,” IEEE Trans. Electron Dev. 61(6), 1830–1835 (2014).
[Crossref]

Spear, A. G.

J. Zhao, D. Gamzina, N. Li, J. Li, A. G. Spear, L. Barnett, M. Banducci, S. Risbud, and N. C. Luhmann., “Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun,” IEEE Trans. Electron Dev. 59(6), 1792–1798 (2012).
[Crossref]

Steer, B.

D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, “Practical aspects of EIK technology,” IEEE Trans. Electron Dev. 61(6), 1830–1835 (2014).
[Crossref]

Strikhanov, M. N.

Tang, M.

Tang, X. P.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

Tang, Y.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

Temkin, R. J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Tishchenko, A. A.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Vinokurov, N. A.

B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements,” Meas. Sci. Technol. 21(5), 054017 (2010).
[Crossref]

Vlasov, A. N.

C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
[Crossref]

Wang, J. X.

Y. Wang, L. Wang, G. Liu, G. X. Shu, K. Dong, J. X. Wang, R. Yan, H. Fu, Y. Yao, Y. Luo, and S. F. Wang, “Wideband circular TE21 and TE01 mode converters with same exciting topologies,” IEEE Trans. Electron Dev. 63(10), 4088–4095 (2016).
[Crossref]

J. X. Wang, L. R. Barnett, N. C. Luhmann, Y. M. Shin, and S. Humphries, “Electron beam transport analysis of W-band sheet beam klystron,” Phys. Plasmas 17(4), 043111 (2010).
[Crossref]

Wang, L.

L. Liang, W. Liu, Q. Jia, L. Wang, and Y. Lu, “High-harmonic terahertz Smith-Purcell free-electron-laser with two tandem cylindrical-gratings,” Opt. Express 25(3), 2960–2968 (2017).
[Crossref] [PubMed]

Y. Wang, L. Wang, G. Liu, G. X. Shu, K. Dong, J. X. Wang, R. Yan, H. Fu, Y. Yao, Y. Luo, and S. F. Wang, “Wideband circular TE21 and TE01 mode converters with same exciting topologies,” IEEE Trans. Electron Dev. 63(10), 4088–4095 (2016).
[Crossref]

Wang, S. F.

Y. Wang, L. Wang, G. Liu, G. X. Shu, K. Dong, J. X. Wang, R. Yan, H. Fu, Y. Yao, Y. Luo, and S. F. Wang, “Wideband circular TE21 and TE01 mode converters with same exciting topologies,” IEEE Trans. Electron Dev. 63(10), 4088–4095 (2016).
[Crossref]

Wang, Y.

Y. Wang, L. Wang, G. Liu, G. X. Shu, K. Dong, J. X. Wang, R. Yan, H. Fu, Y. Yao, Y. Luo, and S. F. Wang, “Wideband circular TE21 and TE01 mode converters with same exciting topologies,” IEEE Trans. Electron Dev. 63(10), 4088–4095 (2016).
[Crossref]

Wei, Y. Y.

Y. B. Gong, H. R. Yin, L. N. Yue, Z. G. Lu, Y. Y. Wei, J. J. Feng, Z. Y. Duan, and X. Xu, “A 140 GHz two beam overmoded folded-waveguide travelling-wave tube,” IEEE Trans. Plasma Sci. 39(3), 847–851 (2011).
[Crossref]

Wright, E. L.

C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
[Crossref]

Xu, X.

Y. B. Gong, H. R. Yin, L. N. Yue, Z. G. Lu, Y. Y. Wei, J. J. Feng, Z. Y. Duan, and X. Xu, “A 140 GHz two beam overmoded folded-waveguide travelling-wave tube,” IEEE Trans. Plasma Sci. 39(3), 847–851 (2011).
[Crossref]

Yan, R.

Y. Wang, L. Wang, G. Liu, G. X. Shu, K. Dong, J. X. Wang, R. Yan, H. Fu, Y. Yao, Y. Luo, and S. F. Wang, “Wideband circular TE21 and TE01 mode converters with same exciting topologies,” IEEE Trans. Electron Dev. 63(10), 4088–4095 (2016).
[Crossref]

Yao, Y.

Y. Wang, L. Wang, G. Liu, G. X. Shu, K. Dong, J. X. Wang, R. Yan, H. Fu, Y. Yao, Y. Luo, and S. F. Wang, “Wideband circular TE21 and TE01 mode converters with same exciting topologies,” IEEE Trans. Electron Dev. 63(10), 4088–4095 (2016).
[Crossref]

Yin, H.

G. X. Shu, L. Zhang, H. Yin, J. Zhao, A. D. R. Phelps, A. W. Cross, G. Liu, Y. Luo, Z. F. Qian, and W. He, “Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” Appl. Phys. Lett. 112(3), 033504 (2018).
[Crossref]

Yin, H. R.

Y. B. Gong, H. R. Yin, L. N. Yue, Z. G. Lu, Y. Y. Wei, J. J. Feng, Z. Y. Duan, and X. Xu, “A 140 GHz two beam overmoded folded-waveguide travelling-wave tube,” IEEE Trans. Plasma Sci. 39(3), 847–851 (2011).
[Crossref]

Yuan, X. S.

Yue, L. N.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

Y. B. Gong, H. R. Yin, L. N. Yue, Z. G. Lu, Y. Y. Wei, J. J. Feng, Z. Y. Duan, and X. Xu, “A 140 GHz two beam overmoded folded-waveguide travelling-wave tube,” IEEE Trans. Plasma Sci. 39(3), 847–851 (2011).
[Crossref]

Zhang, K. C.

Zhang, L.

G. X. Shu, L. Zhang, H. Yin, J. Zhao, A. D. R. Phelps, A. W. Cross, G. Liu, Y. Luo, Z. F. Qian, and W. He, “Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” Appl. Phys. Lett. 112(3), 033504 (2018).
[Crossref]

W. He, C. R. Donaldson, L. Zhang, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Broadband amplification of low-terahertz signals using axis-encircling electrons in a helically corrugated interaction region,” Phys. Rev. Lett. 119(18), 184801 (2017).
[Crossref] [PubMed]

W. He, C. R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, and A. W. Cross, “High power wideband gyrotron backward wave oscillator operating towards the terahertz region,” Phys. Rev. Lett. 110(16), 165101 (2013).
[Crossref] [PubMed]

Zhang, P.

Zhang, Y.

Zhang, Z. C.

W. X. Liu, Z. C. Zhang, C. Zhao, X. Guo, Z. X. Zhang, and S. Y. Liao, “Development of a subterahertz folded-waveguide extended interaction oscillator,” IEEE Trans. Plasma Sci. 45(7), 1731–1738 (2017).
[Crossref]

Zhang, Z. X.

W. X. Liu, Z. C. Zhang, C. Zhao, X. Guo, Z. X. Zhang, and S. Y. Liao, “Development of a subterahertz folded-waveguide extended interaction oscillator,” IEEE Trans. Plasma Sci. 45(7), 1731–1738 (2017).
[Crossref]

Zhao, C.

W. X. Liu, Z. C. Zhang, C. Zhao, X. Guo, Z. X. Zhang, and S. Y. Liao, “Development of a subterahertz folded-waveguide extended interaction oscillator,” IEEE Trans. Plasma Sci. 45(7), 1731–1738 (2017).
[Crossref]

Zhao, J.

G. X. Shu, L. Zhang, H. Yin, J. Zhao, A. D. R. Phelps, A. W. Cross, G. Liu, Y. Luo, Z. F. Qian, and W. He, “Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” Appl. Phys. Lett. 112(3), 033504 (2018).
[Crossref]

J. Zhao, D. Gamzina, N. Li, J. Li, A. G. Spear, L. Barnett, M. Banducci, S. Risbud, and N. C. Luhmann., “Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun,” IEEE Trans. Electron Dev. 59(6), 1792–1798 (2012).
[Crossref]

Zheng, Y.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

Zhou, Y.

Appl. Phys. Lett. (2)

G. X. Shu, L. Zhang, H. Yin, J. Zhao, A. D. R. Phelps, A. W. Cross, G. Liu, Y. Luo, Z. F. Qian, and W. He, “Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” Appl. Phys. Lett. 112(3), 033504 (2018).
[Crossref]

M. Y. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R. Pu, “A 670 GHz gyrotron with record power and efficiency,” Appl. Phys. Lett. 101(15), 153503 (2012).
[Crossref]

IEEE Trans. Electron Dev. (6)

A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann., “Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier,” IEEE Trans. Electron Dev. 64(5), 2390–2397 (2017).
[Crossref]

C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. A. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Trans. Electron Dev. 61(6), 1672–1678 (2014).
[Crossref]

M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Dev. 57(6), 1481–1484 (2010).
[Crossref]

D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, “Practical aspects of EIK technology,” IEEE Trans. Electron Dev. 61(6), 1830–1835 (2014).
[Crossref]

J. Zhao, D. Gamzina, N. Li, J. Li, A. G. Spear, L. Barnett, M. Banducci, S. Risbud, and N. C. Luhmann., “Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun,” IEEE Trans. Electron Dev. 59(6), 1792–1798 (2012).
[Crossref]

Y. Wang, L. Wang, G. Liu, G. X. Shu, K. Dong, J. X. Wang, R. Yan, H. Fu, Y. Yao, Y. Luo, and S. F. Wang, “Wideband circular TE21 and TE01 mode converters with same exciting topologies,” IEEE Trans. Electron Dev. 63(10), 4088–4095 (2016).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

B. McVey, M. Basten, J. Booske, J. Joe, and J. Scharer, “Analysis of rectangular waveguide-gratings for amplifier applications,” IEEE Trans. Microw. Theory Tech. 42(6), 995–1003 (1994).
[Crossref]

IEEE Trans. Plasma Sci. (3)

W. X. Liu, Z. C. Zhang, C. Zhao, X. Guo, Z. X. Zhang, and S. Y. Liao, “Development of a subterahertz folded-waveguide extended interaction oscillator,” IEEE Trans. Plasma Sci. 45(7), 1731–1738 (2017).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. N. Yue, Y. Zheng, X. P. Tang, Y. Tang, P. Pan, H. Y. Li, R. Letizia, M. Mineo, J. J. Feng, and N. C. Luhmann., “THz backward-wave oscillators for plasma diagnostic in nuclear fusion,” IEEE Trans. Plasma Sci. 44(4), 369–376 (2016).
[Crossref]

Y. B. Gong, H. R. Yin, L. N. Yue, Z. G. Lu, Y. Y. Wei, J. J. Feng, Z. Y. Duan, and X. Xu, “A 140 GHz two beam overmoded folded-waveguide travelling-wave tube,” IEEE Trans. Plasma Sci. 39(3), 847–851 (2011).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

S. K. Datta, L. Kumar, and B. N. Basu, “A simple and accurate analysis of conductivity loss in millimeter-wave helical slow-wave structures,” J. Infrared Millim. Terahertz Waves 30(4), 381–392 (2009).
[Crossref]

J. Phys. D Appl. Phys. (1)

G. X. Shu, G. Liu, L. Chen, H. Bambarandage, and Z. F. Qian, “Terahertz backward wave radiation from the interaction of high-order mode and double sheet electron beams,” J. Phys. D Appl. Phys. 51(5), 055107 (2018).
[Crossref]

Meas. Sci. Technol. (1)

B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements,” Meas. Sci. Technol. 21(5), 054017 (2010).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Plasmas (4)

A. Gee and Y. M. Shin, “Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure,” Phys. Plasmas 20(7), 073106 (2013).
[Crossref]

Y. M. Shin, “Superimposed coherent terahertz wave radiation from mono-energetically bunched multi-beam,” Phys. Plasmas 19(6), 063115 (2012).
[Crossref]

Y. M. Shin, “Frequency-selective plasmonic wave propagation through the overmoded waveguide with photonic-band-gap slab arrays,” Phys. Plasmas 19(5), 053102 (2012).
[Crossref]

J. X. Wang, L. R. Barnett, N. C. Luhmann, Y. M. Shin, and S. Humphries, “Electron beam transport analysis of W-band sheet beam klystron,” Phys. Plasmas 17(4), 043111 (2010).
[Crossref]

Phys. Rev. Lett. (2)

W. He, C. R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, and A. W. Cross, “High power wideband gyrotron backward wave oscillator operating towards the terahertz region,” Phys. Rev. Lett. 110(16), 165101 (2013).
[Crossref] [PubMed]

W. He, C. R. Donaldson, L. Zhang, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Broadband amplification of low-terahertz signals using axis-encircling electrons in a helically corrugated interaction region,” Phys. Rev. Lett. 119(18), 184801 (2017).
[Crossref] [PubMed]

Other (1)

C. S. T. Corp, “CST Tutorials,” http://www.cst-china.cn/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of (a) a double staggered grating waveguide [6, 12, 22], (b) a single grating waveguide [4, 26], (c) an orthogonal grating waveguide, and (d) simulation model of an orthogonal grating waveguide cell.
Fig. 2
Fig. 2 Vector electric field distribution of the TM51-like modes across the xz plane of the orthogonal grating waveguide cell (a) TM51-like 2π mode, (b) TM51-like 1/4π mode, (c) TM51-like 2/4π mode, (d) TM51-like 3/4π mode, (e) TM51-like π mode.
Fig. 3
Fig. 3 Beam line, light line and dispersion curves of the proposed orthogonal grating waveguide cell (TM51-like mode) and the traditional single grating waveguide cell (TM11-like mode).
Fig. 4
Fig. 4 Simulation model of the interaction circuit.
Fig. 5
Fig. 5 (a) Electric field distribution across the xz plane and (b) transmission curve when exciting TE50 mode.
Fig. 6
Fig. 6 (a) Electron energy distribution and (b) vector electric field distribution across the xz plane of the structure.
Fig. 7
Fig. 7 PIC simulation results when the voltage and current are 23 kV and 30 mA, respectively. (a) Electron energy along the z-axis, (b) time-correlated output voltage observed at port 1, (c) the corresponding frequency spectrum, (d) and the envelope curve of the radiation power calculated from the output voltage.
Fig. 8
Fig. 8 Interaction performance dependent on (a) beam voltage and (b) beam current.
Fig. 9
Fig. 9 Interaction performance dependent on (a) the EC of the background material and (b) the focusing magnetic field Bz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p l = ψ v e 2 π f
v e = [ 1 1 / ( 1 + U 5.11 × 10 5 ) 2 ] c
f = v e 2 π p l ψ .

Metrics