Abstract

We propose the formation of silica glass with improved optical transport properties by compressing its melted phase with a hot isostatic pressure machine at high pressure and temperature. The lowest Rayleigh scattering loss was obtained for the glass held at 200 MPa and 2073 K for 4 h. The observed loss corresponds to 0.07 dB/Km at 1.55 μm, which is about half of the loss in conventional silica glass fiber. The decrease in the loss was well explained in terms of the decrease in the size of the sub-nanometer-sized structural voids observed by positron annihilation lifetime spectroscopy in silica glass. The achievement of high transparency and strong confinement of light represents a promising result for the development of future fiber-core media.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Rayleigh scattering of silica core optical fiber after heat treatment

Shigeki Sakaguchi and Shin-ichi Todoroki
Appl. Opt. 37(33) 7708-7711 (1998)

Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification

V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Yu. Salgansky
Opt. Lett. 29(22) 2596-2598 (2004)

Reduction of scattering loss in fluoroindate glass fibers

Jiafang Bei, Tanya M. Monro, Alexander Hemming, and Heike Ebendorff-Heidepriem
Opt. Mater. Express 3(9) 1285-1301 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Guerette, M. R. Ackerson, J. Thomas, F. Yuan, E. Bruce Watson, D. Walker, and L. Huang, “Structure and properties of silica glass densified in cold compression and hot compression,” Sci. Rep. 5(1), 15343 (2015).
    [Crossref] [PubMed]
  2. A. Masuno, N. Nishiyama, F. Sato, N. Kitamura, T. Taniguchi, and H. Inoue, “High refractive index and lower wavelength dispersion of SiO2 glass by structural ordering evolution via densification at a high temperature,” RSC Advances 6(23), 19144–19149 (2016).
    [Crossref]
  3. B. Champagnon, L. Wondraczek, and T. Deschamps, “Boson peak, structural inhomogeneity, light scattering and transparency of silicate glasses,” J. Non-Cryst. Solids 355(10-12), 712–714 (2009).
    [Crossref]
  4. M. Ono, K. Hara, M. Fujinami, and S. Ito, “Void structure in silica glass with different fictive temperatures observed with positron annihilation lifetime spectroscopy,” Appl. Phys. Lett. 101(16), 164103 (2012).
    [Crossref]
  5. H. Kakiuchida, K. Saito, and A. J. Ikushima, “Fictive-temperature dependence of structural relaxation in silica glass,” J. Appl. Phys. 94(3), 1705–1708 (2003).
    [Crossref]
  6. S. J. Tao, “Positronium Annihilation in Molecular Substances,” J. Chem. Phys. 56(11), 5499–5510 (1972).
    [Crossref]
  7. K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
    [Crossref]
  8. T. Rouxel, H. Ji, T. Hammouda, and A. Moréac, “Poisson’s ratio and the densification of glass under high pressure,” Phys. Rev. Lett. 100(22), 225501 (2008).
    [Crossref] [PubMed]
  9. S. Hofler and F. Sifert, “Volume Relaxation of Compacted SiO2 Glass: a Model for the Conservation of Natural Diaplectic Glasses,” Earth Planet. Sci. Lett. 67(3), 433–438 (1984).
    [Crossref]
  10. K. Saito and A. J. Ikushima, “Structural relaxation enhanced by Cl ions in silica glass,” Appl. Phys. Lett. 73(9), 1209–1211 (1998).
    [Crossref]
  11. S. Ito, T. Taniguchi, M. Ono, and K. Uemura, “Network and void structures for glasses with a higher resistance to crack formation,” J. Non-Crys. Sol. 358, 3453–3458 (2012).
  12. K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
    [Crossref]

2016 (1)

A. Masuno, N. Nishiyama, F. Sato, N. Kitamura, T. Taniguchi, and H. Inoue, “High refractive index and lower wavelength dispersion of SiO2 glass by structural ordering evolution via densification at a high temperature,” RSC Advances 6(23), 19144–19149 (2016).
[Crossref]

2015 (1)

M. Guerette, M. R. Ackerson, J. Thomas, F. Yuan, E. Bruce Watson, D. Walker, and L. Huang, “Structure and properties of silica glass densified in cold compression and hot compression,” Sci. Rep. 5(1), 15343 (2015).
[Crossref] [PubMed]

2012 (2)

M. Ono, K. Hara, M. Fujinami, and S. Ito, “Void structure in silica glass with different fictive temperatures observed with positron annihilation lifetime spectroscopy,” Appl. Phys. Lett. 101(16), 164103 (2012).
[Crossref]

S. Ito, T. Taniguchi, M. Ono, and K. Uemura, “Network and void structures for glasses with a higher resistance to crack formation,” J. Non-Crys. Sol. 358, 3453–3458 (2012).

2009 (1)

B. Champagnon, L. Wondraczek, and T. Deschamps, “Boson peak, structural inhomogeneity, light scattering and transparency of silicate glasses,” J. Non-Cryst. Solids 355(10-12), 712–714 (2009).
[Crossref]

2008 (1)

T. Rouxel, H. Ji, T. Hammouda, and A. Moréac, “Poisson’s ratio and the densification of glass under high pressure,” Phys. Rev. Lett. 100(22), 225501 (2008).
[Crossref] [PubMed]

2005 (1)

K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
[Crossref]

2003 (2)

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[Crossref]

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Fictive-temperature dependence of structural relaxation in silica glass,” J. Appl. Phys. 94(3), 1705–1708 (2003).
[Crossref]

1998 (1)

K. Saito and A. J. Ikushima, “Structural relaxation enhanced by Cl ions in silica glass,” Appl. Phys. Lett. 73(9), 1209–1211 (1998).
[Crossref]

1984 (1)

S. Hofler and F. Sifert, “Volume Relaxation of Compacted SiO2 Glass: a Model for the Conservation of Natural Diaplectic Glasses,” Earth Planet. Sci. Lett. 67(3), 433–438 (1984).
[Crossref]

1972 (1)

S. J. Tao, “Positronium Annihilation in Molecular Substances,” J. Chem. Phys. 56(11), 5499–5510 (1972).
[Crossref]

Ackerson, M. R.

M. Guerette, M. R. Ackerson, J. Thomas, F. Yuan, E. Bruce Watson, D. Walker, and L. Huang, “Structure and properties of silica glass densified in cold compression and hot compression,” Sci. Rep. 5(1), 15343 (2015).
[Crossref] [PubMed]

Bruce Watson, E.

M. Guerette, M. R. Ackerson, J. Thomas, F. Yuan, E. Bruce Watson, D. Walker, and L. Huang, “Structure and properties of silica glass densified in cold compression and hot compression,” Sci. Rep. 5(1), 15343 (2015).
[Crossref] [PubMed]

Champagnon, B.

B. Champagnon, L. Wondraczek, and T. Deschamps, “Boson peak, structural inhomogeneity, light scattering and transparency of silicate glasses,” J. Non-Cryst. Solids 355(10-12), 712–714 (2009).
[Crossref]

Deschamps, T.

B. Champagnon, L. Wondraczek, and T. Deschamps, “Boson peak, structural inhomogeneity, light scattering and transparency of silicate glasses,” J. Non-Cryst. Solids 355(10-12), 712–714 (2009).
[Crossref]

Fujinami, M.

M. Ono, K. Hara, M. Fujinami, and S. Ito, “Void structure in silica glass with different fictive temperatures observed with positron annihilation lifetime spectroscopy,” Appl. Phys. Lett. 101(16), 164103 (2012).
[Crossref]

Guerette, M.

M. Guerette, M. R. Ackerson, J. Thomas, F. Yuan, E. Bruce Watson, D. Walker, and L. Huang, “Structure and properties of silica glass densified in cold compression and hot compression,” Sci. Rep. 5(1), 15343 (2015).
[Crossref] [PubMed]

Hammouda, T.

T. Rouxel, H. Ji, T. Hammouda, and A. Moréac, “Poisson’s ratio and the densification of glass under high pressure,” Phys. Rev. Lett. 100(22), 225501 (2008).
[Crossref] [PubMed]

Hara, K.

M. Ono, K. Hara, M. Fujinami, and S. Ito, “Void structure in silica glass with different fictive temperatures observed with positron annihilation lifetime spectroscopy,” Appl. Phys. Lett. 101(16), 164103 (2012).
[Crossref]

Hofler, S.

S. Hofler and F. Sifert, “Volume Relaxation of Compacted SiO2 Glass: a Model for the Conservation of Natural Diaplectic Glasses,” Earth Planet. Sci. Lett. 67(3), 433–438 (1984).
[Crossref]

Huang, L.

M. Guerette, M. R. Ackerson, J. Thomas, F. Yuan, E. Bruce Watson, D. Walker, and L. Huang, “Structure and properties of silica glass densified in cold compression and hot compression,” Sci. Rep. 5(1), 15343 (2015).
[Crossref] [PubMed]

Ikushima, A. J.

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[Crossref]

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Fictive-temperature dependence of structural relaxation in silica glass,” J. Appl. Phys. 94(3), 1705–1708 (2003).
[Crossref]

K. Saito and A. J. Ikushima, “Structural relaxation enhanced by Cl ions in silica glass,” Appl. Phys. Lett. 73(9), 1209–1211 (1998).
[Crossref]

Inoue, H.

A. Masuno, N. Nishiyama, F. Sato, N. Kitamura, T. Taniguchi, and H. Inoue, “High refractive index and lower wavelength dispersion of SiO2 glass by structural ordering evolution via densification at a high temperature,” RSC Advances 6(23), 19144–19149 (2016).
[Crossref]

Ito, S.

M. Ono, K. Hara, M. Fujinami, and S. Ito, “Void structure in silica glass with different fictive temperatures observed with positron annihilation lifetime spectroscopy,” Appl. Phys. Lett. 101(16), 164103 (2012).
[Crossref]

S. Ito, T. Taniguchi, M. Ono, and K. Uemura, “Network and void structures for glasses with a higher resistance to crack formation,” J. Non-Crys. Sol. 358, 3453–3458 (2012).

Ji, H.

T. Rouxel, H. Ji, T. Hammouda, and A. Moréac, “Poisson’s ratio and the densification of glass under high pressure,” Phys. Rev. Lett. 100(22), 225501 (2008).
[Crossref] [PubMed]

Kakiuchida, H.

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[Crossref]

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Fictive-temperature dependence of structural relaxation in silica glass,” J. Appl. Phys. 94(3), 1705–1708 (2003).
[Crossref]

Kitamura, N.

A. Masuno, N. Nishiyama, F. Sato, N. Kitamura, T. Taniguchi, and H. Inoue, “High refractive index and lower wavelength dispersion of SiO2 glass by structural ordering evolution via densification at a high temperature,” RSC Advances 6(23), 19144–19149 (2016).
[Crossref]

Kurosawa, Y.

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[Crossref]

Masuno, A.

A. Masuno, N. Nishiyama, F. Sato, N. Kitamura, T. Taniguchi, and H. Inoue, “High refractive index and lower wavelength dispersion of SiO2 glass by structural ordering evolution via densification at a high temperature,” RSC Advances 6(23), 19144–19149 (2016).
[Crossref]

Moréac, A.

T. Rouxel, H. Ji, T. Hammouda, and A. Moréac, “Poisson’s ratio and the densification of glass under high pressure,” Phys. Rev. Lett. 100(22), 225501 (2008).
[Crossref] [PubMed]

Nishiyama, N.

A. Masuno, N. Nishiyama, F. Sato, N. Kitamura, T. Taniguchi, and H. Inoue, “High refractive index and lower wavelength dispersion of SiO2 glass by structural ordering evolution via densification at a high temperature,” RSC Advances 6(23), 19144–19149 (2016).
[Crossref]

Ohsono, K.

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[Crossref]

Ono, M.

S. Ito, T. Taniguchi, M. Ono, and K. Uemura, “Network and void structures for glasses with a higher resistance to crack formation,” J. Non-Crys. Sol. 358, 3453–3458 (2012).

M. Ono, K. Hara, M. Fujinami, and S. Ito, “Void structure in silica glass with different fictive temperatures observed with positron annihilation lifetime spectroscopy,” Appl. Phys. Lett. 101(16), 164103 (2012).
[Crossref]

Rouxel, T.

T. Rouxel, H. Ji, T. Hammouda, and A. Moréac, “Poisson’s ratio and the densification of glass under high pressure,” Phys. Rev. Lett. 100(22), 225501 (2008).
[Crossref] [PubMed]

Saito, K.

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[Crossref]

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Fictive-temperature dependence of structural relaxation in silica glass,” J. Appl. Phys. 94(3), 1705–1708 (2003).
[Crossref]

K. Saito and A. J. Ikushima, “Structural relaxation enhanced by Cl ions in silica glass,” Appl. Phys. Lett. 73(9), 1209–1211 (1998).
[Crossref]

Sato, F.

A. Masuno, N. Nishiyama, F. Sato, N. Kitamura, T. Taniguchi, and H. Inoue, “High refractive index and lower wavelength dispersion of SiO2 glass by structural ordering evolution via densification at a high temperature,” RSC Advances 6(23), 19144–19149 (2016).
[Crossref]

Sifert, F.

S. Hofler and F. Sifert, “Volume Relaxation of Compacted SiO2 Glass: a Model for the Conservation of Natural Diaplectic Glasses,” Earth Planet. Sci. Lett. 67(3), 433–438 (1984).
[Crossref]

Tajima, K.

K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
[Crossref]

Taniguchi, T.

A. Masuno, N. Nishiyama, F. Sato, N. Kitamura, T. Taniguchi, and H. Inoue, “High refractive index and lower wavelength dispersion of SiO2 glass by structural ordering evolution via densification at a high temperature,” RSC Advances 6(23), 19144–19149 (2016).
[Crossref]

S. Ito, T. Taniguchi, M. Ono, and K. Uemura, “Network and void structures for glasses with a higher resistance to crack formation,” J. Non-Crys. Sol. 358, 3453–3458 (2012).

Tao, S. J.

S. J. Tao, “Positronium Annihilation in Molecular Substances,” J. Chem. Phys. 56(11), 5499–5510 (1972).
[Crossref]

Thomas, J.

M. Guerette, M. R. Ackerson, J. Thomas, F. Yuan, E. Bruce Watson, D. Walker, and L. Huang, “Structure and properties of silica glass densified in cold compression and hot compression,” Sci. Rep. 5(1), 15343 (2015).
[Crossref] [PubMed]

Tsujikawa, K.

K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
[Crossref]

Uemura, K.

S. Ito, T. Taniguchi, M. Ono, and K. Uemura, “Network and void structures for glasses with a higher resistance to crack formation,” J. Non-Crys. Sol. 358, 3453–3458 (2012).

Walker, D.

M. Guerette, M. R. Ackerson, J. Thomas, F. Yuan, E. Bruce Watson, D. Walker, and L. Huang, “Structure and properties of silica glass densified in cold compression and hot compression,” Sci. Rep. 5(1), 15343 (2015).
[Crossref] [PubMed]

Wondraczek, L.

B. Champagnon, L. Wondraczek, and T. Deschamps, “Boson peak, structural inhomogeneity, light scattering and transparency of silicate glasses,” J. Non-Cryst. Solids 355(10-12), 712–714 (2009).
[Crossref]

Yamaguchi, M.

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[Crossref]

Yuan, F.

M. Guerette, M. R. Ackerson, J. Thomas, F. Yuan, E. Bruce Watson, D. Walker, and L. Huang, “Structure and properties of silica glass densified in cold compression and hot compression,” Sci. Rep. 5(1), 15343 (2015).
[Crossref] [PubMed]

Zhou, J.

K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
[Crossref]

Appl. Phys. Lett. (3)

M. Ono, K. Hara, M. Fujinami, and S. Ito, “Void structure in silica glass with different fictive temperatures observed with positron annihilation lifetime spectroscopy,” Appl. Phys. Lett. 101(16), 164103 (2012).
[Crossref]

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[Crossref]

K. Saito and A. J. Ikushima, “Structural relaxation enhanced by Cl ions in silica glass,” Appl. Phys. Lett. 73(9), 1209–1211 (1998).
[Crossref]

Earth Planet. Sci. Lett. (1)

S. Hofler and F. Sifert, “Volume Relaxation of Compacted SiO2 Glass: a Model for the Conservation of Natural Diaplectic Glasses,” Earth Planet. Sci. Lett. 67(3), 433–438 (1984).
[Crossref]

J. Appl. Phys. (1)

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Fictive-temperature dependence of structural relaxation in silica glass,” J. Appl. Phys. 94(3), 1705–1708 (2003).
[Crossref]

J. Chem. Phys. (1)

S. J. Tao, “Positronium Annihilation in Molecular Substances,” J. Chem. Phys. 56(11), 5499–5510 (1972).
[Crossref]

J. Non-Crys. Sol. (1)

S. Ito, T. Taniguchi, M. Ono, and K. Uemura, “Network and void structures for glasses with a higher resistance to crack formation,” J. Non-Crys. Sol. 358, 3453–3458 (2012).

J. Non-Cryst. Solids (1)

B. Champagnon, L. Wondraczek, and T. Deschamps, “Boson peak, structural inhomogeneity, light scattering and transparency of silicate glasses,” J. Non-Cryst. Solids 355(10-12), 712–714 (2009).
[Crossref]

Opt. Fiber Technol. (1)

K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
[Crossref]

Phys. Rev. Lett. (1)

T. Rouxel, H. Ji, T. Hammouda, and A. Moréac, “Poisson’s ratio and the densification of glass under high pressure,” Phys. Rev. Lett. 100(22), 225501 (2008).
[Crossref] [PubMed]

RSC Advances (1)

A. Masuno, N. Nishiyama, F. Sato, N. Kitamura, T. Taniguchi, and H. Inoue, “High refractive index and lower wavelength dispersion of SiO2 glass by structural ordering evolution via densification at a high temperature,” RSC Advances 6(23), 19144–19149 (2016).
[Crossref]

Sci. Rep. (1)

M. Guerette, M. R. Ackerson, J. Thomas, F. Yuan, E. Bruce Watson, D. Walker, and L. Huang, “Structure and properties of silica glass densified in cold compression and hot compression,” Sci. Rep. 5(1), 15343 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Dependence of density (filled squares) and refractive index (filled circles) on (a) applied pressure and (b) pressure holding time at 200 MPa.
Fig. 2
Fig. 2 The third lifetime component, τ3 (left vertical axis), and the corresponding void radius Rv, calculated using the Tao-Eldrup model as a function of (a) the applied pressure and (b) the pressure holding time at 200 MPa. The fitted curve is shown by the broken line.
Fig. 3
Fig. 3 The Rayleigh scattering intensity plotted against (a) the applied pressure and (b) the pressure holding time at 200 MPa. The fitted curve is shown by the dotted line.
Fig. 4
Fig. 4 The Rayleigh scattering intensity (left vertical axis) and the absolute value of the Rayleigh scattering loss (right vertical axis), normalized as written in the text, are plotted against the void radius. The filled circles are for the samples made with the HIP machine. The broken line corresponds to the sixth power of the void radius (Rv). The open circles represent the samples made without the HIP machine.
Fig. 5
Fig. 5 The lifetime component τ3 (left vertical axis) and the corresponding void radius Rv (right vertical axis) plotted against the refractive index. The broken arrows show the relationship between Rv and refractive index when changing pressure or Tf.

Metrics