Abstract

At present, most of the measurement-device-independent quantum key distributions (MDI-QKD) are based on weak coherent sources and limited in the transmission distance under realistic experimental conditions, e.g., considering the finite-size-key effects. Hence in this paper, we propose a new biased decoy-state scheme using heralded single-photon sources for the three-intensity MDI-QKD, where we prepare the decoy pulses only in X basis and adopt both the collective constraints and joint parameter estimation techniques. Compared with former schemes with WCS or HSPS, after implementing full parameter optimizations, our scheme gives distinct reduced quantum bit error rate in the X basis and thus show excellent performance, especially when the data size is relatively small.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution with four-intensity decoy-state method

Chen-Chen Mao, Xing-Yu Zhou, Jian-Rong Zhu, Chun-Hui Zhang, Chun-Mei Zhang, and Qin Wang
Opt. Express 26(10) 13289-13300 (2018)

Finite-key analysis of practical decoy-state measurement-device-independent quantum key distribution with unstable sources

Yang Wang, Wan-Su Bao, Chun Zhou, Mu-Sheng Jiang, and Hong-Wei Li
J. Opt. Soc. Am. B 36(3) B83-B91 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), pp. 175–179.
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661 (1991).
    [Crossref] [PubMed]
  3. B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863 (1995).
    [Crossref] [PubMed]
  4. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
    [Crossref] [PubMed]
  5. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689, (2010).
    [Crossref]
  6. B. Qi, C. H. Fung, H. K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quant. Info. Comput. 7, 073–082 (2007).
  7. Y. Zhao, C. H. F. Fung, B. Qi, C. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 4, 2008.
    [Crossref]
  8. W. Y. Hwang, “Quantum key distribution with high loss: Toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
    [Crossref] [PubMed]
  9. X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
    [Crossref] [PubMed]
  10. H. K. Lo, X. F. Ma, and K. Chen, “Practical decoy state for quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
    [Crossref]
  11. S. L. Braunstein and S. Pirandola, “Side-Channel-Free Quantum Key Distribution,” Phys. Rev. Lett. 108, 130502 (2012).
    [Crossref] [PubMed]
  12. H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
    [Crossref] [PubMed]
  13. A. Acín, N. Gisin, and L. Masanes, “From Bell’s Theorem to Secure Quantum Key Distribution,” Phys. Rev. Lett. 97, 120405 (2006).
    [Crossref]
  14. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scaran, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
    [Crossref] [PubMed]
  15. N. Gisin, S. Pironio, and N. Sangouard, “Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
    [Crossref] [PubMed]
  16. X. Ma, C. H. F. Fung, and M. Razavi, “Statistical fluctuation analysis for measurement-device-independent quantum key distribution”, Phys. Rev. A 86, 052305 (2012).
    [Crossref]
  17. Q. Wang and X. B. Wang, “Efficient implementation if the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources,” Phys. Rev. A 88, 052332 (2013).
    [Crossref]
  18. F. Xu, H. Xu, and H. K. Lo, “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052333 (2014).
    [Crossref]
  19. Z. W. Yu, Y. H. Zhou, and X. B. Wang, “Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method,” Phys. Rev. A 91, 032318 (2015).
    [Crossref]
  20. Y. H. Zhou, Z. W. Yu, and X. B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
    [Crossref]
  21. X. Y. Zhou, C. M. Zhang, and Q. Wang, “Implementing full parameter optimization on decoy-state measurement-device-independent quantum-key-distributions under realistic experimental conditions,” J. Opt. Soc. Am. B 34, 1518 (2017).
    [Crossref]
  22. Z. W. Yu, Y. H. Zhou, and X. B. Wang, “Reexamination of decoy-state quantum key distribution with biased bases,” Phys. Rev. A 93, 032307 (2016).
    [Crossref]
  23. Z. Wei, W. Wang, Z. Zhang, M. Gao, Z. Ma, and X. Ma, “Decoy-state quantum key distribution with biased basis choice,” Sci. Rep. 3, 2453 (2013).
    [Crossref] [PubMed]
  24. C. Dong, S. H. Zhao, and Y. Sun, “Measurement-device-independent quantum key distribution with q-plate,” Quantum Inf. Process. 14, 4575–4584 (2015).
    [Crossref]
  25. A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle QKD immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
    [Crossref]
  26. Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
    [Crossref] [PubMed]
  27. D. S. T. Ferreira, D. Vitoreti, G. B. Xavier, G. C. Amaral, G. P. Temporão, and D. J. P. von, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
    [Crossref]
  28. Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
    [Crossref]
  29. C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, “Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 115, 160502 (2015).
    [Crossref] [PubMed]
  30. H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
    [Crossref]
  31. L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. W. B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312 (2016).
    [Crossref]
  32. I. V. Puthoor, R. Amiri, P. Wallden, M. Curty, and E. Andersson, “Measurement-device-independent quantum digital signatures,” Phys. Rev. A 94, 022328 (2016).
    [Crossref]
  33. G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
    [Crossref] [PubMed]
  34. H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
    [Crossref]
  35. Z. Cao, H. Y. Zhou, and X. Ma, “Loss-tolerant measurement-device-independent quantum random number generation,” New J. Phys. 17, 125011 (2015).
    [Crossref]
  36. Y. Q. Nie, J. Y. Guan, H. Y. Zhou, Q. Zhang, X. Ma, J. Zhang, and J. W. Pan, “Experimental measurement-device-independent quantum random-number generation,” Phys. Rev. A 94, 060301 (2016).
    [Crossref]
  37. B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464 (1987).
    [Crossref]
  38. Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo, and A. Karlsson, “Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source,” Phys. Rev. Lett. 100, 090501 (2008).
    [Crossref] [PubMed]
  39. C. H. Zhang, S. L. Luo, G. C. Guo, and Q. Wang, “Approaching the ideal quantum key distribution with two-intensity decoy states,” Phys. Rev. A 92, 022332 (2015).
    [Crossref]
  40. G. Ribordy, J. Brendel, J. D. Gauthier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A,  63, 012309 (2000).
    [Crossref]
  41. S. Mori, J. Söderholm, N. Namekata, and S. Inoue, “On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide,” Opt. Commun. 264, 156 (2006).
    [Crossref]
  42. M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-deviceindependent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
    [Crossref]
  43. C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762 (2004).
    [Crossref]

2017 (3)

X. Y. Zhou, C. M. Zhang, and Q. Wang, “Implementing full parameter optimization on decoy-state measurement-device-independent quantum-key-distributions under realistic experimental conditions,” J. Opt. Soc. Am. B 34, 1518 (2017).
[Crossref]

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref] [PubMed]

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

2016 (6)

Y. Q. Nie, J. Y. Guan, H. Y. Zhou, Q. Zhang, X. Ma, J. Zhang, and J. W. Pan, “Experimental measurement-device-independent quantum random-number generation,” Phys. Rev. A 94, 060301 (2016).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. W. B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312 (2016).
[Crossref]

I. V. Puthoor, R. Amiri, P. Wallden, M. Curty, and E. Andersson, “Measurement-device-independent quantum digital signatures,” Phys. Rev. A 94, 022328 (2016).
[Crossref]

Z. W. Yu, Y. H. Zhou, and X. B. Wang, “Reexamination of decoy-state quantum key distribution with biased bases,” Phys. Rev. A 93, 032307 (2016).
[Crossref]

Y. H. Zhou, Z. W. Yu, and X. B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

2015 (5)

Z. W. Yu, Y. H. Zhou, and X. B. Wang, “Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method,” Phys. Rev. A 91, 032318 (2015).
[Crossref]

C. Dong, S. H. Zhao, and Y. Sun, “Measurement-device-independent quantum key distribution with q-plate,” Quantum Inf. Process. 14, 4575–4584 (2015).
[Crossref]

C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, “Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref] [PubMed]

Z. Cao, H. Y. Zhou, and X. Ma, “Loss-tolerant measurement-device-independent quantum random number generation,” New J. Phys. 17, 125011 (2015).
[Crossref]

C. H. Zhang, S. L. Luo, G. C. Guo, and Q. Wang, “Approaching the ideal quantum key distribution with two-intensity decoy states,” Phys. Rev. A 92, 022332 (2015).
[Crossref]

2014 (3)

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-deviceindependent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

F. Xu, H. Xu, and H. K. Lo, “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052333 (2014).
[Crossref]

2013 (5)

Q. Wang and X. B. Wang, “Efficient implementation if the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources,” Phys. Rev. A 88, 052332 (2013).
[Crossref]

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle QKD immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

D. S. T. Ferreira, D. Vitoreti, G. B. Xavier, G. C. Amaral, G. P. Temporão, and D. J. P. von, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Z. Wei, W. Wang, Z. Zhang, M. Gao, Z. Ma, and X. Ma, “Decoy-state quantum key distribution with biased basis choice,” Sci. Rep. 3, 2453 (2013).
[Crossref] [PubMed]

2012 (3)

X. Ma, C. H. F. Fung, and M. Razavi, “Statistical fluctuation analysis for measurement-device-independent quantum key distribution”, Phys. Rev. A 86, 052305 (2012).
[Crossref]

S. L. Braunstein and S. Pirandola, “Side-Channel-Free Quantum Key Distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

2010 (2)

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref] [PubMed]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689, (2010).
[Crossref]

2008 (2)

Y. Zhao, C. H. F. Fung, B. Qi, C. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 4, 2008.
[Crossref]

Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo, and A. Karlsson, “Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source,” Phys. Rev. Lett. 100, 090501 (2008).
[Crossref] [PubMed]

2007 (2)

B. Qi, C. H. Fung, H. K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quant. Info. Comput. 7, 073–082 (2007).

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scaran, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

2006 (2)

A. Acín, N. Gisin, and L. Masanes, “From Bell’s Theorem to Secure Quantum Key Distribution,” Phys. Rev. Lett. 97, 120405 (2006).
[Crossref]

S. Mori, J. Söderholm, N. Namekata, and S. Inoue, “On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide,” Opt. Commun. 264, 156 (2006).
[Crossref]

2005 (2)

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

H. K. Lo, X. F. Ma, and K. Chen, “Practical decoy state for quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

2004 (1)

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762 (2004).
[Crossref]

2003 (1)

W. Y. Hwang, “Quantum key distribution with high loss: Toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref] [PubMed]

2000 (2)

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[Crossref] [PubMed]

G. Ribordy, J. Brendel, J. D. Gauthier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A,  63, 012309 (2000).
[Crossref]

1995 (1)

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863 (1995).
[Crossref] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661 (1991).
[Crossref] [PubMed]

1987 (1)

B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464 (1987).
[Crossref]

Acín, A.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scaran, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

A. Acín, N. Gisin, and L. Masanes, “From Bell’s Theorem to Secure Quantum Key Distribution,” Phys. Rev. Lett. 97, 120405 (2006).
[Crossref]

Amaral, G. C.

D. S. T. Ferreira, D. Vitoreti, G. B. Xavier, G. C. Amaral, G. P. Temporão, and D. J. P. von, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Amiri, R.

I. V. Puthoor, R. Amiri, P. Wallden, M. Curty, and E. Andersson, “Measurement-device-independent quantum digital signatures,” Phys. Rev. A 94, 022328 (2016).
[Crossref]

Andersson, E.

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref] [PubMed]

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

I. V. Puthoor, R. Amiri, P. Wallden, M. Curty, and E. Andersson, “Measurement-device-independent quantum digital signatures,” Phys. Rev. A 94, 022328 (2016).
[Crossref]

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), pp. 175–179.

Brassard, G.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[Crossref] [PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), pp. 175–179.

Braunstein, S. L.

S. L. Braunstein and S. Pirandola, “Side-Channel-Free Quantum Key Distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

Brendel, J.

G. Ribordy, J. Brendel, J. D. Gauthier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A,  63, 012309 (2000).
[Crossref]

Brunner, N.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scaran, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

Cao, Z.

Z. Cao, H. Y. Zhou, and X. Ma, “Loss-tolerant measurement-device-independent quantum random number generation,” New J. Phys. 17, 125011 (2015).
[Crossref]

Chan, P.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle QKD immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Chen, C.

Y. Zhao, C. H. F. Fung, B. Qi, C. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 4, 2008.
[Crossref]

Chen, H.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Chen, K.

H. K. Lo, X. F. Ma, and K. Chen, “Practical decoy state for quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

Chen, S. J.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Chen, T. Y.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Chen, W.

C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, “Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref] [PubMed]

Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo, and A. Karlsson, “Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source,” Phys. Rev. Lett. 100, 090501 (2008).
[Crossref] [PubMed]

Comandar, L. C.

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref] [PubMed]

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. W. B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312 (2016).
[Crossref]

Cui, K.

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Cui, W.

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-deviceindependent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

Curty, M.

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref] [PubMed]

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

I. V. Puthoor, R. Amiri, P. Wallden, M. Curty, and E. Andersson, “Measurement-device-independent quantum digital signatures,” Phys. Rev. A 94, 022328 (2016).
[Crossref]

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-deviceindependent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Dong, C.

C. Dong, S. H. Zhao, and Y. Sun, “Measurement-device-independent quantum key distribution with q-plate,” Quantum Inf. Process. 14, 4575–4584 (2015).
[Crossref]

Dynes, J. F.

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref] [PubMed]

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. W. B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312 (2016).
[Crossref]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661 (1991).
[Crossref] [PubMed]

Elser, D.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689, (2010).
[Crossref]

Fejer, M. M.

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Ferreira, D. S. T.

D. S. T. Ferreira, D. Vitoreti, G. B. Xavier, G. C. Amaral, G. P. Temporão, and D. J. P. von, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Fröhlich, B.

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. W. B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312 (2016).
[Crossref]

Fung, C. H.

B. Qi, C. H. Fung, H. K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quant. Info. Comput. 7, 073–082 (2007).

Fung, C. H. F.

X. Ma, C. H. F. Fung, and M. Razavi, “Statistical fluctuation analysis for measurement-device-independent quantum key distribution”, Phys. Rev. A 86, 052305 (2012).
[Crossref]

Y. Zhao, C. H. F. Fung, B. Qi, C. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 4, 2008.
[Crossref]

Gao, M.

Z. Wei, W. Wang, Z. Zhang, M. Gao, Z. Ma, and X. Ma, “Decoy-state quantum key distribution with biased basis choice,” Sci. Rep. 3, 2453 (2013).
[Crossref] [PubMed]

Gauthier, J. D.

G. Ribordy, J. Brendel, J. D. Gauthier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A,  63, 012309 (2000).
[Crossref]

Gisin, N.

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref] [PubMed]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scaran, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

A. Acín, N. Gisin, and L. Masanes, “From Bell’s Theorem to Secure Quantum Key Distribution,” Phys. Rev. Lett. 97, 120405 (2006).
[Crossref]

G. Ribordy, J. Brendel, J. D. Gauthier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A,  63, 012309 (2000).
[Crossref]

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863 (1995).
[Crossref] [PubMed]

Gobby, C.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762 (2004).
[Crossref]

Guan, J. Y.

Y. Q. Nie, J. Y. Guan, H. Y. Zhou, Q. Zhang, X. Ma, J. Zhang, and J. W. Pan, “Experimental measurement-device-independent quantum random-number generation,” Phys. Rev. A 94, 060301 (2016).
[Crossref]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Guo, G. C.

C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, “Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref] [PubMed]

C. H. Zhang, S. L. Luo, G. C. Guo, and Q. Wang, “Approaching the ideal quantum key distribution with two-intensity decoy states,” Phys. Rev. A 92, 022332 (2015).
[Crossref]

Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo, and A. Karlsson, “Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source,” Phys. Rev. Lett. 100, 090501 (2008).
[Crossref] [PubMed]

Han, Z. F.

C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, “Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref] [PubMed]

Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo, and A. Karlsson, “Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source,” Phys. Rev. Lett. 100, 090501 (2008).
[Crossref] [PubMed]

Huang, M. Q.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Huttner, B.

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863 (1995).
[Crossref] [PubMed]

Hwang, W. Y.

W. Y. Hwang, “Quantum key distribution with high loss: Toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref] [PubMed]

Imoto, N.

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863 (1995).
[Crossref] [PubMed]

Inoue, S.

S. Mori, J. Söderholm, N. Namekata, and S. Inoue, “On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide,” Opt. Commun. 264, 156 (2006).
[Crossref]

Jiang, X.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Karlsson, A.

Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo, and A. Karlsson, “Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source,” Phys. Rev. Lett. 100, 090501 (2008).
[Crossref] [PubMed]

Li, H.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

Li, L.

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Li, M. J.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Liang, H.

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Lim, C. C. W.

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-deviceindependent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

Liu, H.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Liu, N. L.

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Liu, Y.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Lo, H. K.

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-deviceindependent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

F. Xu, H. Xu, and H. K. Lo, “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052333 (2014).
[Crossref]

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Y. Zhao, C. H. F. Fung, B. Qi, C. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 4, 2008.
[Crossref]

B. Qi, C. H. Fung, H. K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quant. Info. Comput. 7, 073–082 (2007).

H. K. Lo, X. F. Ma, and K. Chen, “Practical decoy state for quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

Lucamarini, M.

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref] [PubMed]

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. W. B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312 (2016).
[Crossref]

Lucio-Martinez, I.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle QKD immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Luo, S. L.

C. H. Zhang, S. L. Luo, G. C. Guo, and Q. Wang, “Approaching the ideal quantum key distribution with two-intensity decoy states,” Phys. Rev. A 92, 022332 (2015).
[Crossref]

Lütkenhaus, N.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[Crossref] [PubMed]

Lydersen, L.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689, (2010).
[Crossref]

Ma, X.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

Y. Q. Nie, J. Y. Guan, H. Y. Zhou, Q. Zhang, X. Ma, J. Zhang, and J. W. Pan, “Experimental measurement-device-independent quantum random-number generation,” Phys. Rev. A 94, 060301 (2016).
[Crossref]

Z. Cao, H. Y. Zhou, and X. Ma, “Loss-tolerant measurement-device-independent quantum random number generation,” New J. Phys. 17, 125011 (2015).
[Crossref]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Z. Wei, W. Wang, Z. Zhang, M. Gao, Z. Ma, and X. Ma, “Decoy-state quantum key distribution with biased basis choice,” Sci. Rep. 3, 2453 (2013).
[Crossref] [PubMed]

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

X. Ma, C. H. F. Fung, and M. Razavi, “Statistical fluctuation analysis for measurement-device-independent quantum key distribution”, Phys. Rev. A 86, 052305 (2012).
[Crossref]

B. Qi, C. H. Fung, H. K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quant. Info. Comput. 7, 073–082 (2007).

Ma, X. F.

H. K. Lo, X. F. Ma, and K. Chen, “Practical decoy state for quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

Ma, Z.

Z. Wei, W. Wang, Z. Zhang, M. Gao, Z. Ma, and X. Ma, “Decoy-state quantum key distribution with biased basis choice,” Sci. Rep. 3, 2453 (2013).
[Crossref] [PubMed]

Makarov, V.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689, (2010).
[Crossref]

Mao, Y.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Masanes, L.

A. Acín, N. Gisin, and L. Masanes, “From Bell’s Theorem to Secure Quantum Key Distribution,” Phys. Rev. Lett. 97, 120405 (2006).
[Crossref]

Massar, S.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scaran, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

Mor, T.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[Crossref] [PubMed]

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863 (1995).
[Crossref] [PubMed]

Mori, S.

S. Mori, J. Söderholm, N. Namekata, and S. Inoue, “On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide,” Opt. Commun. 264, 156 (2006).
[Crossref]

Namekata, N.

S. Mori, J. Söderholm, N. Namekata, and S. Inoue, “On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide,” Opt. Commun. 264, 156 (2006).
[Crossref]

Nie, Y. Q.

Y. Q. Nie, J. Y. Guan, H. Y. Zhou, Q. Zhang, X. Ma, J. Zhang, and J. W. Pan, “Experimental measurement-device-independent quantum random-number generation,” Phys. Rev. A 94, 060301 (2016).
[Crossref]

Nolan, D.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Pan, J. W.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

Y. Q. Nie, J. Y. Guan, H. Y. Zhou, Q. Zhang, X. Ma, J. Zhang, and J. W. Pan, “Experimental measurement-device-independent quantum random-number generation,” Phys. Rev. A 94, 060301 (2016).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Pelc, J. S.

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Peng, C. Z.

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Penty, R. V.

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. W. B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312 (2016).
[Crossref]

Pirandola, S.

S. L. Braunstein and S. Pirandola, “Side-Channel-Free Quantum Key Distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

Pironio, S.

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref] [PubMed]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scaran, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

Potasek, M.

B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464 (1987).
[Crossref]

Puthoor, I. V.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref] [PubMed]

I. V. Puthoor, R. Amiri, P. Wallden, M. Curty, and E. Andersson, “Measurement-device-independent quantum digital signatures,” Phys. Rev. A 94, 022328 (2016).
[Crossref]

Qi, B.

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Y. Zhao, C. H. F. Fung, B. Qi, C. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 4, 2008.
[Crossref]

B. Qi, C. H. Fung, H. K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quant. Info. Comput. 7, 073–082 (2007).

Razavi, M.

X. Ma, C. H. F. Fung, and M. Razavi, “Statistical fluctuation analysis for measurement-device-independent quantum key distribution”, Phys. Rev. A 86, 052305 (2012).
[Crossref]

Ribordy, G.

G. Ribordy, J. Brendel, J. D. Gauthier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A,  63, 012309 (2000).
[Crossref]

Roberts, G. L.

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref] [PubMed]

Rubenok, A.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle QKD immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Sanders, B. C.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[Crossref] [PubMed]

Sangouard, N.

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref] [PubMed]

Sauge, S.

Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo, and A. Karlsson, “Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source,” Phys. Rev. Lett. 100, 090501 (2008).
[Crossref] [PubMed]

Scaran, V.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scaran, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

Sharpe, A. W.

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref] [PubMed]

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. W. B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312 (2016).
[Crossref]

Shentu, G. L.

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Shields, A. J.

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref] [PubMed]

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. W. B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312 (2016).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762 (2004).
[Crossref]

Skaar, J.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689, (2010).
[Crossref]

Slater, J. A.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle QKD immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Söderholm, J.

S. Mori, J. Söderholm, N. Namekata, and S. Inoue, “On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide,” Opt. Commun. 264, 156 (2006).
[Crossref]

Song, X. T.

C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, “Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref] [PubMed]

Sun, X. X.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

Sun, Y.

C. Dong, S. H. Zhao, and Y. Sun, “Measurement-device-independent quantum key distribution with q-plate,” Quantum Inf. Process. 14, 4575–4584 (2015).
[Crossref]

Swillo, M.

Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo, and A. Karlsson, “Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source,” Phys. Rev. Lett. 100, 090501 (2008).
[Crossref] [PubMed]

Tam, S. W. B.

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. W. B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312 (2016).
[Crossref]

Tamaki, K.

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-deviceindependent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

Tang, Y. L.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Temporão, G. P.

D. S. T. Ferreira, D. Vitoreti, G. B. Xavier, G. C. Amaral, G. P. Temporão, and D. J. P. von, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Tengner, M.

Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo, and A. Karlsson, “Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source,” Phys. Rev. Lett. 100, 090501 (2008).
[Crossref] [PubMed]

Tittel, W.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle QKD immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Vitoreti, D.

D. S. T. Ferreira, D. Vitoreti, G. B. Xavier, G. C. Amaral, G. P. Temporão, and D. J. P. von, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

von, D. J. P.

D. S. T. Ferreira, D. Vitoreti, G. B. Xavier, G. C. Amaral, G. P. Temporão, and D. J. P. von, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Wallden, P.

I. V. Puthoor, R. Amiri, P. Wallden, M. Curty, and E. Andersson, “Measurement-device-independent quantum digital signatures,” Phys. Rev. A 94, 022328 (2016).
[Crossref]

Wang, C.

C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, “Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref] [PubMed]

Wang, J.

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Wang, L. J.

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Wang, Q.

X. Y. Zhou, C. M. Zhang, and Q. Wang, “Implementing full parameter optimization on decoy-state measurement-device-independent quantum-key-distributions under realistic experimental conditions,” J. Opt. Soc. Am. B 34, 1518 (2017).
[Crossref]

C. H. Zhang, S. L. Luo, G. C. Guo, and Q. Wang, “Approaching the ideal quantum key distribution with two-intensity decoy states,” Phys. Rev. A 92, 022332 (2015).
[Crossref]

Q. Wang and X. B. Wang, “Efficient implementation if the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources,” Phys. Rev. A 88, 052332 (2013).
[Crossref]

Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo, and A. Karlsson, “Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source,” Phys. Rev. Lett. 100, 090501 (2008).
[Crossref] [PubMed]

Wang, S.

C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, “Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref] [PubMed]

Wang, W.

Z. Wei, W. Wang, Z. Zhang, M. Gao, Z. Ma, and X. Ma, “Decoy-state quantum key distribution with biased basis choice,” Sci. Rep. 3, 2453 (2013).
[Crossref] [PubMed]

Wang, W. L.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

Wang, X. B.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Z. W. Yu, Y. H. Zhou, and X. B. Wang, “Reexamination of decoy-state quantum key distribution with biased bases,” Phys. Rev. A 93, 032307 (2016).
[Crossref]

Y. H. Zhou, Z. W. Yu, and X. B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

Z. W. Yu, Y. H. Zhou, and X. B. Wang, “Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method,” Phys. Rev. A 91, 032318 (2015).
[Crossref]

Q. Wang and X. B. Wang, “Efficient implementation if the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources,” Phys. Rev. A 88, 052332 (2013).
[Crossref]

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

Wang, Z.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Wei, Z.

Z. Wei, W. Wang, Z. Zhang, M. Gao, Z. Ma, and X. Ma, “Decoy-state quantum key distribution with biased basis choice,” Sci. Rep. 3, 2453 (2013).
[Crossref] [PubMed]

Wiechers, C.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689, (2010).
[Crossref]

Wittmann, C.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689, (2010).
[Crossref]

Xavier, G.

Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo, and A. Karlsson, “Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source,” Phys. Rev. Lett. 100, 090501 (2008).
[Crossref] [PubMed]

Xavier, G. B.

D. S. T. Ferreira, D. Vitoreti, G. B. Xavier, G. C. Amaral, G. P. Temporão, and D. J. P. von, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Xu, F.

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-deviceindependent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

F. Xu, H. Xu, and H. K. Lo, “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052333 (2014).
[Crossref]

Xu, H.

F. Xu, H. Xu, and H. K. Lo, “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052333 (2014).
[Crossref]

Yang, D. X.

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Yin, H. L.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Yin, Z. Q.

C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, “Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref] [PubMed]

You, L. X.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Yu, Z. W.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Z. W. Yu, Y. H. Zhou, and X. B. Wang, “Reexamination of decoy-state quantum key distribution with biased bases,” Phys. Rev. A 93, 032307 (2016).
[Crossref]

Y. H. Zhou, Z. W. Yu, and X. B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

Z. W. Yu, Y. H. Zhou, and X. B. Wang, “Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method,” Phys. Rev. A 91, 032318 (2015).
[Crossref]

Yuan, Z. L.

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref] [PubMed]

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. W. B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312 (2016).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762 (2004).
[Crossref]

Yurke, B.

B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464 (1987).
[Crossref]

Zbinden, H.

G. Ribordy, J. Brendel, J. D. Gauthier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A,  63, 012309 (2000).
[Crossref]

Zhang, C. H.

C. H. Zhang, S. L. Luo, G. C. Guo, and Q. Wang, “Approaching the ideal quantum key distribution with two-intensity decoy states,” Phys. Rev. A 92, 022332 (2015).
[Crossref]

Zhang, C. M.

X. Y. Zhou, C. M. Zhang, and Q. Wang, “Implementing full parameter optimization on decoy-state measurement-device-independent quantum-key-distributions under realistic experimental conditions,” J. Opt. Soc. Am. B 34, 1518 (2017).
[Crossref]

C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, “Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref] [PubMed]

Zhang, J.

Y. Q. Nie, J. Y. Guan, H. Y. Zhou, Q. Zhang, X. Ma, J. Zhang, and J. W. Pan, “Experimental measurement-device-independent quantum random-number generation,” Phys. Rev. A 94, 060301 (2016).
[Crossref]

Zhang, L.

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Zhang, Q.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

Y. Q. Nie, J. Y. Guan, H. Y. Zhou, Q. Zhang, X. Ma, J. Zhang, and J. W. Pan, “Experimental measurement-device-independent quantum random-number generation,” Phys. Rev. A 94, 060301 (2016).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Zhang, T.

Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo, and A. Karlsson, “Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source,” Phys. Rev. Lett. 100, 090501 (2008).
[Crossref] [PubMed]

Zhang, W. J.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Zhang, Z.

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Z. Wei, W. Wang, Z. Zhang, M. Gao, Z. Ma, and X. Ma, “Decoy-state quantum key distribution with biased basis choice,” Sci. Rep. 3, 2453 (2013).
[Crossref] [PubMed]

Zhao, Q.

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

Zhao, S. H.

C. Dong, S. H. Zhao, and Y. Sun, “Measurement-device-independent quantum key distribution with q-plate,” Quantum Inf. Process. 14, 4575–4584 (2015).
[Crossref]

Zhao, Y.

Y. Zhao, C. H. F. Fung, B. Qi, C. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 4, 2008.
[Crossref]

Zhou, F.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Zhou, H. Y.

Y. Q. Nie, J. Y. Guan, H. Y. Zhou, Q. Zhang, X. Ma, J. Zhang, and J. W. Pan, “Experimental measurement-device-independent quantum random-number generation,” Phys. Rev. A 94, 060301 (2016).
[Crossref]

Z. Cao, H. Y. Zhou, and X. Ma, “Loss-tolerant measurement-device-independent quantum random number generation,” New J. Phys. 17, 125011 (2015).
[Crossref]

Zhou, N.

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

Zhou, X. Y.

Zhou, Y. H.

Y. H. Zhou, Z. W. Yu, and X. B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Z. W. Yu, Y. H. Zhou, and X. B. Wang, “Reexamination of decoy-state quantum key distribution with biased bases,” Phys. Rev. A 93, 032307 (2016).
[Crossref]

Z. W. Yu, Y. H. Zhou, and X. B. Wang, “Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method,” Phys. Rev. A 91, 032318 (2015).
[Crossref]

Appl. Phys. Lett. (1)

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (2)

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-deviceindependent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref] [PubMed]

Nat. Photonics (2)

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. W. B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312 (2016).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689, (2010).
[Crossref]

New J. Phys. (1)

Z. Cao, H. Y. Zhou, and X. Ma, “Loss-tolerant measurement-device-independent quantum random number generation,” New J. Phys. 17, 125011 (2015).
[Crossref]

Opt. Commun. (1)

S. Mori, J. Söderholm, N. Namekata, and S. Inoue, “On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide,” Opt. Commun. 264, 156 (2006).
[Crossref]

Phys. Rev. A (15)

C. H. Zhang, S. L. Luo, G. C. Guo, and Q. Wang, “Approaching the ideal quantum key distribution with two-intensity decoy states,” Phys. Rev. A 92, 022332 (2015).
[Crossref]

G. Ribordy, J. Brendel, J. D. Gauthier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A,  63, 012309 (2000).
[Crossref]

Y. Q. Nie, J. Y. Guan, H. Y. Zhou, Q. Zhang, X. Ma, J. Zhang, and J. W. Pan, “Experimental measurement-device-independent quantum random-number generation,” Phys. Rev. A 94, 060301 (2016).
[Crossref]

B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464 (1987).
[Crossref]

I. V. Puthoor, R. Amiri, P. Wallden, M. Curty, and E. Andersson, “Measurement-device-independent quantum digital signatures,” Phys. Rev. A 94, 022328 (2016).
[Crossref]

H. L. Yin, W. L. Wang, Y. L. Tang, Q. Zhao, H. Liu, X. X. Sun, W. J. Zhang, H. Li, I. V. Puthoor, L. X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Y. Chen, and J. W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

D. S. T. Ferreira, D. Vitoreti, G. B. Xavier, G. C. Amaral, G. P. Temporão, and D. J. P. von, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Y. Zhao, C. H. F. Fung, B. Qi, C. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 4, 2008.
[Crossref]

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863 (1995).
[Crossref] [PubMed]

X. Ma, C. H. F. Fung, and M. Razavi, “Statistical fluctuation analysis for measurement-device-independent quantum key distribution”, Phys. Rev. A 86, 052305 (2012).
[Crossref]

Q. Wang and X. B. Wang, “Efficient implementation if the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources,” Phys. Rev. A 88, 052332 (2013).
[Crossref]

F. Xu, H. Xu, and H. K. Lo, “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052333 (2014).
[Crossref]

Z. W. Yu, Y. H. Zhou, and X. B. Wang, “Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method,” Phys. Rev. A 91, 032318 (2015).
[Crossref]

Y. H. Zhou, Z. W. Yu, and X. B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

Z. W. Yu, Y. H. Zhou, and X. B. Wang, “Reexamination of decoy-state quantum key distribution with biased bases,” Phys. Rev. A 93, 032307 (2016).
[Crossref]

Phys. Rev. Lett. (16)

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[Crossref] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661 (1991).
[Crossref] [PubMed]

W. Y. Hwang, “Quantum key distribution with high loss: Toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref] [PubMed]

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

H. K. Lo, X. F. Ma, and K. Chen, “Practical decoy state for quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

S. L. Braunstein and S. Pirandola, “Side-Channel-Free Quantum Key Distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

A. Acín, N. Gisin, and L. Masanes, “From Bell’s Theorem to Secure Quantum Key Distribution,” Phys. Rev. Lett. 97, 120405 (2006).
[Crossref]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scaran, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref] [PubMed]

Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution over 200 km,” Phys. Rev. Lett. 112, 19050 (2014);
[Crossref]

C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, “Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref] [PubMed]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle QKD immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, “Experimental Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo, and A. Karlsson, “Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source,” Phys. Rev. Lett. 100, 090501 (2008).
[Crossref] [PubMed]

Quant. Info. Comput. (1)

B. Qi, C. H. Fung, H. K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quant. Info. Comput. 7, 073–082 (2007).

Quantum Inf. Process. (1)

C. Dong, S. H. Zhao, and Y. Sun, “Measurement-device-independent quantum key distribution with q-plate,” Quantum Inf. Process. 14, 4575–4584 (2015).
[Crossref]

Sci. Rep. (1)

Z. Wei, W. Wang, Z. Zhang, M. Gao, Z. Ma, and X. Ma, “Decoy-state quantum key distribution with biased basis choice,” Sci. Rep. 3, 2453 (2013).
[Crossref] [PubMed]

Other (1)

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), pp. 175–179.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Comparisons for the four different methods. (a) The key generation rates VS. the transmission distance; (b) Optimal intensity of signal states for each curve in (a). Here the data size of the total number of pulses at either Alice’s or Bob’s side is reasonably set as N = 1010, and other experimental parameters are listed in Set I of Table 1.
Fig. 2
Fig. 2 The variations of the key generation rates VS. the data size for the four different approaches. Here the transmission distance is fixed as 50 km, and the data size ranges from 109 to 1010. The experimental parameters used in the simulations are listed in Set I of Table 1. Note that Xu et al’s method cannot generate keys in this case.
Fig. 3
Fig. 3 Comparisons for the four different methods with the experimental parameters listed in Set II of Table 1. (a) The key generation rates VS. the transmission distance; (b) Optimal intensity of signal states for each curve in (a). The data size is reasonably set as N = 109.
Fig. 4
Fig. 4 Comparison of the quantum bit error rate of two single-photon pulses in the X basis ( e 11 X ) . (a) are the quantities of e 11 X for calculating Fig. 1 while (b) for calculating Fig. 3.

Tables (2)

Tables Icon

Table 1 The experimental parameters used in our numerical simulations. α represents the channel loss coefficient of standard communication fiber; e0 denotes the error probability of vacuum pulses; ed refers to the misalignment probability of the whole optical system; ηd and Y0 each corresponds to the detection efficiency and the dark count rate of detectors at the UTP’s side; f is the key reconciliation efficiency.

Tables Icon

Table 2 Comparison of simulation parameters at 70km for the different schemes. The value of e 11 X comes from Figs. 4(a) and 4(b), and the value of R comes from Fig. 1 and Fig. 3. The − denotes that there are no values at this distance.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

P n ζ = ( 1 ( 1 d ξ ) ( 1 η ξ ) n ) ζ n n ! e ζ ,
ρ o A = | 0 0 | , ρ o B = | 0 0 | , ρ v A = n = 0 a n v | n n | , ρ v B = n = 0 b n v | n n | , ρ μ A = n = 0 a n μ | n n | , ρ μ B = n = 0 b n μ | n n | ,
c n μ c n v c 2 μ c 2 v c 1 μ c 1 v , ( c = a , b )
S l r = j , k 0 a j l b k r Y j k , T l r = j , k 0 a j l b k r e j k Y j k ,
Y 11 Z , L ( ) Y 11 X , L ( ) : = [ a 1 μ b 2 μ S _ v v X + a 1 v b 2 v a 0 μ S _ o μ X + a 1 v b 2 v b 0 μ S _ μ o X ] [ a 1 v b 2 v S ¯ μ μ X + a 1 v b 2 v a 0 μ b 0 μ S ¯ o o X ] a 1 μ b 2 μ a 1 v a 1 μ ( b 1 v b 2 μ b 1 μ b 2 v )
[ a 0 v S _ o v X + b 0 v S _ v o X a 0 v b 0 v S ¯ o o X , a 0 v S ¯ o v X + b 0 v S ¯ v o X a 0 v b 0 v S _ o o X ]
e 11 X , U ( ) : = T ¯ v v X / 2 a 1 v b 1 v Y 11 X , L ,
S ¯ l r X = S l r X + γ S l r X N l r X , S _ l r X = S l r X γ S l r X N l r X , T ¯ l r X = T l r X + γ T l r X N l r X ,
f max = f min = ( K , γ , V α , V β ) : = γ n = 1 K ( φ ˜ n φ ˜ n 1 ) k = n K β ˜ k ,
Y ˜ 11 Z , L ( ˜ ) Y ˜ 11 X , L ( ˜ ) = [ a 1 μ b 2 μ S v v X + a 1 v b 2 v a 0 μ S o μ X + a 1 v b 2 v b 0 μ S μ o X ] ( 3 , γ , V α 1 , V β 1 ) a 1 v a 1 μ ( b 1 v b 2 μ b 1 μ b 2 v ) [ a 1 v b 2 v S μ μ X + a 1 v b 2 v a 0 μ b 0 μ S o o X ] + ( 2 , γ , V α 1 , V β 1 ) a 1 v a 1 μ ( b 1 v b 2 μ b 1 μ b 2 v ) a 1 μ b 2 μ ˜ a 1 v a 1 μ ( b 1 v b 2 μ b 1 μ b 2 v ) ,
e 11 X , U = T ¯ v v X ˜ / 2 a 1 v b 1 v Y ˜ 11 X , L .
˜ [ ( a 0 v S o v X + b 0 v S v o X ) ( 2 , γ , V α 3 , V β 3 ) a 0 v b 0 v S ¯ o o X , ( a 0 v S o v X + b 0 v S v o X ) + ( 2 , γ , V α 3 , V β 3 ) a 0 v b 0 v S _ o o X ] ,
R min ˜ R ( ˜ ) = p μ A P Z | μ A p μ B P Z | μ B { a 1 μ b 1 μ Y ˜ 11 Z , L ( ˜ ) [ 1 H 2 ( e ˜ 11 X , U ( ˜ ) ) ] S μ μ Z f H 2 ( E μ μ Z ) } ,

Metrics