Abstract

We demonstrate a multi-color background-free coherent anti-Stokes Raman scattering (CARS) imaging system, using a robust, all-fiber, low-cost, multi-wavelength time-lens source. The time-lens source generates picosecond pulse trains at three different wavelengths. The first is 1064.3 nm, the second is tunable between 1052 nm and 1055 nm, and the third is tunable between 1040 nm and 1050 nm. When the time-lens source is synchronized with a mode-locked Ti:Sa laser, two of the three wavelengths are used to detect different Raman frequencies for two-color on-resonance imaging, whereas the third wavelength is used to obtain the off-resonance image for nonresonant background subtraction. Mixed poly(methyl methacrylate) (PMMA) and polystyrene (PS) beads are used to demonstrate two-color background-free CARS imaging. The synchronized multi-wavelength time-lens source enables pixel-to-pixel wavelength-switching. We demonstrate simultaneous two-color CARS imaging of CH2 and CH3 stretching vibration modes with real-time background subtraction in ex vivo mouse tissue.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonresonant background suppression for coherent anti-Stokes Raman scattering microscopy using a multi-wavelength time-lens source

Bo Li, Kriti Charan, Ke Wang, Tomás Rojo, David Sinefeld, and Chris Xu
Opt. Express 24(23) 26687-26695 (2016)

Synchronized time-lens source for coherent Raman scattering microscopy

Ke Wang, Christian W. Freudiger, Jennifer H. Lee, Brian G. Saar, X. Sunney Xie, and Chris Xu
Opt. Express 18(23) 24019-24024 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  2. M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
    [Crossref] [PubMed]
  3. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  4. E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
    [Crossref] [PubMed]
  5. Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express 18(13), 13708–13719 (2010).
    [Crossref] [PubMed]
  6. F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006).
    [Crossref] [PubMed]
  7. K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009).
    [Crossref] [PubMed]
  8. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
    [Crossref] [PubMed]
  9. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express 17(23), 20700–20706 (2009).
    [Crossref] [PubMed]
  10. G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett. 34(18), 2847–2849 (2009).
    [Crossref] [PubMed]
  11. A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett. 35(2), 226–228 (2010).
    [Crossref] [PubMed]
  12. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20(4), 4484–4493 (2012).
    [Crossref] [PubMed]
  13. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. Sunney Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37(10), 1652–1654 (2012).
    [Crossref] [PubMed]
  14. S. Yue, M. N. Slipchenko, and J.-X. Cheng, “Multimodal nonlinear optical microscopy,” Laser Photonics Rev. 5(4), 496–512 (2011).
    [Crossref] [PubMed]
  15. F. Lu, W. Zheng, C. Sheppard, and Z. Huang, “Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy,” Opt. Lett. 33(6), 602–604 (2008).
    [Crossref] [PubMed]
  16. Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(4), 041108 (2008).
    [Crossref]
  17. B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
    [Crossref] [PubMed]
  18. B.-C. Chen, J. Sung, X. Wu, and S.-H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
    [Crossref] [PubMed]
  19. C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-stokes raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
    [Crossref] [PubMed]
  20. K. Chen, T. Wu, H. Wei, T. Zhou, and Y. Li, “Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses,” Biomed. Opt. Express 7(10), 3927–3939 (2016).
    [Crossref] [PubMed]
  21. M. Duncan, J. Reintjes, and T. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24(2), 242352 (1985).
    [Crossref]
  22. K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
    [Crossref] [PubMed]
  23. K. Wang and C. Xu, “Fiber-delivered picosecond source for coherent Raman scattering imaging,” Opt. Lett. 36(21), 4233–4235 (2011).
    [Crossref] [PubMed]
  24. K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
    [Crossref] [PubMed]
  25. B. Li, K. Charan, K. Wang, T. Rojo, D. Sinefeld, and C. Xu, “Nonresonant background suppression for coherent anti-Stokes Raman scattering microscopy using a multi-wavelength time-lens source,” Opt. Express 24(23), 26687–26695 (2016).
    [Crossref] [PubMed]
  26. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
    [Crossref]
  27. J. van Howe, J. Hansryd, and C. Xu, “Multiwavelength pulse generator using time-lens compression,” Opt. Lett. 29(13), 1470–1472 (2004).
    [Crossref] [PubMed]
  28. J. van Howe and C. Xu, “Ultrafast optical delay line by use of a time-prism pair,” Opt. Lett. 30(1), 99–101 (2005).
    [Crossref] [PubMed]
  29. J. van Howe and C. Xu, “Ultrafast optical delay line using soliton propagation between a time-prism pair,” Opt. Express 13(4), 1138–1143 (2005).
    [Crossref] [PubMed]
  30. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase-modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
    [Crossref]
  31. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24(7), 2649–2662 (2006).
    [Crossref]
  32. J. van Howe, J. H. Lee, and C. Xu, “Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode locking,” Opt. Lett. 32(11), 1408–1410 (2007).
    [Crossref] [PubMed]
  33. D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express 18(13), 14262–14269 (2010).
    [Crossref] [PubMed]
  34. F.-K. Lu, M. Ji, D. Fu, X. Ni, C. W. Freudiger, G. Holtom, and X. S. Xie, “Multicolor stimulated Raman scattering (SRS) microscopy,” Mol. Phys. 110(15-16), 1927–1932 (2012).
    [Crossref] [PubMed]
  35. M. Andreana, T. Le, A. K. Hansen, A. J. Verhoef, O. B. Jensen, P. E. Andersen, P. Slezak, W. Drexler, A. Fernández, and A. Unterhubera, “Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser,” J. Biomed. Opt. 22(9), 091517 (2017).
    [Crossref]

2017 (1)

M. Andreana, T. Le, A. K. Hansen, A. J. Verhoef, O. B. Jensen, P. E. Andersen, P. Slezak, W. Drexler, A. Fernández, and A. Unterhubera, “Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser,” J. Biomed. Opt. 22(9), 091517 (2017).
[Crossref]

2016 (2)

2013 (1)

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

S. Yue, M. N. Slipchenko, and J.-X. Cheng, “Multimodal nonlinear optical microscopy,” Laser Photonics Rev. 5(4), 496–512 (2011).
[Crossref] [PubMed]

K. Wang and C. Xu, “Fiber-delivered picosecond source for coherent Raman scattering imaging,” Opt. Lett. 36(21), 4233–4235 (2011).
[Crossref] [PubMed]

B.-C. Chen, J. Sung, X. Wu, and S.-H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

2010 (5)

2009 (4)

2008 (3)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

F. Lu, W. Zheng, C. Sheppard, and Z. Huang, “Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy,” Opt. Lett. 33(6), 602–604 (2008).
[Crossref] [PubMed]

Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(4), 041108 (2008).
[Crossref]

2007 (2)

2006 (3)

2005 (2)

2004 (2)

2002 (1)

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1994 (1)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

1985 (1)

M. Duncan, J. Reintjes, and T. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24(2), 242352 (1985).
[Crossref]

Andersen, P. E.

M. Andreana, T. Le, A. K. Hansen, A. J. Verhoef, O. B. Jensen, P. E. Andersen, P. Slezak, W. Drexler, A. Fernández, and A. Unterhubera, “Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser,” J. Biomed. Opt. 22(9), 091517 (2017).
[Crossref]

Andreana, M.

M. Andreana, T. Le, A. K. Hansen, A. J. Verhoef, O. B. Jensen, P. E. Andersen, P. Slezak, W. Drexler, A. Fernández, and A. Unterhubera, “Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser,” J. Biomed. Opt. 22(9), 091517 (2017).
[Crossref]

Baumgartl, M.

Broaddus, D. H.

Carrasco, S.

Cerullo, G.

Charan, K.

B. Li, K. Charan, K. Wang, T. Rojo, D. Sinefeld, and C. Xu, “Nonresonant background suppression for coherent anti-Stokes Raman scattering microscopy using a multi-wavelength time-lens source,” Opt. Express 24(23), 26687–26695 (2016).
[Crossref] [PubMed]

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[Crossref] [PubMed]

Chemnitz, M.

Chen, B.-C.

B.-C. Chen, J. Sung, X. Wu, and S.-H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
[Crossref] [PubMed]

Chen, K.

Cheng, J.-X.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[Crossref] [PubMed]

S. Yue, M. N. Slipchenko, and J.-X. Cheng, “Multimodal nonlinear optical microscopy,” Laser Photonics Rev. 5(4), 496–512 (2011).
[Crossref] [PubMed]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
[Crossref] [PubMed]

Cicerone, M. T.

Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(4), 041108 (2008).
[Crossref]

Dietzek, B.

Dong, L.

Drexler, W.

M. Andreana, T. Le, A. K. Hansen, A. J. Verhoef, O. B. Jensen, P. E. Andersen, P. Slezak, W. Drexler, A. Fernández, and A. Unterhubera, “Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser,” J. Biomed. Opt. 22(9), 091517 (2017).
[Crossref]

Duncan, M.

M. Duncan, J. Reintjes, and T. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24(2), 242352 (1985).
[Crossref]

Evans, C. L.

Fermann, M. E.

Fernández, A.

M. Andreana, T. Le, A. K. Hansen, A. J. Verhoef, O. B. Jensen, P. E. Andersen, P. Slezak, W. Drexler, A. Fernández, and A. Unterhubera, “Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser,” J. Biomed. Opt. 22(9), 091517 (2017).
[Crossref]

Foster, M. A.

Freudiger, C. W.

F.-K. Lu, M. Ji, D. Fu, X. Ni, C. W. Freudiger, G. Holtom, and X. S. Xie, “Multicolor stimulated Raman scattering (SRS) microscopy,” Mol. Phys. 110(15-16), 1927–1932 (2012).
[Crossref] [PubMed]

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Fu, D.

Fu, L.

Fukui, K.

Gaeta, A. L.

Gambetta, A.

Ganikhanov, F.

Grancini, G.

Hanke, T.

Hansen, A. K.

M. Andreana, T. Le, A. K. Hansen, A. J. Verhoef, O. B. Jensen, P. E. Andersen, P. Slezak, W. Drexler, A. Fernández, and A. Unterhubera, “Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser,” J. Biomed. Opt. 22(9), 091517 (2017).
[Crossref]

Hansryd, J.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Herda, R.

Holtom, G.

F.-K. Lu, M. Ji, D. Fu, X. Ni, C. W. Freudiger, G. Holtom, and X. S. Xie, “Multicolor stimulated Raman scattering (SRS) microscopy,” Mol. Phys. 110(15-16), 1927–1932 (2012).
[Crossref] [PubMed]

Holtom, G. R.

S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. Sunney Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37(10), 1652–1654 (2012).
[Crossref] [PubMed]

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Huang, Z.

Itoh, K.

Jauregui, C.

Jensen, O. B.

M. Andreana, T. Le, A. K. Hansen, A. J. Verhoef, O. B. Jensen, P. E. Andersen, P. Slezak, W. Drexler, A. Fernández, and A. Unterhubera, “Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser,” J. Biomed. Opt. 22(9), 091517 (2017).
[Crossref]

Ji, M.

F.-K. Lu, M. Ji, D. Fu, X. Ni, C. W. Freudiger, G. Holtom, and X. S. Xie, “Multicolor stimulated Raman scattering (SRS) microscopy,” Mol. Phys. 110(15-16), 1927–1932 (2012).
[Crossref] [PubMed]

Jia, Y.

Jiang, Z.

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase-modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
[Crossref]

Jones, D. J.

Kajiyama, S.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Katz, M.

Kieu, K.

Kitagawa, Y.

Koch, K. W.

Kolner, B. H.

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

Kong, L.

Kopf, D.

Krauss, G.

Kumar, V.

Kuzucu, O.

Le, T.

M. Andreana, T. Le, A. K. Hansen, A. J. Verhoef, O. B. Jensen, P. E. Andersen, P. Slezak, W. Drexler, A. Fernández, and A. Unterhubera, “Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser,” J. Biomed. Opt. 22(9), 091517 (2017).
[Crossref]

Leaird, D. E.

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase-modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
[Crossref]

Lee, J. H.

Lee, Y. J.

Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(4), 041108 (2008).
[Crossref]

Lefrancois, S.

Leitenstorfer, A.

Li, B.

Li, Y.

Lim, S.-H.

B.-C. Chen, J. Sung, X. Wu, and S.-H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
[Crossref] [PubMed]

Limpert, J.

Lipson, M.

Lu, F.

Lu, F.-K.

F.-K. Lu, M. Ji, D. Fu, X. Ni, C. W. Freudiger, G. Holtom, and X. S. Xie, “Multicolor stimulated Raman scattering (SRS) microscopy,” Mol. Phys. 110(15-16), 1927–1932 (2012).
[Crossref] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Manuccia, T.

M. Duncan, J. Reintjes, and T. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24(2), 242352 (1985).
[Crossref]

Marangoni, M.

Meyer, T.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Moffatt, D. J.

Müller, M.

M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[Crossref] [PubMed]

Ni, X.

F.-K. Lu, M. Ji, D. Fu, X. Ni, C. W. Freudiger, G. Holtom, and X. S. Xie, “Multicolor stimulated Raman scattering (SRS) microscopy,” Mol. Phys. 110(15-16), 1927–1932 (2012).
[Crossref] [PubMed]

Nishizawa, N.

Ozeki, Y.

Pegoraro, A. F.

Pezacki, J. P.

Polli, D.

Popp, J.

Potma, E. O.

Ramponi, R.

Reintjes, J.

M. Duncan, J. Reintjes, and T. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24(2), 242352 (1985).
[Crossref]

Ridsdale, A.

Rojo, T.

Saar, B. G.

Schneider, P.

Seitz, W.

Sell, A.

Selm, R.

Sheppard, C.

Sinefeld, D.

Slezak, P.

M. Andreana, T. Le, A. K. Hansen, A. J. Verhoef, O. B. Jensen, P. E. Andersen, P. Slezak, W. Drexler, A. Fernández, and A. Unterhubera, “Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser,” J. Biomed. Opt. 22(9), 091517 (2017).
[Crossref]

Slipchenko, M. N.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[Crossref] [PubMed]

S. Yue, M. N. Slipchenko, and J.-X. Cheng, “Multimodal nonlinear optical microscopy,” Laser Photonics Rev. 5(4), 496–512 (2011).
[Crossref] [PubMed]

Stolow, A.

Sumimura, K.

Sung, J.

B.-C. Chen, J. Sung, X. Wu, and S.-H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
[Crossref] [PubMed]

Sunney Xie, X.

Thomas, B. K.

Träutlein, D.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Tünnermann, A.

Turner-Foster, A. C.

Umemura, W.

Unterhubera, A.

M. Andreana, T. Le, A. K. Hansen, A. J. Verhoef, O. B. Jensen, P. E. Andersen, P. Slezak, W. Drexler, A. Fernández, and A. Unterhubera, “Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser,” J. Biomed. Opt. 22(9), 091517 (2017).
[Crossref]

van Howe, J.

Verhoef, A. J.

M. Andreana, T. Le, A. K. Hansen, A. J. Verhoef, O. B. Jensen, P. E. Andersen, P. Slezak, W. Drexler, A. Fernández, and A. Unterhubera, “Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser,” J. Biomed. Opt. 22(9), 091517 (2017).
[Crossref]

Wadsworth, W. J.

Wang, K.

Wang, P.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[Crossref] [PubMed]

Wei, H.

Weiner, A. M.

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase-modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
[Crossref]

Winterhalder, M.

Wise, F. W.

Wu, T.

Wu, X.

B.-C. Chen, J. Sung, X. Wu, and S.-H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

Xie, X. S.

F.-K. Lu, M. Ji, D. Fu, X. Ni, C. W. Freudiger, G. Holtom, and X. S. Xie, “Multicolor stimulated Raman scattering (SRS) microscopy,” Mol. Phys. 110(15-16), 1927–1932 (2012).
[Crossref] [PubMed]

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-stokes raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
[Crossref] [PubMed]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Xu, C.

B. Li, K. Charan, K. Wang, T. Rojo, D. Sinefeld, and C. Xu, “Nonresonant background suppression for coherent anti-Stokes Raman scattering microscopy using a multi-wavelength time-lens source,” Opt. Express 24(23), 26687–26695 (2016).
[Crossref] [PubMed]

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[Crossref] [PubMed]

K. Wang and C. Xu, “Fiber-delivered picosecond source for coherent Raman scattering imaging,” Opt. Lett. 36(21), 4233–4235 (2011).
[Crossref] [PubMed]

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

J. van Howe, J. H. Lee, and C. Xu, “Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode locking,” Opt. Lett. 32(11), 1408–1410 (2007).
[Crossref] [PubMed]

J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24(7), 2649–2662 (2006).
[Crossref]

J. van Howe and C. Xu, “Ultrafast optical delay line using soliton propagation between a time-prism pair,” Opt. Express 13(4), 1138–1143 (2005).
[Crossref] [PubMed]

J. van Howe and C. Xu, “Ultrafast optical delay line by use of a time-prism pair,” Opt. Lett. 30(1), 99–101 (2005).
[Crossref] [PubMed]

J. van Howe, J. Hansryd, and C. Xu, “Multiwavelength pulse generator using time-lens compression,” Opt. Lett. 29(13), 1470–1472 (2004).
[Crossref] [PubMed]

Ye, J.

Yue, S.

S. Yue, M. N. Slipchenko, and J.-X. Cheng, “Multimodal nonlinear optical microscopy,” Laser Photonics Rev. 5(4), 496–512 (2011).
[Crossref] [PubMed]

Zach, A.

Zhang, D.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[Crossref] [PubMed]

Zheng, W.

Zhou, T.

Zumbusch, A.

G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett. 34(18), 2847–2849 (2009).
[Crossref] [PubMed]

M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Appl. Phys. Lett. (1)

Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(4), 041108 (2008).
[Crossref]

Biomed. Opt. Express (1)

ChemPhysChem (1)

M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (2)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase-modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
[Crossref]

J. Biomed. Opt. (2)

M. Andreana, T. Le, A. K. Hansen, A. J. Verhoef, O. B. Jensen, P. E. Andersen, P. Slezak, W. Drexler, A. Fernández, and A. Unterhubera, “Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser,” J. Biomed. Opt. 22(9), 091517 (2017).
[Crossref]

B.-C. Chen, J. Sung, X. Wu, and S.-H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

J. Biophotonics (1)

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Phys. Chem. B (1)

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

S. Yue, M. N. Slipchenko, and J.-X. Cheng, “Multimodal nonlinear optical microscopy,” Laser Photonics Rev. 5(4), 496–512 (2011).
[Crossref] [PubMed]

Mol. Phys. (1)

F.-K. Lu, M. Ji, D. Fu, X. Ni, C. W. Freudiger, G. Holtom, and X. S. Xie, “Multicolor stimulated Raman scattering (SRS) microscopy,” Mol. Phys. 110(15-16), 1927–1932 (2012).
[Crossref] [PubMed]

Opt. Eng. (1)

M. Duncan, J. Reintjes, and T. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24(2), 242352 (1985).
[Crossref]

Opt. Express (8)

J. van Howe and C. Xu, “Ultrafast optical delay line using soliton propagation between a time-prism pair,” Opt. Express 13(4), 1138–1143 (2005).
[Crossref] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref] [PubMed]

Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express 18(13), 13708–13719 (2010).
[Crossref] [PubMed]

D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express 18(13), 14262–14269 (2010).
[Crossref] [PubMed]

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

B. Li, K. Charan, K. Wang, T. Rojo, D. Sinefeld, and C. Xu, “Nonresonant background suppression for coherent anti-Stokes Raman scattering microscopy using a multi-wavelength time-lens source,” Opt. Express 24(23), 26687–26695 (2016).
[Crossref] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express 17(23), 20700–20706 (2009).
[Crossref] [PubMed]

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20(4), 4484–4493 (2012).
[Crossref] [PubMed]

Opt. Lett. (12)

S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. Sunney Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37(10), 1652–1654 (2012).
[Crossref] [PubMed]

A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett. 35(2), 226–228 (2010).
[Crossref] [PubMed]

K. Wang and C. Xu, “Fiber-delivered picosecond source for coherent Raman scattering imaging,” Opt. Lett. 36(21), 4233–4235 (2011).
[Crossref] [PubMed]

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009).
[Crossref] [PubMed]

G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett. 34(18), 2847–2849 (2009).
[Crossref] [PubMed]

J. van Howe, J. H. Lee, and C. Xu, “Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode locking,” Opt. Lett. 32(11), 1408–1410 (2007).
[Crossref] [PubMed]

F. Lu, W. Zheng, C. Sheppard, and Z. Huang, “Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy,” Opt. Lett. 33(6), 602–604 (2008).
[Crossref] [PubMed]

F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006).
[Crossref] [PubMed]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
[Crossref] [PubMed]

J. van Howe, J. Hansryd, and C. Xu, “Multiwavelength pulse generator using time-lens compression,” Opt. Lett. 29(13), 1470–1472 (2004).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-stokes raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
[Crossref] [PubMed]

J. van Howe and C. Xu, “Ultrafast optical delay line by use of a time-prism pair,” Opt. Lett. 30(1), 99–101 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup of a multi-wavelength time-lens source (Stokes), synchronized with a mode-locked Ti:Sa laser (pump). The pump light path is shown in green. The Stokes light path is shown in red, and the electrical path is shown in blue. BS, beam splitter; M, mirror; G, grating (T-1400-800s, 1400 lines/mm, LightSmyth); DM, dichroic mirror (DMLP950R, Thorlabs); PD, photodiode; WDM, wavelength-division multiplexer; NB, narrowband; BB, broadband; PM, phase modulator; IM, intensity modulator; G1, G2, gratings (T-1600-1060s, 1600 lines/mm, LightSmyth); SU, scan unit; DM1, dichroic mirror (FF875-Di01-25 × 36, Semrock); PMT, photomultiplier tube.
Fig. 2
Fig. 2 Characterization of the time-lens source. (a) Wavelength tuning range of CH1 of the time-lens source is 1052-1055 nm. (b) Wavelength of CH2 of the time-lens source is 1064.3 nm. (c) Wavelength tuning range of CH3 of the time-lens source is 1040-1050 nm. For (a), (b) and (c), the spectra after the phase modulation are shown. (d–f) Cross-correlation traces between CH1 (1053.7 nm), CH2 (1064.3 nm), and CH3 (1045.5 nm) of the time-lens source and the spectrally unfiltered 100 fs pulse from the mode-locked Ti:Sa laser.
Fig. 3
Fig. 3 Two-color CARS imaging of mixed PMMA and PS beads, 512 × 512 pixels, 2 μs/pixel. (a), (b) and (c) are CARS images obtained at Raman frequencies of 2950 cm−1, 3054 cm−1, and 2800 cm−1, respectively. (d–e) Images after subtraction of the nonresonant background of (c) from the CARS signal of (a) and (b), achieving background-free images of PMMA beads (red) and PS beads (yellow). Note that the brightness of (d) and (e) is increased by ~1.5 times to match the brightness scale of (a) and (b). (f) Composite image of PMMA beads (d) and PS beads (e). (g) shows the corresponding intensity profiles along the line indicated in image (a) (dotted black line) and image (d) (solid red line). (h) shows the corresponding intensity profiles along the line indicated in image (b) (dotted black line) and image (e) (solid yellow line). The scale bar is 15 μm.
Fig. 4
Fig. 4 Demonstration of simultaneous two-color CARS imaging with real-time nonresonant background suppression, 2 μs/pixel, 1536 × 1536 pixels for (c), 512 × 512 pixels for panels (g) to (k). (a) The pixel clock from the microscope. (b) Pulse trains from the function generators. (c) The CARS image of fresh tissue from a mouse ear at depth of 45 μm. Signals of Raman frequencies at 2845 cm−1, 2940 cm−1 and 2770 cm−1 are obtained in different columns of the same image. (d) and (e) are zoomed images from different regions of (c). (f) Zoomed-in views of one column in (d) and (e). (g), (h) and (i) are CARS images, extracted from different columns of (c), corresponding to CH2 stretching vibration (2845 cm−1), CH3 stretching vibration (2940 cm−1), and the off-resonance background (2770 cm−1), respectively. (j) and (k) are, respectively, background-free images obtained after subtraction of the nonresonant background of (i) from the CARS signals of (g) and (h).

Metrics