Abstract

Caustic methods have been proposed for wavefront design to enable light beams propagating along curved trajectories, namely accelerating beams. Here we elaborate the complete construction, remarkable characteristics, and hidden constraints of these methods. It is found that accelerating beams based on the caustic design have not only a well-known curved intensity distribution but also a linear phase distribution along the caustic proportional to the curved length, as if light field indeed moved along the caustic. Moreover, with this characteristic, further light-ray analyses are implemented to illustrate the constraints of caustic design in different cases. We expect our work will clarify some confusion on the effectiveness and applicability of caustic methods, and thus facilitate the design of accelerating beams for various applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hyperbolic accelerating beams and their relation with Hermite–Gaussian beams

Chaohong Huang, Hanqing Li, Jianfeng Wu, and Yupeng Yan
J. Opt. Soc. Am. A 35(2) 262-266 (2018)

Intensity-symmetric accelerating caustic beams

Zhijun Ren, Hongzhen Jin, Baojin Peng, and Yile Shi
Appl. Opt. 55(27) 7694-7699 (2016)

Accelerating light beams with arbitrarily transverse shapes

Adrian Ruelas, Jeffrey A. Davis, Ignacio Moreno, Don M. Cottrell, and Miguel A. Bandres
Opt. Express 22(3) 3490-3500 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
    [Crossref]
  2. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
    [Crossref] [PubMed]
  3. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [Crossref] [PubMed]
  4. J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [Crossref] [PubMed]
  5. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  6. H. E. Kondakci and A. F. Abouraddy, “Airy wave packets accelerating in space-time,” Phys. Rev. Lett. 120(16), 163901 (2018).
    [Crossref] [PubMed]
  7. Z. Chen, J. Xu, Y. Hu, and D. Song, “Control and novel applications of self-accelerating beams,” Acta Opt. Sin. 36(10), 1026009 (2016).
    [Crossref]
  8. W. Wen and Y. Cai, “Research progress of generation characteristics and applications of self-accelerating Airy beams,” Laser & Optoelectronics Progress 54(2), 020002 (2017).
    [Crossref]
  9. I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting accelerating wave packets of Maxwell’s equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
    [Crossref] [PubMed]
  10. P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
    [Crossref] [PubMed]
  11. A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
    [Crossref]
  12. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
    [Crossref]
  13. J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
    [Crossref] [PubMed]
  14. Y. Liang, Y. Hu, D. Song, C. Lou, X. Zhang, Z. Chen, and J. Xu, “Image signal transmission with Airy beams,” Opt. Lett. 40(23), 5686–5689 (2015).
    [Crossref] [PubMed]
  15. G. Zhu, Y. Wen, X. Wu, Y. Chen, J. Liu, and S. Yu, “Obstacle evasion in free-space optical communications utilizing Airy beams,” Opt. Lett. 43(6), 1203–1206 (2018).
    [Crossref] [PubMed]
  16. S. Jia, J. C. Vaughan, and X. Zhuang, “Light-sheet microscopy using an Airy beam,” Nat. Photonics 8, 302–306 (2014).
    [Crossref] [PubMed]
  17. T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
    [Crossref] [PubMed]
  18. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
    [Crossref] [PubMed]
  19. M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
    [Crossref] [PubMed]
  20. Y. Wen, Y. Chen, and S. Yu, “Design of accelerating beams based on caustic method,” Acta Phys. Sin. 66, 144210 (2017).
  21. M. Berry and C. Upstill, Catastrophe Optics: Morphologies of Caustic and Their Diffraction Patterns (Elsevier, 1980).
  22. E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
    [Crossref] [PubMed]
  23. Y. Hu, D. Bongiovanni, Z. Chen, and R. Morandotti, “Multipath multicomponent self-accelerating beams through spectrum-engineered position mapping,” Phys. Rev. A 88(4), 043809 (2013).
    [Crossref]
  24. Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Tailoring accelerating beams in phase space,” Phys. Rev. A 95(2), 023825 (2017).
    [Crossref]
  25. L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
    [Crossref] [PubMed]
  26. Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Winding light beams along elliptical helical trajectories,” Phys. Rev. A. 94(1), 013829 (2016).
    [Crossref]
  27. T. Melamed and A. Shlivinski, “Practical algorithm for custom-made caustic beams,” Opt. Lett. 42(13), 2499–2502 (2017).
    [Crossref] [PubMed]
  28. M. A. Bandres, M. A. Alonso, I. Kaminer, and M. Segev, “Three-dimensional accelerating electromagnetic waves,” Opt. Express 21(12), 13917–13929 (2013).
    [Crossref] [PubMed]
  29. Y. Wen, Y. Chen, Y. Zhang, and S. Yu, “Highly adjustable helical beam: design and propagation characteristics,” Chin. Opt. Lett. 15(3), 030011 (2017).
    [Crossref]
  30. R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
    [Crossref] [PubMed]
  31. M. Gooutsoulas and N. K. Efremidis, “Precise amplitude, trajectory, and beam-width control of accelerating and abruptly autofocusing beams,” Phys. Rev. A 97(6), 063831 (2018).
    [Crossref]
  32. R. Wong, Asymptotic approximations of integrals (Academic, 1989).
  33. P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. M. Matos, “Caustics, catastrophes, and symmetries in curved beams,” Phys. Rev. A 92(3), 033850 (2015).
    [Crossref]
  34. J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics Publishing, 1999).

2018 (3)

H. E. Kondakci and A. F. Abouraddy, “Airy wave packets accelerating in space-time,” Phys. Rev. Lett. 120(16), 163901 (2018).
[Crossref] [PubMed]

G. Zhu, Y. Wen, X. Wu, Y. Chen, J. Liu, and S. Yu, “Obstacle evasion in free-space optical communications utilizing Airy beams,” Opt. Lett. 43(6), 1203–1206 (2018).
[Crossref] [PubMed]

M. Gooutsoulas and N. K. Efremidis, “Precise amplitude, trajectory, and beam-width control of accelerating and abruptly autofocusing beams,” Phys. Rev. A 97(6), 063831 (2018).
[Crossref]

2017 (6)

T. Melamed and A. Shlivinski, “Practical algorithm for custom-made caustic beams,” Opt. Lett. 42(13), 2499–2502 (2017).
[Crossref] [PubMed]

Y. Wen, Y. Chen, Y. Zhang, and S. Yu, “Highly adjustable helical beam: design and propagation characteristics,” Chin. Opt. Lett. 15(3), 030011 (2017).
[Crossref]

Y. Wen, Y. Chen, and S. Yu, “Design of accelerating beams based on caustic method,” Acta Phys. Sin. 66, 144210 (2017).

Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Tailoring accelerating beams in phase space,” Phys. Rev. A 95(2), 023825 (2017).
[Crossref]

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

W. Wen and Y. Cai, “Research progress of generation characteristics and applications of self-accelerating Airy beams,” Laser & Optoelectronics Progress 54(2), 020002 (2017).
[Crossref]

2016 (2)

Z. Chen, J. Xu, Y. Hu, and D. Song, “Control and novel applications of self-accelerating beams,” Acta Opt. Sin. 36(10), 1026009 (2016).
[Crossref]

Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Winding light beams along elliptical helical trajectories,” Phys. Rev. A. 94(1), 013829 (2016).
[Crossref]

2015 (4)

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. M. Matos, “Caustics, catastrophes, and symmetries in curved beams,” Phys. Rev. A 92(3), 033850 (2015).
[Crossref]

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref] [PubMed]

Y. Liang, Y. Hu, D. Song, C. Lou, X. Zhang, Z. Chen, and J. Xu, “Image signal transmission with Airy beams,” Opt. Lett. 40(23), 5686–5689 (2015).
[Crossref] [PubMed]

2014 (3)

S. Jia, J. C. Vaughan, and X. Zhuang, “Light-sheet microscopy using an Airy beam,” Nat. Photonics 8, 302–306 (2014).
[Crossref] [PubMed]

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref] [PubMed]

2013 (2)

M. A. Bandres, M. A. Alonso, I. Kaminer, and M. Segev, “Three-dimensional accelerating electromagnetic waves,” Opt. Express 21(12), 13917–13929 (2013).
[Crossref] [PubMed]

Y. Hu, D. Bongiovanni, Z. Chen, and R. Morandotti, “Multipath multicomponent self-accelerating beams through spectrum-engineered position mapping,” Phys. Rev. A 88(4), 043809 (2013).
[Crossref]

2012 (3)

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting accelerating wave packets of Maxwell’s equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref] [PubMed]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[Crossref]

2011 (2)

2009 (1)

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

2008 (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

2007 (2)

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1987 (1)

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Abouraddy, A. F.

H. E. Kondakci and A. F. Abouraddy, “Airy wave packets accelerating in space-time,” Phys. Rev. Lett. 120(16), 163901 (2018).
[Crossref] [PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Alonso, M. A.

Alpmann, C.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Andrews, D. L.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Baker, M.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Bandres, M. A.

Banzer, P.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Bauer, T.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Bekenstein, R.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref] [PubMed]

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting accelerating wave packets of Maxwell’s equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref] [PubMed]

Belmonte, A.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Berry, M. V.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Bigelow, N. P.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Bongiovanni, D.

Y. Hu, D. Bongiovanni, Z. Chen, and R. Morandotti, “Multipath multicomponent self-accelerating beams through spectrum-engineered position mapping,” Phys. Rev. A 88(4), 043809 (2013).
[Crossref]

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Cai, Y.

W. Wen and Y. Cai, “Research progress of generation characteristics and applications of self-accelerating Airy beams,” Laser & Optoelectronics Progress 54(2), 020002 (2017).
[Crossref]

Cannan, D.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

Chen, H.

Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Tailoring accelerating beams in phase space,” Phys. Rev. A 95(2), 023825 (2017).
[Crossref]

Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Winding light beams along elliptical helical trajectories,” Phys. Rev. A. 94(1), 013829 (2016).
[Crossref]

Chen, Y.

G. Zhu, Y. Wen, X. Wu, Y. Chen, J. Liu, and S. Yu, “Obstacle evasion in free-space optical communications utilizing Airy beams,” Opt. Lett. 43(6), 1203–1206 (2018).
[Crossref] [PubMed]

Y. Wen, Y. Chen, Y. Zhang, and S. Yu, “Highly adjustable helical beam: design and propagation characteristics,” Chin. Opt. Lett. 15(3), 030011 (2017).
[Crossref]

Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Tailoring accelerating beams in phase space,” Phys. Rev. A 95(2), 023825 (2017).
[Crossref]

Y. Wen, Y. Chen, and S. Yu, “Design of accelerating beams based on caustic method,” Acta Phys. Sin. 66, 144210 (2017).

Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Winding light beams along elliptical helical trajectories,” Phys. Rev. A. 94(1), 013829 (2016).
[Crossref]

Chen, Z.

Z. Chen, J. Xu, Y. Hu, and D. Song, “Control and novel applications of self-accelerating beams,” Acta Opt. Sin. 36(10), 1026009 (2016).
[Crossref]

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref] [PubMed]

Y. Liang, Y. Hu, D. Song, C. Lou, X. Zhang, Z. Chen, and J. Xu, “Image signal transmission with Airy beams,” Opt. Lett. 40(23), 5686–5689 (2015).
[Crossref] [PubMed]

Y. Hu, D. Bongiovanni, Z. Chen, and R. Morandotti, “Multipath multicomponent self-accelerating beams through spectrum-engineered position mapping,” Phys. Rev. A 88(4), 043809 (2013).
[Crossref]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

Chremmos, I. D.

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref] [PubMed]

Christodoulides, D. N.

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref] [PubMed]

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Cižmár, T.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Clerici, M.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Coll-Lladó, C.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Couairon, A.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Courvoisier, F.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[Crossref]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

Dalgarno, H. I. C.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Dennis, M. R.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Denz, C.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Dholakia, K.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Dudley, J. M.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[Crossref]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

Durnin, J.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Eberly, J. H.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Efremidis, N. K.

M. Gooutsoulas and N. K. Efremidis, “Precise amplitude, trajectory, and beam-width control of accelerating and abruptly autofocusing beams,” Phys. Rev. A 97(6), 063831 (2018).
[Crossref]

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref] [PubMed]

Faccio, D.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Ferrier, D. E. K.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Fickler, R.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Forbes, A.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Froehly, L.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[Crossref]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

Furfaro, L.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[Crossref]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

Giust, R.

Gooutsoulas, M.

M. Gooutsoulas and N. K. Efremidis, “Precise amplitude, trajectory, and beam-width control of accelerating and abruptly autofocusing beams,” Phys. Rev. A 97(6), 063831 (2018).
[Crossref]

Gordon, R.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Greenfield, E.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref] [PubMed]

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

Gunn-Moore, F. J.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Hu, Y.

Z. Chen, J. Xu, Y. Hu, and D. Song, “Control and novel applications of self-accelerating beams,” Acta Opt. Sin. 36(10), 1026009 (2016).
[Crossref]

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Y. Liang, Y. Hu, D. Song, C. Lou, X. Zhang, Z. Chen, and J. Xu, “Image signal transmission with Airy beams,” Opt. Lett. 40(23), 5686–5689 (2015).
[Crossref] [PubMed]

Y. Hu, D. Bongiovanni, Z. Chen, and R. Morandotti, “Multipath multicomponent self-accelerating beams through spectrum-engineered position mapping,” Phys. Rev. A 88(4), 043809 (2013).
[Crossref]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

Jacquot, M.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[Crossref]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

Jia, S.

S. Jia, J. C. Vaughan, and X. Zhuang, “Light-sheet microscopy using an Airy beam,” Nat. Photonics 8, 302–306 (2014).
[Crossref] [PubMed]

Kaminer, I.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref] [PubMed]

M. A. Bandres, M. A. Alonso, I. Kaminer, and M. Segev, “Three-dimensional accelerating electromagnetic waves,” Opt. Express 21(12), 13917–13929 (2013).
[Crossref] [PubMed]

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting accelerating wave packets of Maxwell’s equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref] [PubMed]

Karimi, E.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Kolesik, M.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

Kondakci, H. E.

H. E. Kondakci and A. F. Abouraddy, “Airy wave packets accelerating in space-time,” Phys. Rev. Lett. 120(16), 163901 (2018).
[Crossref] [PubMed]

Lacourt, P. A.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[Crossref]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

Lassonde, P.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Légaré, F.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Lencina, A.

P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. M. Matos, “Caustics, catastrophes, and symmetries in curved beams,” Phys. Rev. A 92(3), 033850 (2015).
[Crossref]

Li, T.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

Liang, Y.

Litchinitser, N. M.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Liu, J.

Lou, C.

Lumer, Y.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref] [PubMed]

Mansuripur, M.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Marrucci, L.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Mathis, A.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[Crossref]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

Matos, O. M.

P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. M. Matos, “Caustics, catastrophes, and symmetries in curved beams,” Phys. Rev. A 92(3), 033850 (2015).
[Crossref]

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

McMorran, B.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Melamed, T.

Miceli, J.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Milián, C.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Moloney, J. V.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

Morandotti, R.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Y. Hu, D. Bongiovanni, Z. Chen, and R. Morandotti, “Multipath multicomponent self-accelerating beams through spectrum-engineered position mapping,” Phys. Rev. A 88(4), 043809 (2013).
[Crossref]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

Neely, T. W.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Nemirovsky, J.

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting accelerating wave packets of Maxwell’s equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref] [PubMed]

Nylk, J.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Padgett, M.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Polynkin, P.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

Raz, O.

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

Razzari, L.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Ritsch-Marte, M.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Rodrigo, J. A.

P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. M. Matos, “Caustics, catastrophes, and symmetries in curved beams,” Phys. Rev. A 92(3), 033850 (2015).
[Crossref]

Romero, J.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Rosales-Guzmán, C.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Rubinsztein-Dunlop, H.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Schley, R.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref] [PubMed]

Segev, M.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref] [PubMed]

M. A. Bandres, M. A. Alonso, I. Kaminer, and M. Segev, “Three-dimensional accelerating electromagnetic waves,” Opt. Express 21(12), 13917–13929 (2013).
[Crossref] [PubMed]

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting accelerating wave packets of Maxwell’s equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref] [PubMed]

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

Shlivinski, A.

Siviloglou, G. A.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Song, D.

Z. Chen, J. Xu, Y. Hu, and D. Song, “Control and novel applications of self-accelerating beams,” Acta Opt. Sin. 36(10), 1026009 (2016).
[Crossref]

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref] [PubMed]

Y. Liang, Y. Hu, D. Song, C. Lou, X. Zhang, Z. Chen, and J. Xu, “Image signal transmission with Airy beams,” Opt. Lett. 40(23), 5686–5689 (2015).
[Crossref] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Stilgoe, A. B.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Torres, J. P.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Vaughan, J. C.

S. Jia, J. C. Vaughan, and X. Zhuang, “Light-sheet microscopy using an Airy beam,” Nat. Photonics 8, 302–306 (2014).
[Crossref] [PubMed]

Vaveliuk, P.

P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. M. Matos, “Caustics, catastrophes, and symmetries in curved beams,” Phys. Rev. A 92(3), 033850 (2015).
[Crossref]

Vettenburg, T.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Vidal, F.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Walasik, W.

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

Weiner, A. M.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Wen, W.

W. Wen and Y. Cai, “Research progress of generation characteristics and applications of self-accelerating Airy beams,” Laser & Optoelectronics Progress 54(2), 020002 (2017).
[Crossref]

Wen, Y.

G. Zhu, Y. Wen, X. Wu, Y. Chen, J. Liu, and S. Yu, “Obstacle evasion in free-space optical communications utilizing Airy beams,” Opt. Lett. 43(6), 1203–1206 (2018).
[Crossref] [PubMed]

Y. Wen, Y. Chen, Y. Zhang, and S. Yu, “Highly adjustable helical beam: design and propagation characteristics,” Chin. Opt. Lett. 15(3), 030011 (2017).
[Crossref]

Y. Wen, Y. Chen, and S. Yu, “Design of accelerating beams based on caustic method,” Acta Phys. Sin. 66, 144210 (2017).

Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Tailoring accelerating beams in phase space,” Phys. Rev. A 95(2), 023825 (2017).
[Crossref]

Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Winding light beams along elliptical helical trajectories,” Phys. Rev. A. 94(1), 013829 (2016).
[Crossref]

White, A. G.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Willner, A. E.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wu, X.

Xie, G.

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Xu, J.

Z. Chen, J. Xu, Y. Hu, and D. Song, “Control and novel applications of self-accelerating beams,” Acta Opt. Sin. 36(10), 1026009 (2016).
[Crossref]

Y. Liang, Y. Hu, D. Song, C. Lou, X. Zhang, Z. Chen, and J. Xu, “Image signal transmission with Airy beams,” Opt. Lett. 40(23), 5686–5689 (2015).
[Crossref] [PubMed]

Yin, X.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

Yu, S.

G. Zhu, Y. Wen, X. Wu, Y. Chen, J. Liu, and S. Yu, “Obstacle evasion in free-space optical communications utilizing Airy beams,” Opt. Lett. 43(6), 1203–1206 (2018).
[Crossref] [PubMed]

Y. Wen, Y. Chen, Y. Zhang, and S. Yu, “Highly adjustable helical beam: design and propagation characteristics,” Chin. Opt. Lett. 15(3), 030011 (2017).
[Crossref]

Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Tailoring accelerating beams in phase space,” Phys. Rev. A 95(2), 023825 (2017).
[Crossref]

Y. Wen, Y. Chen, and S. Yu, “Design of accelerating beams based on caustic method,” Acta Phys. Sin. 66, 144210 (2017).

Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Winding light beams along elliptical helical trajectories,” Phys. Rev. A. 94(1), 013829 (2016).
[Crossref]

Zhang, P.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

Zhang, X.

Y. Liang, Y. Hu, D. Song, C. Lou, X. Zhang, Z. Chen, and J. Xu, “Image signal transmission with Airy beams,” Opt. Lett. 40(23), 5686–5689 (2015).
[Crossref] [PubMed]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

Zhang, Y.

Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Tailoring accelerating beams in phase space,” Phys. Rev. A 95(2), 023825 (2017).
[Crossref]

Y. Wen, Y. Chen, Y. Zhang, and S. Yu, “Highly adjustable helical beam: design and propagation characteristics,” Chin. Opt. Lett. 15(3), 030011 (2017).
[Crossref]

Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Winding light beams along elliptical helical trajectories,” Phys. Rev. A. 94(1), 013829 (2016).
[Crossref]

Zhao, J.

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref] [PubMed]

Zhu, G.

Zhuang, X.

S. Jia, J. C. Vaughan, and X. Zhuang, “Light-sheet microscopy using an Airy beam,” Nat. Photonics 8, 302–306 (2014).
[Crossref] [PubMed]

Acta Opt. Sin. (1)

Z. Chen, J. Xu, Y. Hu, and D. Song, “Control and novel applications of self-accelerating beams,” Acta Opt. Sin. 36(10), 1026009 (2016).
[Crossref]

Acta Phys. Sin. (1)

Y. Wen, Y. Chen, and S. Yu, “Design of accelerating beams based on caustic method,” Acta Phys. Sin. 66, 144210 (2017).

Appl. Phys. Lett. (1)

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[Crossref]

Chin. Opt. Lett. (1)

J. Opt. (1)

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Laser & Optoelectronics Progress (1)

W. Wen and Y. Cai, “Research progress of generation characteristics and applications of self-accelerating Airy beams,” Laser & Optoelectronics Progress 54(2), 020002 (2017).
[Crossref]

Nat. Commun. (1)

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

S. Jia, J. C. Vaughan, and X. Zhuang, “Light-sheet microscopy using an Airy beam,” Nat. Photonics 8, 302–306 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (5)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. M. Matos, “Caustics, catastrophes, and symmetries in curved beams,” Phys. Rev. A 92(3), 033850 (2015).
[Crossref]

M. Gooutsoulas and N. K. Efremidis, “Precise amplitude, trajectory, and beam-width control of accelerating and abruptly autofocusing beams,” Phys. Rev. A 97(6), 063831 (2018).
[Crossref]

Y. Hu, D. Bongiovanni, Z. Chen, and R. Morandotti, “Multipath multicomponent self-accelerating beams through spectrum-engineered position mapping,” Phys. Rev. A 88(4), 043809 (2013).
[Crossref]

Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Tailoring accelerating beams in phase space,” Phys. Rev. A 95(2), 023825 (2017).
[Crossref]

Phys. Rev. A. (1)

Y. Wen, Y. Chen, Y. Zhang, H. Chen, and S. Yu, “Winding light beams along elliptical helical trajectories,” Phys. Rev. A. 94(1), 013829 (2016).
[Crossref]

Phys. Rev. Lett. (6)

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

H. E. Kondakci and A. F. Abouraddy, “Airy wave packets accelerating in space-time,” Phys. Rev. Lett. 120(16), 163901 (2018).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting accelerating wave packets of Maxwell’s equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref] [PubMed]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

Sci. Adv. (1)

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref] [PubMed]

Science (1)

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

Other (3)

M. Berry and C. Upstill, Catastrophe Optics: Morphologies of Caustic and Their Diffraction Patterns (Elsevier, 1980).

J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics Publishing, 1999).

R. Wong, Asymptotic approximations of integrals (Academic, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic showing the light-ray picture if (a) Ψ ( k x ) = 0 , (b) Ψ ( k x ) = 0 and Ψ ( k x ) = 0 , (c) Ψ ( k x ) = 0 , Ψ ( k x ) = 0 , and Ψ ( k x ) = 0 , which correspond to the light rays emanating randomly, forming a caustic, and focusing, respectively.
Fig. 2
Fig. 2 Intensity and phase distributions as well as phase profiles of the constructed accelerating beams propagating along (a) a parabola (parameters: x = 0.02 z 2 , | k x | < 0.98 k , here x and z in unit of μm) and (b) a circle (parameters: r = x 0 = 10 μ m , z 0 = 9.4 μ m , | k x | < 0.98 k ), based on the caustic method. The caustics are represented by dashed curves. The phase profiles along these caustics are depicted on the right in blue lines, matching well with red dashed lines indicating the phase accumulation of an imaginary light ray propagating along the caustics.
Fig. 3
Fig. 3 (a) A two-ray interference model for caustic beams, in which the light field at an arbitrary point C on the left side of the caustic is regarded as the interference of two light rays (ray1 and ray2) tangential to the caustic at point A and point B, respectively. The phase difference of these two light rays at point C is denoted as φ 12 . (b) The intensity distribution of a circular beam as an instance to demonstrate the relationship between φ 12 and the local intensity (parameters: r = x 0 = z 0 = 15 μ m , | k x | < 0.84 k ). The caustic is depicted by a dashed curve and the white dots labeled by 1, 2, 3, 4 correspond to the position of point C in Fig. 3(a) with φ 12 = 0 , 2 π , 7 π , 20 π .
Fig. 4
Fig. 4 (a) Schematic showing the concept of superposition caustic method, in which two convex caustics are superposed to form a nonconvex caustic. The phase difference of the two segments at the joint point is denoted as φ F E . A constructed caustic beam by superposing two circular beams, with the phase difference φ F E to be (b) π / 2 , (c) 0 , and (d) π . The caustic is depicted by a dashed curve (parameters: circle 1 : x = 12 2 z 2 , c i r c l e 2 : x = 12 2 ( z 12 3 ) 2 12 , | k x | < 0.98 k , here x and z in units of μm).
Fig. 5
Fig. 5 Intensity distribution of the circular beams as the decrease of φ 12 corresponding to a decreased length of the designed caustic denoted by the two white dots (parameters: r = x 0 = z 0 = 15 μ m , | k x | < 0.84 k , 0.61 k , 0.48 k , 0.41 k , 0.35 k , 0.25 k , respectively). The caustic is depicted by a dashed curve with two rays tangential to its start point and end point.
Fig. 6
Fig. 6 (a) Schematic showing two-ray interference in the construction of a nonconvex caustic with a joint point R. Ray2 tangential to the second segment in blue (at tangential point Q) will pass through the first segment at point P and thus interfere with ray1, the phase difference of these two rays are denoted as Δ φ . Intensity distributions of constructed nonconvex beams composed of two circular caustics in radius of (b) 15 μm (parameters: c i r c l e 1 : x = 15 2 z 2 , c i r c l e 2 : x = 15 2 ( z 15 3 ) 2 15 , | k x | < 0.98 k , here x and z in units of μm) and (c) 20 μm (parameters: c i r c l e 1 : x = 20 2 z 2 , c i r c l e 2 : x = 20 2 ( z 20 3 ) 2 20 , | k x | < 0.98 k , here x and z in units of μm), respectively. The nonconvex caustics are shown in grey curves, with the start and end point corresponding to Δ φ = π .

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E ( x , z ) = A ( k x ) exp { i [ k x x + ( k 2 k x 2 ) 1 / 2 z ] } d k x = r ( k x ) exp [ i Ψ ( k x ) ] d k x ,
Ψ ( k x 1 ) = x k x 1 ( k 2 k x 1 2 ) 1 / 2 z + Φ ( k x 1 ) = 0.
E ( x , z ) = m r ( k x m ) ( 2 π | Ψ ( k x m ) | ) 1 / 2 exp { i Ψ ( k x m ) + i s i g n [ Ψ ( k x m ) ] π 4 } ,
Ψ ( k x 1 ) = k 2 ( k 2 k x 1 2 ) 3 / 2 z + Φ ( k x 1 ) = 0.
f ( z ) = d x d z = k x 1 ( k 2 k x 1 2 ) 1 / 2 + k 2 ( k 2 k x 1 2 ) 3 / 2 z d k x 1 d z Φ ( k x 1 ) d k x 1 d z = k x 1 ( k 2 k x 1 2 ) 1 / 2 ,
Ψ ( k x 1 ) = 3 k 2 k x ( k 2 k x 1 2 ) 5 / 2 z + Φ ( k x 1 ) = 0.
Ψ ( k x 1 ) = k x 1 x + ( k 2 k x 1 2 ) 1 / 2 z + Φ ( k x 1 ) = k 1 + [ f ( z ) ] 2 d z .
p a r a b o l a : A ( k x ) = 1 1 ( k x / k ) 2 exp { i [ k artanh ( k x / k ) k x ] / 4 a } , c i r c l e : A ( k x ) = 1 1 ( k x / k ) 2 exp { i [ k r arcsin ( k x / k ) k x x 0 k 2 k x 2 z 0 ] } .
φ 12 = k ( l A C ¯ + l B C ¯ l A B ) π / 2.
A ( k x ) = j = 1 n A j ( k x ) = j = 1 n r j ( k x ) exp [ i Φ j ( k x ) ] ,
φ 12 = k ( l A C ¯ + l B C ¯ l A B ) π / 2 > > 0.
Δ φ = k ( l P R + l R Q l P Q ¯ ) π / 2 < π ,
Φ ( k x 1 ) = k x 1 ( k 2 k x 1 2 ) 1 / 2 z x = z f ( z ) f ( z ) .
Φ ( k x 1 ) = z f ( z ) f ( z ) d k x 1 = k x 1 [ z f ( z ) f ( z ) ] k x 1 d [ z f ( z ) f ( z ) ] = k f ( z ) [ z f ( z ) f ( z ) ] 1 + [ f ( z ) ] 2 k f ( z ) z f ( z ) 1 + [ f ( z ) ] 2 d z .
Ψ ( k x 1 ) = k x 1 x + ( k 2 k x 1 2 ) 1 / 2 z + Φ ( k x 1 ) = k f ( z ) f ( z ) 1 + [ f ( z ) ] 2 + k z 1 + [ f ( z ) ] 2 + k f ( z ) [ z f ( z ) f ( z ) ] 1 + [ f ( z ) ] 2 k f ( z ) z f ( z ) 1 + [ f ( z ) ] 2 d z = k z 1 + [ f ( z ) ] 2 k f ( z ) z f ( z ) 1 + [ f ( z ) ] 2 d z = k z 1 + [ f ( z ) ] 2 k z d { 1 + [ f ( z ) ] 2 } = k 1 + [ f ( z ) ] 2 d z .

Metrics