Abstract

In this paper, we theoretically propose an effective broadband absorption architecture in mid-infrared region based on strong coupling between the plasmonic resonance of graphene nanoribbons and the waveguide mode of a metal tapered groove. The special architecture facilitates two new hybrid modes splitting with very strong energy distribution on graphene ribbon, which results in the broadband absorption effect. To well explain these numerical results, an analytical dispersion relation of waveguide mode is obtained based on the classical LC circuit model. The fluctuating range of absorption passband is investigated by adjusting the filled medium inside of the grooves. Leveraging the concept and method, a broadband flat-top (bandwidth ≈2.5 µm) absorption with absorption rate over 60% is demonstrated. Such a design not only enhances the intrinsic weak plasmons resonance in mid-infrared spectral region, but also reduces the absorption fluctuations caused by coupling, which are the key features for developing next-generation mid-infrared broadband optical devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tuning of longitudinal plasmonic coupling in graphene nanoribbon arrays/sheet hybrid structures at mid-infrared frequencies

Jigang Hu, Xiaohang Wu, Hongju Li, Enxu Yao, Weiqiang Xie, Wei Liu, Yonghua Lu, and Changjun Ming
J. Opt. Soc. Am. B 36(3) 697-704 (2019)

Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale

Xi Shi, Lixin Ge, Xiewen Wen, Dezhuan Han, and Yaping Yang
Opt. Express 24(23) 26357-26362 (2016)

Mid-infrared active graphene nanoribbon plasmonic waveguide devices

Kelvin J. A. Ooi, Hong Son Chu, Lay Kee Ang, and Ping Bai
J. Opt. Soc. Am. B 30(12) 3111-3116 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  2. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  3. M. A. Green and S. P. Bremner, “Energy conversion approaches and materials for high-efficiency photovoltaics,” Nat. Mater. 16(1), 23–34 (2017).
    [Crossref] [PubMed]
  4. T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
    [Crossref]
  5. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  6. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref] [PubMed]
  7. T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors,” Nano Lett. 16(1), 8–20 (2016).
    [Crossref] [PubMed]
  8. L. Huang, J. Q. Liu, H. M. Deng, and S. Wu, “Phonon-Like Plasmonic Resonances in a Finite Number of Graphene Nanoribbons,” Adv. Opt. Mater. 6(11), 1701378 (2018).
    [Crossref]
  9. K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
    [Crossref]
  10. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
    [Crossref] [PubMed]
  11. S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
    [Crossref] [PubMed]
  12. S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photon. Res. 6(7), 692–702 (2018).
    [Crossref]
  13. B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
    [Crossref]
  14. J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
    [Crossref]
  15. J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
    [Crossref]
  16. S. A. Nulli, M. S. Ukhtary, and R. Saito, “Significant enhancement of light absorption in undoped graphene using dielectric multilayer system,” Appl. Phys. Lett. 112(7), 073101 (2018).
    [Crossref]
  17. S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and M. C. E. Yagoub, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
    [Crossref]
  18. J. Yang, Z. Zhu, J. Zhang, W. Xu, C. Guo, K. Liu, M. Zhu, H. Chen, R. Zhang, X. Yuan, and S. Qin, “Mie resonance induced broadband near-perfect absorption in nonstructured graphene loaded with periodical dielectric wires,” Opt. Express 26(16), 20174–20182 (2018).
    [Crossref] [PubMed]
  19. X. Shi, L. Ge, X. Wen, D. Han, and Y. Yang, “Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale,” Opt. Express 24(23), 26357–26362 (2016).
    [Crossref] [PubMed]
  20. B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
    [Crossref] [PubMed]
  21. S. Yi, M. Zhou, X. Shi, Q. Gan, J. Zi, and Z. Yu, “A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene,” Opt. Express 23(8), 10081–10090 (2015).
    [Crossref] [PubMed]
  22. B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
    [Crossref] [PubMed]
  23. F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
    [Crossref] [PubMed]
  24. D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light-matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
    [Crossref] [PubMed]
  25. A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities, Oxford University Press, New York (2007).
  26. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
    [Crossref] [PubMed]
  27. L. Huang, S. Wu, Y. L. Wang, X. J. Ma, H. M. Deng, S. M. Wang, Y. Lu, C. Q. Li, and T. Li, “Tunable unidirectional surface plasmon polariton launcher utilizing a graphene-based single asymmetric nanoantenna,” Opt. Mater. Express 7(2), 569–576 (2017).
    [Crossref]
  28. D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
    [Crossref] [PubMed]
  29. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [Crossref] [PubMed]
  30. S. Barzegar-Parizi, B. Rejaei, and A. Khavasi, “Analytical Circuit Model for Periodic Arrays of Graphene Disks,” IEEE J. Quantum Electron. 51(9), 1–7 (2015).
    [Crossref]
  31. B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135(3), 81–89 (2014).
    [Crossref]
  32. B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
    [Crossref]
  33. L. Du, D. Tang, and X. Yuan, “Edge-reflection phase directed plasmonic resonances on graphene nano-structures,” Opt. Express 22(19), 22689–22698 (2014).
    [Crossref] [PubMed]
  34. A. Y. Nikitin, T. Low, and L. Martín-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 90(4), 041407 (2014).
    [Crossref]
  35. H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
    [Crossref]
  36. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
    [Crossref]
  37. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
    [Crossref] [PubMed]
  38. S. Rudin and T. L. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B Condens. Matter Mater. Phys. 59(15), 10227–10233 (1999).
    [Crossref]

2018 (7)

L. Huang, J. Q. Liu, H. M. Deng, and S. Wu, “Phonon-Like Plasmonic Resonances in a Finite Number of Graphene Nanoribbons,” Adv. Opt. Mater. 6(11), 1701378 (2018).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photon. Res. 6(7), 692–702 (2018).
[Crossref]

S. A. Nulli, M. S. Ukhtary, and R. Saito, “Significant enhancement of light absorption in undoped graphene using dielectric multilayer system,” Appl. Phys. Lett. 112(7), 073101 (2018).
[Crossref]

S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and M. C. E. Yagoub, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
[Crossref]

J. Yang, Z. Zhu, J. Zhang, W. Xu, C. Guo, K. Liu, M. Zhu, H. Chen, R. Zhang, X. Yuan, and S. Qin, “Mie resonance induced broadband near-perfect absorption in nonstructured graphene loaded with periodical dielectric wires,” Opt. Express 26(16), 20174–20182 (2018).
[Crossref] [PubMed]

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light-matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
[Crossref] [PubMed]

2017 (4)

L. Huang, S. Wu, Y. L. Wang, X. J. Ma, H. M. Deng, S. M. Wang, Y. Lu, C. Q. Li, and T. Li, “Tunable unidirectional surface plasmon polariton launcher utilizing a graphene-based single asymmetric nanoantenna,” Opt. Mater. Express 7(2), 569–576 (2017).
[Crossref]

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref] [PubMed]

M. A. Green and S. P. Bremner, “Energy conversion approaches and materials for high-efficiency photovoltaics,” Nat. Mater. 16(1), 23–34 (2017).
[Crossref] [PubMed]

2016 (5)

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

X. Shi, L. Ge, X. Wen, D. Han, and Y. Yang, “Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale,” Opt. Express 24(23), 26357–26362 (2016).
[Crossref] [PubMed]

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors,” Nano Lett. 16(1), 8–20 (2016).
[Crossref] [PubMed]

2015 (4)

S. Yi, M. Zhou, X. Shi, Q. Gan, J. Zi, and Z. Yu, “A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene,” Opt. Express 23(8), 10081–10090 (2015).
[Crossref] [PubMed]

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

S. Barzegar-Parizi, B. Rejaei, and A. Khavasi, “Analytical Circuit Model for Periodic Arrays of Graphene Disks,” IEEE J. Quantum Electron. 51(9), 1–7 (2015).
[Crossref]

B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

2014 (8)

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135(3), 81–89 (2014).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

L. Du, D. Tang, and X. Yuan, “Edge-reflection phase directed plasmonic resonances on graphene nano-structures,” Opt. Express 22(19), 22689–22698 (2014).
[Crossref] [PubMed]

A. Y. Nikitin, T. Low, and L. Martín-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 90(4), 041407 (2014).
[Crossref]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

2013 (3)

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

2011 (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

2010 (2)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

2009 (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

2008 (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

1999 (1)

S. Rudin and T. L. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B Condens. Matter Mater. Phys. 59(15), 10227–10233 (1999).
[Crossref]

Ansell, D.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

Asadi, S.

S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and M. C. E. Yagoub, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
[Crossref]

Asgari, S.

S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and M. C. E. Yagoub, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
[Crossref]

Avouris, P.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Ballarini, D.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Bao, Q. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Barzegar-Parizi, S.

S. Barzegar-Parizi, B. Rejaei, and A. Khavasi, “Analytical Circuit Model for Periodic Arrays of Graphene Disks,” IEEE J. Quantum Electron. 51(9), 1–7 (2015).
[Crossref]

Biabanifard, M.

S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and M. C. E. Yagoub, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
[Crossref]

Biabanifard, S.

S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and M. C. E. Yagoub, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
[Crossref]

Bozhevolnyi, S. I.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

Bremner, S. P.

M. A. Green and S. P. Bremner, “Energy conversion approaches and materials for high-efficiency photovoltaics,” Nat. Mater. 16(1), 23–34 (2017).
[Crossref] [PubMed]

Caldwell, J. D.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

Chen, H.

Chen, J.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

Ciracì, C.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Cuscunà, M.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

De Giorgi, M.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Deng, B.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Deng, H. M.

Dominici, L.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Dovzhenko, D. S.

D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light-matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
[Crossref] [PubMed]

Du, L.

Duan, X. F.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Echtermeyer, T. J.

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors,” Nano Lett. 16(1), 8–20 (2016).
[Crossref] [PubMed]

Eiden, A.

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors,” Nano Lett. 16(1), 8–20 (2016).
[Crossref] [PubMed]

Esposito, M.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Fan, S. H.

J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Farmer, D. B.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Ferrari, A. C.

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors,” Nano Lett. 16(1), 8–20 (2016).
[Crossref] [PubMed]

Fitzgerald, J. M.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

Freitag, M.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Gan, Q.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Ge, L.

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Giannini, V.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

Gigli, G.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Green, M. A.

M. A. Green and S. P. Bremner, “Energy conversion approaches and materials for high-efficiency photovoltaics,” Nat. Mater. 16(1), 23–34 (2017).
[Crossref] [PubMed]

Grigorenko, A. N.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

Guinea, F.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Guo, C.

Guo, Q.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Halas, N. J.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

Han, D.

Han, S. J.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Han, Z.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

Hu, J. H.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Huang, L.

Huang, Y.

Huang, Y. Q.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Khavasi, A.

S. Barzegar-Parizi, B. Rejaei, and A. Khavasi, “Analytical Circuit Model for Periodic Arrays of Graphene Disks,” IEEE J. Quantum Electron. 51(9), 1–7 (2015).
[Crossref]

Kong, J.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Large, N.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

Li, C.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Li, C. Q.

Li, K.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

Li, T.

Li, X. F.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

Li, X. S.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Lidorikis, E.

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors,” Nano Lett. 16(1), 8–20 (2016).
[Crossref] [PubMed]

Ling, X.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Liu, B.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

Liu, J. Q.

Liu, K.

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Loh, K. P.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Low, T.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

A. Y. Nikitin, T. Low, and L. Martín-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 90(4), 041407 (2014).
[Crossref]

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Lu, Y.

Ma, X. J.

Maier, S. A.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

Martín-Moreno, L.

A. Y. Nikitin, T. Low, and L. Martín-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 90(4), 041407 (2014).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Milana, S.

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors,” Nano Lett. 16(1), 8–20 (2016).
[Crossref] [PubMed]

Mueller, T.

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Nabiev, I. R.

D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light-matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
[Crossref] [PubMed]

Ni, Z. H.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Nikitin, A. Y.

A. Y. Nikitin, T. Low, and L. Martín-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 90(4), 041407 (2014).
[Crossref]

Nordlander, P.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

Nulli, S. A.

S. A. Nulli, M. S. Ukhtary, and R. Saito, “Significant enhancement of light absorption in undoped graphene using dielectric multilayer system,” Appl. Phys. Lett. 112(7), 073101 (2018).
[Crossref]

Panaro, S.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Park, G. S.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

Passaseo, A.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Piper, J. R.

J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Qin, S.

Radko, I. P.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

Rakovich, Y. P.

D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light-matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
[Crossref] [PubMed]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Reinecke, T. L.

S. Rudin and T. L. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B Condens. Matter Mater. Phys. 59(15), 10227–10233 (1999).
[Crossref]

Rejaei, B.

S. Barzegar-Parizi, B. Rejaei, and A. Khavasi, “Analytical Circuit Model for Periodic Arrays of Graphene Disks,” IEEE J. Quantum Electron. 51(9), 1–7 (2015).
[Crossref]

Ren, X. M.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Rodriguez, F. J.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

Rudin, S.

S. Rudin and T. L. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B Condens. Matter Mater. Phys. 59(15), 10227–10233 (1999).
[Crossref]

Ryabchuk, S. V.

D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light-matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
[Crossref] [PubMed]

Saito, R.

S. A. Nulli, M. S. Ukhtary, and R. Saito, “Significant enhancement of light absorption in undoped graphene using dielectric multilayer system,” Appl. Phys. Lett. 112(7), 073101 (2018).
[Crossref]

Sanvitto, D.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Sassi, U.

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors,” Nano Lett. 16(1), 8–20 (2016).
[Crossref] [PubMed]

Schlather, A. E.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Shi, X.

Sun, B.

Tang, C.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

Tang, D.

Tang, D. Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Tang, H.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

Tasco, V.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Todisco, F.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Ukhtary, M. S.

S. A. Nulli, M. S. Ukhtary, and R. Saito, “Significant enhancement of light absorption in undoped graphene using dielectric multilayer system,” Appl. Phys. Lett. 112(7), 073101 (2018).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Urban, A. S.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, H.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Wang, J.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Wang, L. L.

Wang, Q.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Wang, S. M.

Wang, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Wang, Y. L.

Wen, S. C.

Wen, X.

Wu, M.

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors,” Nano Lett. 16(1), 8–20 (2016).
[Crossref] [PubMed]

Wu, S.

L. Huang, J. Q. Liu, H. M. Deng, and S. Wu, “Phonon-Like Plasmonic Resonances in a Finite Number of Graphene Nanoribbons,” Adv. Opt. Mater. 6(11), 1701378 (2018).
[Crossref]

L. Huang, S. Wu, Y. L. Wang, X. J. Ma, H. M. Deng, S. M. Wang, Y. Lu, C. Q. Li, and T. Li, “Tunable unidirectional surface plasmon polariton launcher utilizing a graphene-based single asymmetric nanoantenna,” Opt. Mater. Express 7(2), 569–576 (2017).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Wu, Y. Q.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Xia, F.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Xia, F. N.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Xia, S. X.

Xiao, X. F.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

Xie, N.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

Xu, W.

Yagoub, M. C. E.

S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and M. C. E. Yagoub, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
[Crossref]

Yan, H. G.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Yan, Y. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yang, J.

Yang, Y.

Yi, S.

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, Z.

Yuan, X.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhai, X.

Zhang, C.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

Zhang, H.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Zhang, J.

Zhang, K.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, R.

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, X.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Z.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Z. M.

B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135(3), 81–89 (2014).
[Crossref]

Zhao, B.

B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135(3), 81–89 (2014).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, J. M.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhou, L.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhou, M.

Zhu, M.

Zhu, W. J.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Zhu, X.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

Zhu, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhu, Z.

Zi, J.

ACS Nano (3)

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

ACS Omega (1)

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

ACS Photonics (2)

B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Adv. Opt. Mater. (1)

L. Huang, J. Q. Liu, H. M. Deng, and S. Wu, “Phonon-Like Plasmonic Resonances in a Finite Number of Graphene Nanoribbons,” Adv. Opt. Mater. 6(11), 1701378 (2018).
[Crossref]

Appl. Phys. Lett. (3)

S. A. Nulli, M. S. Ukhtary, and R. Saito, “Significant enhancement of light absorption in undoped graphene using dielectric multilayer system,” Appl. Phys. Lett. 112(7), 073101 (2018).
[Crossref]

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Barzegar-Parizi, B. Rejaei, and A. Khavasi, “Analytical Circuit Model for Periodic Arrays of Graphene Disks,” IEEE J. Quantum Electron. 51(9), 1–7 (2015).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135(3), 81–89 (2014).
[Crossref]

Nano Lett. (2)

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors,” Nano Lett. 16(1), 8–20 (2016).
[Crossref] [PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

Nanoscale (1)

D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light-matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

M. A. Green and S. P. Bremner, “Energy conversion approaches and materials for high-efficiency photovoltaics,” Nat. Mater. 16(1), 23–34 (2017).
[Crossref] [PubMed]

Nat. Photonics (4)

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Nature (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and M. C. E. Yagoub, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Rev. B Condens. Matter Mater. Phys. (2)

S. Rudin and T. L. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B Condens. Matter Mater. Phys. 59(15), 10227–10233 (1999).
[Crossref]

A. Y. Nikitin, T. Low, and L. Martín-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 90(4), 041407 (2014).
[Crossref]

Phys. Rev. Lett. (1)

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Other (1)

A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities, Oxford University Press, New York (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 3D schematic of the graphene-based tapered metal groove structure. The inset shows the cross section of the proposed structures.
Fig. 2
Fig. 2 (a) The schematic of tapered metal groove, with the LC circuit model in inset. (b) The calculated absorption spectrum of the proposed tapered metal groove structure with Ey field distribution and vectorial field distribution in inset. (c) and (d) show the absorption contours with respect to wavelength by changing the top groove width and height, respectively. The red solid lines on these diagrams are the fitting dispersion curve through LC circuit model.
Fig. 3
Fig. 3 (a) The calculated absorption spectra of the proposed tapered metal groove with different ribbon width at Fermi energy of 0.4 eV. (b) The absorption spectrum when ribbon width d = 300 nm. (c) The corresponding Ey electric field distribution of peaks (B, C, D, E).
Fig. 4
Fig. 4 (a) The calculated graphene absorption spectrum of single-edge contacted nanoribbon with the same geometry parameters in section 2. The filled medium inside of groove is silica and the Fermi energy of graphene is 0.4 eV. Besides, insets show the field distribution of peak F and G at wavelength 10.8 µm and 11µm, respectively. (b) The absorption contour of proposed structure with the change of groove height. Here, the red line represents the dispersion curve of tapered groove, red dots are the GSPs resonance at the ribbon width d = 67 nm, and green dots are the fitted results of harmonic oscillator model.
Fig. 5
Fig. 5 The flat-top absorption spectrum of graphene nanoribbon with the refractive index n = 3 medium filled in groove, the Fermi energy is 0.4 eV.
Fig. 6
Fig. 6 (a) The calculated absorption spectrum of the graphene nanoribbon laying on the silica substrate. The graphene is deposited on the silica substrate with a GSPs mode excited in inset. (b) The calculated absorption spectra of the tapered metal grooves with central-placed graphene ribbons. The case that groove height h0 = 2.1 µm, the excited GSPs mode almost completely decouple with the waveguide mode, and obviously, there is a higher quality factor of GSPs mode with the change of ribbon widths. (c) The calculated absorption spectrum of the tapered metal grooves with central-placed graphene ribbons. The case that groove height h0 = 1.4 µm. Here, the strong coupling is excited and as it expected, a deep absorption fluctuation is produced in this system, which is hard to eliminate it due to the huge refractive material that do not exist in nature.

Tables (1)

Tables Icon

Table 1 Performance comparison of different filled medium

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

σ g = 2i e 2 k B T π 2 ( ω+i τ 1 ) ln[ 2cosh( E F 2 k B T ) ] + e 2 4π { i 2 ln ( ω+2 E F ) 2 ( ω2 E F )+ ( 2 k B T ) 2 + π 2 +arctan( ω2 E F 2 k B T )}
ε g =1+ i σ g ω ε 0 t g
L m = 0 h 0 μ 0 ( w 1 2htanθ)dh= μ 0 w 1 h 0 μ 0 ( w 1 w 2 ) h 0 2
L k = 2b+ w 1 ε 0 ω 2 lδ ε ' ( ε ' 2 + ε '' 2 )
C=α ε 0 0 h 0 h 0 w 1 h 0 ( w 1 w 2 )h dh=- α ε 0 h 0 w 1 w 2 ln( w 2 w 1 )
λ=2π c 0 LC
E ± ( ω )= 2 ( ω GSPs + ω groove )± 1 2 (Δ ω R ) 2 + ( ω GSPs ω groove ) 2

Metrics