Abstract

We report in situ observation of dynamic pitch jumps in cholesteric liquid crystal (CLC) layers that depend on the applied electric field. A high-speed and wide bandwidth wavelength-swept laser is used as an optical broadband source to measure the dynamic pitch jumps. We could not observe the dynamic pitch jump in the quasi-static pitch variation. Instead, we carry out two driving methods, a normal driving and an overdriving method, in order to measure the dynamic pitch jump in the CLC cell. For the case of normal driving, it has been confirmed that the reflection band from the measurement region is discontinuously shifted by movement of the defect wall. The reflection band was compressed and recovered before the band moved, but the dynamic pitch jump of the helix could not be observed. For the case of overdriving, however, it was possible to observe the unwinding of the helix during the dynamic pitch jump. The entire dynamic pitch jump process in the CLC cell could be observed by measuring the transmission spectra from the CLC cell by varying the applied electric field. We confirm that the entire reaction time with the overdriving method was about 800 ms, which was shorter than with the normal driving method. This study contributes to the development of fast in-plane switching research and the development of new CLC devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thickness-independent dynamics in cholesteric liquid crystals

Yo Inoue, Mayo Hattori, and Hiroshi Moritake
Opt. Express 25(4) 3566-3577 (2017)

Voltage-controlled formation of short pitch chiral liquid crystal structures based on high-resolution surface topography

Inge Nys, Jeroen Beeckman, and Kristiaan Neyts
Opt. Express 27(8) 11492-11502 (2019)

Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection

Ki-Han Kim, Hye-Jung Jin, Kyoung-Ho Park, Joun-Ho Lee, Jae Chang Kim, and Tae-Hoon Yoon
Opt. Express 18(16) 16745-16750 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Xianyu, S. Faris, and G. P. Crawford, “In-plane switching of cholesteric liquid crystals for visible and near-infrared applications,” Appl. Opt. 43(26), 5006–5015 (2004).
    [Crossref] [PubMed]
  2. M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
    [Crossref] [PubMed]
  3. K.-H. Kim, B.-H. Yu, S.-W. Choi, S.-W. Oh, and T.-H. Yoon, “Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure,” Opt. Express 20(22), 24376–24381 (2012).
    [Crossref] [PubMed]
  4. K.-H. Kim, D. H. Song, Z.-G. Shen, B. W. Park, K.-H. Park, J.-H. Lee, and T.-H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express 19(11), 10174–10179 (2011).
    [Crossref] [PubMed]
  5. D. K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
    [Crossref]
  6. C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
    [Crossref] [PubMed]
  7. J. Yeon, T.-W. Koh, H. Cho, J. Chung, S. Yoo, and J.-B. Yoon, “Actively transparent display with enhanced legibility based on an organic light-emitting diode and a cholesteric liquid crystal blind panel,” Opt. Express 21(8), 10358–10366 (2013).
    [Crossref] [PubMed]
  8. G. J. Choi, H. M. Jung, S. H. Lee, and J. S. Gwag, “Infrared shutter using cholesteric liquid crystal,” Appl. Opt. 55(16), 4436–4440 (2016).
    [Crossref] [PubMed]
  9. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
    [Crossref]
  10. C. K. Chang, S. W. Chiu, H. L. Kuo, and K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
    [Crossref]
  11. J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
    [Crossref]
  12. M. Rumi, T. J. White, and T. J. Bunning, “Reflection spectra of distorted cholesteric liquid crystal structures in cells with interdigitated electrodes,” Opt. Express 22(13), 16510–16519 (2014).
    [Crossref] [PubMed]
  13. S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
    [Crossref] [PubMed]
  14. P. V. Shibaev, P. Rivera, D. Teter, S. Marsico, M. Sanzari, V. Ramakrishnan, and E. Hanelt, “Color changing and lasing stretchable cholesteric films,” Opt. Express 16(5), 2965–2970 (2008).
    [Crossref] [PubMed]
  15. M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
    [Crossref]
  16. J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
    [Crossref] [PubMed]
  17. V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
    [Crossref] [PubMed]
  18. K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
    [Crossref]
  19. M. Mohammadimasoudi, J. Beeckman, J. Shin, K. Lee, and K. Neyts, “Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time,” Opt. Express 22(16), 19098–19107 (2014).
    [Crossref] [PubMed]
  20. H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
    [Crossref] [PubMed]
  21. Y. Inoue and H. Moritake, “Dynamic control of colorful reflection toward practical cholesteric liquid crystal displays,” Opt. Express 24(20), 23027–23036 (2016).
    [Crossref] [PubMed]
  22. Y. Inoue, M. Hattori, H. Kubo, and H. Moritake, “Faster pitch control of cholesteric liquid crystal,” Jpn. J. Appl. Phys. 56(8), 080302 (2017).
    [Crossref]
  23. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
    [Crossref] [PubMed]
  24. C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
    [Crossref] [PubMed]
  25. H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
    [Crossref]
  26. C. Jirauschek and R. Huber, “Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers,” Biomed. Opt. Express 6(7), 2448–2465 (2015).
    [Crossref] [PubMed]
  27. S. H. Kassani, M. Villiger, N. Uribe-Patarroyo, C. Jun, R. Khazaeinezhad, N. Lippok, and B. E. Bouma, “Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging,” Opt. Express 25(7), 8255–8266 (2017).
    [Crossref] [PubMed]
  28. C. Jun, M. Villiger, W.-Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
    [Crossref] [PubMed]
  29. S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22(3), 3414–3424 (2014).
    [Crossref] [PubMed]
  30. M. O. Ko, S.-J. Kim, J.-H. Kim, B. W. Lee, and M. Y. Jeon, “Dynamic measurement for electric field sensor based on wavelength-swept laser,” Opt. Express 22(13), 16139–16147 (2014).
    [Crossref] [PubMed]
  31. H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
    [Crossref]
  32. J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
    [Crossref]
  33. H. Hong, H. Shin, and I. Chung, “In-plane switching technology for liquid crystal display television,” J. Disp. Technol. 3(4), 361–370 (2007).
    [Crossref]
  34. D. Yang and S. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).
  35. A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
    [Crossref] [PubMed]
  36. Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
    [Crossref] [PubMed]
  37. F. Zhang and D. K. Yang, “Evolution of disclinations in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 041701 (2002).
    [Crossref] [PubMed]
  38. M.-Y. Jeong and J. Cha, “Firsthand in situ observation of active fine laser tuning by combining a temperature gradient and a CLC wedge cell structure,” Opt. Express 23(16), 21243–21253 (2015).
    [Crossref] [PubMed]
  39. S. P. Palto, “On Mechanisms of the Helix Pitch Variation in a Thin Cholesteric Layer Confined between Two Surfaces,” J. Exp. Theor. Phys. 94(2), 260–269 (2002).
    [Crossref]
  40. V. A. Belyakov and E. I. Kats, “Surface anchoring and temperature variations of the pitch in thin cholesteric layers,” J. Exp. Theor. Phys. 91(3), 488–496 (2000).
    [Crossref]
  41. M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
    [Crossref] [PubMed]

2018 (1)

H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
[Crossref]

2017 (3)

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

S. H. Kassani, M. Villiger, N. Uribe-Patarroyo, C. Jun, R. Khazaeinezhad, N. Lippok, and B. E. Bouma, “Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging,” Opt. Express 25(7), 8255–8266 (2017).
[Crossref] [PubMed]

Y. Inoue, M. Hattori, H. Kubo, and H. Moritake, “Faster pitch control of cholesteric liquid crystal,” Jpn. J. Appl. Phys. 56(8), 080302 (2017).
[Crossref]

2016 (3)

2015 (5)

M.-Y. Jeong and J. Cha, “Firsthand in situ observation of active fine laser tuning by combining a temperature gradient and a CLC wedge cell structure,” Opt. Express 23(16), 21243–21253 (2015).
[Crossref] [PubMed]

S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
[Crossref] [PubMed]

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
[Crossref] [PubMed]

C. Jirauschek and R. Huber, “Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers,” Biomed. Opt. Express 6(7), 2448–2465 (2015).
[Crossref] [PubMed]

2014 (9)

C. Jun, M. Villiger, W.-Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
[Crossref] [PubMed]

S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22(3), 3414–3424 (2014).
[Crossref] [PubMed]

M. O. Ko, S.-J. Kim, J.-H. Kim, B. W. Lee, and M. Y. Jeon, “Dynamic measurement for electric field sensor based on wavelength-swept laser,” Opt. Express 22(13), 16139–16147 (2014).
[Crossref] [PubMed]

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

M. Mohammadimasoudi, J. Beeckman, J. Shin, K. Lee, and K. Neyts, “Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time,” Opt. Express 22(16), 19098–19107 (2014).
[Crossref] [PubMed]

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]

M. Rumi, T. J. White, and T. J. Bunning, “Reflection spectra of distorted cholesteric liquid crystal structures in cells with interdigitated electrodes,” Opt. Express 22(13), 16510–16519 (2014).
[Crossref] [PubMed]

C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
[Crossref] [PubMed]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref] [PubMed]

2013 (3)

J. Yeon, T.-W. Koh, H. Cho, J. Chung, S. Yoo, and J.-B. Yoon, “Actively transparent display with enhanced legibility based on an organic light-emitting diode and a cholesteric liquid crystal blind panel,” Opt. Express 21(8), 10358–10366 (2013).
[Crossref] [PubMed]

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref] [PubMed]

2012 (3)

C. K. Chang, S. W. Chiu, H. L. Kuo, and K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

K.-H. Kim, B.-H. Yu, S.-W. Choi, S.-W. Oh, and T.-H. Yoon, “Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure,” Opt. Express 20(22), 24376–24381 (2012).
[Crossref] [PubMed]

2011 (2)

K.-H. Kim, D. H. Song, Z.-G. Shen, B. W. Park, K.-H. Park, J.-H. Lee, and T.-H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express 19(11), 10174–10179 (2011).
[Crossref] [PubMed]

A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref] [PubMed]

2010 (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

2008 (1)

2007 (1)

H. Hong, H. Shin, and I. Chung, “In-plane switching technology for liquid crystal display television,” J. Disp. Technol. 3(4), 361–370 (2007).
[Crossref]

2006 (2)

D. K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
[Crossref]

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

2005 (1)

V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

2002 (2)

S. P. Palto, “On Mechanisms of the Helix Pitch Variation in a Thin Cholesteric Layer Confined between Two Surfaces,” J. Exp. Theor. Phys. 94(2), 260–269 (2002).
[Crossref]

F. Zhang and D. K. Yang, “Evolution of disclinations in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 041701 (2002).
[Crossref] [PubMed]

2000 (1)

V. A. Belyakov and E. I. Kats, “Surface anchoring and temperature variations of the pitch in thin cholesteric layers,” J. Exp. Theor. Phys. 91(3), 488–496 (2000).
[Crossref]

Barbero, G.

A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref] [PubMed]

Barnik, M. I.

S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
[Crossref] [PubMed]

Beeckman, J.

Belyakov, V. A.

V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref] [PubMed]

V. A. Belyakov and E. I. Kats, “Surface anchoring and temperature variations of the pitch in thin cholesteric layers,” J. Exp. Theor. Phys. 91(3), 488–496 (2000).
[Crossref]

Biedermann, B. R.

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref] [PubMed]

Boudoux, C.

Bouma, B. E.

Bunning, T. J.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

M. Rumi, T. J. White, and T. J. Bunning, “Reflection spectra of distorted cholesteric liquid crystal structures in cells with interdigitated electrodes,” Opt. Express 22(13), 16510–16519 (2014).
[Crossref] [PubMed]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref] [PubMed]

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]

Cha, J.

Chang, C. K.

C. K. Chang, S. W. Chiu, H. L. Kuo, and K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]

Chen, C.-W.

Chiu, S. W.

C. K. Chang, S. W. Chiu, H. L. Kuo, and K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]

Cho, H.

Choi, G. J.

Choi, S.-W.

Chung, I.

H. Hong, H. Shin, and I. Chung, “In-plane switching technology for liquid crystal display television,” J. Disp. Technol. 3(4), 361–370 (2007).
[Crossref]

Chung, J.

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Crawford, G. P.

Debije, M. G.

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
[Crossref] [PubMed]

Dessaud, N.

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Drevensek-Olenik, I.

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref] [PubMed]

Eigenwillig, C. M.

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref] [PubMed]

Faris, S.

Geivandov, A. R.

S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
[Crossref] [PubMed]

Geng, Y.

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref] [PubMed]

Gwag, J. S.

Hanelt, E.

Hassan, K.

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]

Hattori, M.

Y. Inoue, M. Hattori, H. Kubo, and H. Moritake, “Faster pitch control of cholesteric liquid crystal,” Jpn. J. Appl. Phys. 56(8), 080302 (2017).
[Crossref]

Hensen, J. L. M.

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
[Crossref] [PubMed]

Hong, H.

H. Hong, H. Shin, and I. Chung, “In-plane switching technology for liquid crystal display television,” J. Disp. Technol. 3(4), 361–370 (2007).
[Crossref]

Hsu, W.-H.

Huber, R.

C. Jirauschek and R. Huber, “Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers,” Biomed. Opt. Express 6(7), 2448–2465 (2015).
[Crossref] [PubMed]

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref] [PubMed]

Imrie, C. T.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Inoue, Y.

Y. Inoue, M. Hattori, H. Kubo, and H. Moritake, “Faster pitch control of cholesteric liquid crystal,” Jpn. J. Appl. Phys. 56(8), 080302 (2017).
[Crossref]

Y. Inoue and H. Moritake, “Dynamic control of colorful reflection toward practical cholesteric liquid crystal displays,” Opt. Express 24(20), 23027–23036 (2016).
[Crossref] [PubMed]

Jau, H.-C.

Jeon, M. Y.

H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
[Crossref]

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

M. O. Ko, S.-J. Kim, J.-H. Kim, B. W. Lee, and M. Y. Jeon, “Dynamic measurement for electric field sensor based on wavelength-swept laser,” Opt. Express 22(13), 16139–16147 (2014).
[Crossref] [PubMed]

Jeong, M.-Y.

Jirauschek, C.

C. Jirauschek and R. Huber, “Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers,” Biomed. Opt. Express 6(7), 2448–2465 (2015).
[Crossref] [PubMed]

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref] [PubMed]

Jun, C.

Jung, H. M.

Jünnemann, G.

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

Kassani, S. H.

Kasyanova, I. V.

S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
[Crossref] [PubMed]

Kats, E. I.

V. A. Belyakov and E. I. Kats, “Surface anchoring and temperature variations of the pitch in thin cholesteric layers,” J. Exp. Theor. Phys. 91(3), 488–496 (2000).
[Crossref]

Keuker-Baumann, S.

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

Khalil, D.

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]

Khandelwal, H.

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
[Crossref] [PubMed]

Khazaeinezhad, R.

Kim, J.-H.

H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
[Crossref]

M. O. Ko, S.-J. Kim, J.-H. Kim, B. W. Lee, and M. Y. Jeon, “Dynamic measurement for electric field sensor based on wavelength-swept laser,” Opt. Express 22(13), 16139–16147 (2014).
[Crossref] [PubMed]

Kim, K.-H.

Kim, S.-J.

H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
[Crossref]

M. O. Ko, S.-J. Kim, J.-H. Kim, B. W. Lee, and M. Y. Jeon, “Dynamic measurement for electric field sensor based on wavelength-swept laser,” Opt. Express 22(13), 16139–16147 (2014).
[Crossref] [PubMed]

Kitzerow, H. S.

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

Klein, T.

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref] [PubMed]

Ko, M. O.

H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
[Crossref]

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

M. O. Ko, S.-J. Kim, J.-H. Kim, B. W. Lee, and M. Y. Jeon, “Dynamic measurement for electric field sensor based on wavelength-swept laser,” Opt. Express 22(13), 16139–16147 (2014).
[Crossref] [PubMed]

Koh, T.-W.

Kubo, H.

Y. Inoue, M. Hattori, H. Kubo, and H. Moritake, “Faster pitch control of cholesteric liquid crystal,” Jpn. J. Appl. Phys. 56(8), 080302 (2017).
[Crossref]

Kuo, H. L.

C. K. Chang, S. W. Chiu, H. L. Kuo, and K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]

Kwon, Y. S.

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

Lagerwall, J. P. F.

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref] [PubMed]

Lavrentovich, O. D.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Lee, B. W.

Lee, H. J.

H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
[Crossref]

Lee, J.-H.

Lee, K.

Lee, K. M.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]

Lee, S. H.

Lelidis, I.

A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref] [PubMed]

Lenzini, G.

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref] [PubMed]

Li, C.-C.

Li, Q.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Li, Y.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Lin, T.-H.

Lippok, N.

Loonen, R. C. G. M.

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
[Crossref] [PubMed]

Marsico, S.

McConney, M. E.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]

Mitov, M.

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Mohammadimasoudi, M.

Moritake, H.

Y. Inoue, M. Hattori, H. Kubo, and H. Moritake, “Faster pitch control of cholesteric liquid crystal,” Jpn. J. Appl. Phys. 56(8), 080302 (2017).
[Crossref]

Y. Inoue and H. Moritake, “Dynamic control of colorful reflection toward practical cholesteric liquid crystal displays,” Opt. Express 24(20), 23027–23036 (2016).
[Crossref] [PubMed]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Natarajan, L. V.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref] [PubMed]

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]

Neyts, K.

Noh, J.

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref] [PubMed]

Oh, S.-W.

Oh, W.-Y.

Omran, H.

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]

Osipov, M. A.

V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref] [PubMed]

Pai, T.-W.

Palto, S. P.

S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
[Crossref] [PubMed]

S. P. Palto, “On Mechanisms of the Helix Pitch Variation in a Thin Cholesteric Layer Confined between Two Surfaces,” J. Exp. Theor. Phys. 94(2), 260–269 (2002).
[Crossref]

Palto, V. S.

S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
[Crossref] [PubMed]

Park, B. W.

Park, J.

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

Park, K.-H.

Paterson, D. A.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Ramakrishnan, V.

Rivera, P.

Rumi, M.

M. Rumi, T. J. White, and T. J. Bunning, “Reflection spectra of distorted cholesteric liquid crystal structures in cells with interdigitated electrodes,” Opt. Express 22(13), 16510–16519 (2014).
[Crossref] [PubMed]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref] [PubMed]

Rupp, R.

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref] [PubMed]

Sabry, Y. M.

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]

Sadek, M.

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]

Sanzari, M.

Scarfone, A. M.

A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref] [PubMed]

Schenning, A. P. H. J.

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
[Crossref] [PubMed]

Schmidtke, J.

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

Shalaby, M. Y.

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]

Shen, Z.-G.

Shibaev, P. V.

Shin, H.

H. Hong, H. Shin, and I. Chung, “In-plane switching technology for liquid crystal display television,” J. Disp. Technol. 3(4), 361–370 (2007).
[Crossref]

Shin, J.

Siddiqui, M.

Song, D. H.

Stewart, I. W.

V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref] [PubMed]

Storey, J. M. D.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Tang, K. T.

C. K. Chang, S. W. Chiu, H. L. Kuo, and K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]

Tearney, G. J.

Teter, D.

Todor, S.

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref] [PubMed]

Tondiglia, V. P.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref] [PubMed]

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]

Tozburun, S.

Tseng, H.-Y.

Uribe-Patarroyo, N.

Vakoc, B. J.

Villiger, M.

White, T. J.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

M. Rumi, T. J. White, and T. J. Bunning, “Reflection spectra of distorted cholesteric liquid crystal structures in cells with interdigitated electrodes,” Opt. Express 22(13), 16510–16519 (2014).
[Crossref] [PubMed]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref] [PubMed]

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]

Wieser, W.

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref] [PubMed]

Wu, Y.-C.

Xiang, J.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Xianyu, H.

Yang, D. K.

D. K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
[Crossref]

F. Zhang and D. K. Yang, “Evolution of disclinations in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 041701 (2002).
[Crossref] [PubMed]

Yeon, J.

Yoo, S.

Yoon, J.-B.

Yoon, T.-H.

Yu, B.-H.

Yun, S. H.

Zhang, F.

F. Zhang and D. K. Yang, “Evolution of disclinations in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 041701 (2002).
[Crossref] [PubMed]

ACS Photonics (1)

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

Adv. Mater. (1)

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

C. K. Chang, S. W. Chiu, H. L. Kuo, and K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

Biomed. Opt. Express (1)

ChemPhysChem (1)

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]

J. Disp. Technol. (2)

H. Hong, H. Shin, and I. Chung, “In-plane switching technology for liquid crystal display television,” J. Disp. Technol. 3(4), 361–370 (2007).
[Crossref]

D. K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
[Crossref]

J. Exp. Theor. Phys. (2)

S. P. Palto, “On Mechanisms of the Helix Pitch Variation in a Thin Cholesteric Layer Confined between Two Surfaces,” J. Exp. Theor. Phys. 94(2), 260–269 (2002).
[Crossref]

V. A. Belyakov and E. I. Kats, “Surface anchoring and temperature variations of the pitch in thin cholesteric layers,” J. Exp. Theor. Phys. 91(3), 488–496 (2000).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Inoue, M. Hattori, H. Kubo, and H. Moritake, “Faster pitch control of cholesteric liquid crystal,” Jpn. J. Appl. Phys. 56(8), 080302 (2017).
[Crossref]

Nat. Commun. (1)

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Opt. Commun. (1)

H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
[Crossref]

Opt. Express (12)

S. H. Kassani, M. Villiger, N. Uribe-Patarroyo, C. Jun, R. Khazaeinezhad, N. Lippok, and B. E. Bouma, “Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging,” Opt. Express 25(7), 8255–8266 (2017).
[Crossref] [PubMed]

C. Jun, M. Villiger, W.-Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
[Crossref] [PubMed]

S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22(3), 3414–3424 (2014).
[Crossref] [PubMed]

M. O. Ko, S.-J. Kim, J.-H. Kim, B. W. Lee, and M. Y. Jeon, “Dynamic measurement for electric field sensor based on wavelength-swept laser,” Opt. Express 22(13), 16139–16147 (2014).
[Crossref] [PubMed]

Y. Inoue and H. Moritake, “Dynamic control of colorful reflection toward practical cholesteric liquid crystal displays,” Opt. Express 24(20), 23027–23036 (2016).
[Crossref] [PubMed]

M. Mohammadimasoudi, J. Beeckman, J. Shin, K. Lee, and K. Neyts, “Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time,” Opt. Express 22(16), 19098–19107 (2014).
[Crossref] [PubMed]

J. Yeon, T.-W. Koh, H. Cho, J. Chung, S. Yoo, and J.-B. Yoon, “Actively transparent display with enhanced legibility based on an organic light-emitting diode and a cholesteric liquid crystal blind panel,” Opt. Express 21(8), 10358–10366 (2013).
[Crossref] [PubMed]

K.-H. Kim, B.-H. Yu, S.-W. Choi, S.-W. Oh, and T.-H. Yoon, “Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure,” Opt. Express 20(22), 24376–24381 (2012).
[Crossref] [PubMed]

K.-H. Kim, D. H. Song, Z.-G. Shen, B. W. Park, K.-H. Park, J.-H. Lee, and T.-H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express 19(11), 10174–10179 (2011).
[Crossref] [PubMed]

P. V. Shibaev, P. Rivera, D. Teter, S. Marsico, M. Sanzari, V. Ramakrishnan, and E. Hanelt, “Color changing and lasing stretchable cholesteric films,” Opt. Express 16(5), 2965–2970 (2008).
[Crossref] [PubMed]

M. Rumi, T. J. White, and T. J. Bunning, “Reflection spectra of distorted cholesteric liquid crystal structures in cells with interdigitated electrodes,” Opt. Express 22(13), 16510–16519 (2014).
[Crossref] [PubMed]

M.-Y. Jeong and J. Cha, “Firsthand in situ observation of active fine laser tuning by combining a temperature gradient and a CLC wedge cell structure,” Opt. Express 23(16), 21243–21253 (2015).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (4)

S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
[Crossref] [PubMed]

V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref] [PubMed]

F. Zhang and D. K. Yang, “Evolution of disclinations in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 041701 (2002).
[Crossref] [PubMed]

A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref] [PubMed]

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
[Crossref] [PubMed]

Other (1)

D. Yang and S. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).

Supplementary Material (2)

NameDescription
» Visualization 1       The visualization 1 plays a movie of the in-situ observation of dynamic variation of the transmission spectra for normal driving method.
» Visualization 2       The visualization 2 was recorded an in-situ dynamic variation of the transmission spectra for over driving method. Due to the fast response of the transmission spectra, the movie was slowly played.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Liquid crystal driving methods. (a) Normal driving method and (b) over driving method.
Fig. 2
Fig. 2 (a) Normalized transmittance spectrum and (b) microphotograph of the planar CLC state when the applied electric field is zero.
Fig. 3
Fig. 3 (a) Experimental setup for wavelength-swept laser, (b) optical spectrum in wavelength domain, and (c) pulse profile in temporal domain.
Fig. 4
Fig. 4 CLC dynamic pitch measurement setup scheme. (WSL: wavelength-swept laser, PBS: polarization beam splitter, QWP: quarter wave plate, BS: beam splitter, CCD: charge-coupled device, FBG: fiber Bragg grating)
Fig. 5
Fig. 5 Transmission signal from a CLC cell (a) in the time domain and (b) the same spectrum with the axis transformed to wavelength when the applied electric field is zero.
Fig. 6
Fig. 6 Microphotographs of the CLC cell when the applied electric field strength is (a) 0.08 V/μm, (b) 1.42V/μm, (c) 2.85 V/μm, and (d) the normalized transmission spectra as the electric field strength increases from 0.08 V/μm to 3.77 V/μm in 0.1 V/μm increments.
Fig. 7
Fig. 7 Microphotographs of the CLC cell over (a) 0 s, (b) 0.38 s, and (c) 13 s of elapsed time after an electric field of 2.93 V/μm was applied. (d) The transmittance spectra as the pitch discontinuously changes with time from the P0 to the P1 state (see Visualization 1).
Fig. 8
Fig. 8 CLC cell transmittance spectra for different elapsed times. (a) Reflection band compression, (b) inhomogeneous helical structure, (c) relaxation of helical structure with blueshift, and (d) three-dimensional transmittance spectra when 4.11 V/μm electric field is applied for 352 ms, followed by application of a 2.68 V/μm driving field (see Visualization 2).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ r = γ ε 0 Δε V 2 l 2 π 2 K 2 d 2
p 0 2 = d N ,
G n = 1 2 0 l [ K 22 ( d ϕ n dz q 0 ) 2 Δε ε 0 E 2 sin 2 ( ϕ n ) ] dz,

Metrics