Abstract

To plan a rapid response and minimize operational costs, passive optical network operators require to automatically detect and identify faults that may occur in the optical distribution network. In this work, we present DSP-Enhanced OTDR, a novel methodology for remote fault analysis based on conventional optical time-domain reflectometry complemented with reference traces and DSP-based techniques. We first obtain the optimal decision thresholds to detect deviations in the noisy OTDR measurement. In order to quantify and characterize the fault, the detection stage is followed by one of estimation where its return loss and insertion loss are determined. We experimentally demonstrate that this approach allows to detect and characterize faults with an accuracy higher than that found in conventional OTDR trace analysis. In our experiments, we achieved detection sensitivities higher than 0.2 dB in a 1:16 split-ratio PON, and higher than 1 dB in a 1:64 split-ratio PON, achieving estimation errors that can be as low as 0.01 dB. We also verified how the optical network terminal’s reflectivity can improve the detection capabilities.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fault-detection technique in a WDM-PON

Juhee Park, Jinserk Baik, and Changhee Lee
Opt. Express 15(4) 1461-1466 (2007)

Identification method of non-reflective faults based on index distribution of optical fibers

Wonkyoung Lee, Seung Il Myong, Jyung Chan Lee, and Sangsoo Lee
Opt. Express 22(1) 325-337 (2014)

Optimal Fiber Link Fault Decision for Optical 2D Coding-Monitoring Scheme in Passive Optical Networks

Min Zhu, Jiao Zhang, Dongpeng Wang, and Xiaohan Sun
J. Opt. Commun. Netw. 8(3) 137-147 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Kramer, M. De Andrade, R. Roy, and P. Chowdhury, “Evolution of Optical Access Networks: Architectures and Capacity Upgrades,” Proc. IEEE 100(5), 1188–1196 (2012).
    [Crossref]
  2. C. Mas Machuca, J. Chen, and L. Wosinska, “Cost-Efficient Protection in TDM PONs,” IEEE Commun. Mag. 50(8), 110–117 (2012).
    [Crossref]
  3. M. A. Esmail and H. Fathallah, “Physical Layer Monitoring Techniques for TDM-Passive Optical Networks: A Survey,” IEEE Comm. Surv. and Tutor. 15(2), 943–958 (2013).
    [Crossref]
  4. A. Ehrhardt, H. Foisel, F. Escher, A. Templin, and M. Adamy, “Monitoring of the transparent fibre infrastructure for FTTx networks: An operator’s view,” in Proc. of IEEE Int. Conf. on Transparent Optical Networks (ITCON) (2010).
    [Crossref]
  5. B. Feigel, J. Van Erps, M. Khoder, S. Beri, K. Jeuris, D. Van Goidsenhoven, J. Watté, and H. Thienpont, “Optical Time-Domain Reflectometry Simulations of Passive Optical Networks: A Linear Time-Invariant System Approach for Arbitrary Pulses,” J. Lightwave Technol. 32(17), 3008–3019 (2014).
    [Crossref]
  6. L. Wuilmart, V. Moeyaert, D. Daniaux, P. Megret, and M. Blondel, “A PC-based method for the localisation and quantization of faults in passive tree-structured optical networks using the OTDR technique,” in Proc. of IEEE Conf. on Lasers and Electro-Optics Society, 122–123, (1996).
    [Crossref]
  7. J. Laferriere, M. Saget, and A. Champavere, “Original method for analyzing multipath networks by OTDR measurement,” in Conference on Optical Fiber Communications, 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper TuT4.
    [Crossref]
  8. H. Fathallah and L. Rusch, “Code-division multiplexing for in-service out-of-band monitoring of live FTTH-PONs,” J. Opt. Net. 6(7), 819–827 (2007).
    [Crossref]
  9. M. P. Fernández, P. A. Costanzo Caso, and L. A. Bulus Rossini, “False Detections in an Optical Coding-Based PON Monitoring Scheme,” IEEE Photonics Technol. Lett. 29(10), 802–805 (2017).
    [Crossref]
  10. M. P. Fernández, P. A. Costanzo Caso, and L. A. Bulus Rossini, “Design and performance evaluation of an optical coding scheme for PON monitoring,” in Proc. of XVI Workshop Info. Proc. & Control (RPIC) (2015).
  11. M. M. Rad, H. Fathallah, S. LaRochelle, and L. Rusch, “Computationally Efficient Monitoring of PON Fiber Link Quality Using Periodic Coding,” J. Opt. Commun. Netw. 3(1), 77–86 (2011).
    [Crossref]
  12. X. Zhang, F. Lu, S. Chen, X. Zhao, M. Zhu, and X. Sun, “Remote coding scheme based on waveguide Bragg grating in PLC splitter chip for PON monitoring,” Opt. Express 24(5), 4351–4364 (2016).
    [Crossref] [PubMed]
  13. K. Ozawa, M. Shigehara, J. Hanai, A. Ban, T. Naitou, and K. Shimoura, “Field trial of in-service individual line monitoring of PONs using a tunable OTDR,” Proc. SPIE 4185, 880–883 (2000).
  14. K. Enbutsu, N. Araky, N. Honda, and Y. Azuma, “Individual fiber line testing technique for PON using wavelength assigned FBG termination and TLS-OTDR enhanced with reflected trace analysis method,” in Joint Conf. Opto-Electronics and Commun. Conf. and the Australian Conf. on Optical Fibre Tech. (IEEE, 2008).
    [Crossref]
  15. P. J. Urban, A. Getaneh, J. P. von der Weid, G. P. Temporão, G. Vall-llosera, and J. Chen, “Detection of fiber faults in passive optical networks,” J. Opt. Commun. Netw. 5(11), 1111–1121 (2013).
    [Crossref]
  16. H. Iida, Y. Koshikiya, F. Ito, and K. Tanaka, “High-Sensitivity Coherent Optical Time Domain Reflectometry Employing Frequency-Division Multiplexing,” J. Lightwave Technol. 30(8), 1121–1126 (2012).
    [Crossref]
  17. H. K. Shim, K. Y. Cho, Y. Takushima, and Y. C. Chung, “Correlation-based OTDR for in-service monitoring of 64-split TDM PON,” Opt. Express 20(5), 4921–4926 (2012).
    [Crossref] [PubMed]
  18. Y. Luo, L. Xia, Z. Xu, C. Yu, Q. Sun, W. Li, D. Huang, and D. Liu, “Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring,” Opt. Express 23(3), 2416–2423 (2015).
    [Crossref] [PubMed]
  19. G. C. Amaral, J. D. Garcia, L. E. Y. Herrera, G. P. Temporão, P. J. Urban, and J. P. von der Weid, “Automatic Fault Detection in WDM-PON With Tunable Photon Counting OTDR,” J. Lightwave Technol. 33(24), 5025–5031 (2015).
    [Crossref]
  20. J. P. von der Weid, M. H. Souto, J. D. Garcia, and G. C. Amaral, “Adaptive Filter for Automatic Identification of Multiple Faults in a Noisy OTDR Profile,” J. Lightwave Technol. 34(14), 3418–3424 (2016).
    [Crossref]
  21. M. P. Fernández, P. A. Costanzo Caso, and L. A. Bulus Rossini, “Effects of backscattering, dispersion, coherence and noise in a PON monitoring system,” in Proceedings of IEEE Biennial Cong. of Argentina (IEEE, 2016).
  22. X. Mei, F. Pang, H. Liu, G. Yu, Y. Shao, T. Qian, C. Mou, L. Lv, and T. Wang, “Fast coarse-fine locating method for φ-OTDR,” Opt. Express 26(3), 2659–2667 (2018).
    [Crossref] [PubMed]
  23. S. M. Kay, Fundamentals of Statistical Signal Processing (Prentice Hall, 1993, Vol. 2: Detection Theory).
  24. M. Cen, J. Chen, V. Moeyaert, P. Mégret, and M. Wuilpart, “Full monitoring for long-reach TWDM passive optical networks,” Opt. Express 24(14), 15782–15797 (2016).
    [Crossref] [PubMed]
  25. W. Lee, S. I. Myong, J. C. Lee, and S. Lee, “Identification method of non-reflective faults based on index distribution of optical fibers,” Opt. Express 22(1), 325–337 (2014).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

M. P. Fernández, P. A. Costanzo Caso, and L. A. Bulus Rossini, “False Detections in an Optical Coding-Based PON Monitoring Scheme,” IEEE Photonics Technol. Lett. 29(10), 802–805 (2017).
[Crossref]

2016 (3)

2015 (2)

2014 (2)

2013 (2)

M. A. Esmail and H. Fathallah, “Physical Layer Monitoring Techniques for TDM-Passive Optical Networks: A Survey,” IEEE Comm. Surv. and Tutor. 15(2), 943–958 (2013).
[Crossref]

P. J. Urban, A. Getaneh, J. P. von der Weid, G. P. Temporão, G. Vall-llosera, and J. Chen, “Detection of fiber faults in passive optical networks,” J. Opt. Commun. Netw. 5(11), 1111–1121 (2013).
[Crossref]

2012 (4)

H. Iida, Y. Koshikiya, F. Ito, and K. Tanaka, “High-Sensitivity Coherent Optical Time Domain Reflectometry Employing Frequency-Division Multiplexing,” J. Lightwave Technol. 30(8), 1121–1126 (2012).
[Crossref]

H. K. Shim, K. Y. Cho, Y. Takushima, and Y. C. Chung, “Correlation-based OTDR for in-service monitoring of 64-split TDM PON,” Opt. Express 20(5), 4921–4926 (2012).
[Crossref] [PubMed]

G. Kramer, M. De Andrade, R. Roy, and P. Chowdhury, “Evolution of Optical Access Networks: Architectures and Capacity Upgrades,” Proc. IEEE 100(5), 1188–1196 (2012).
[Crossref]

C. Mas Machuca, J. Chen, and L. Wosinska, “Cost-Efficient Protection in TDM PONs,” IEEE Commun. Mag. 50(8), 110–117 (2012).
[Crossref]

2011 (1)

2007 (1)

H. Fathallah and L. Rusch, “Code-division multiplexing for in-service out-of-band monitoring of live FTTH-PONs,” J. Opt. Net. 6(7), 819–827 (2007).
[Crossref]

2000 (1)

K. Ozawa, M. Shigehara, J. Hanai, A. Ban, T. Naitou, and K. Shimoura, “Field trial of in-service individual line monitoring of PONs using a tunable OTDR,” Proc. SPIE 4185, 880–883 (2000).

Adamy, M.

A. Ehrhardt, H. Foisel, F. Escher, A. Templin, and M. Adamy, “Monitoring of the transparent fibre infrastructure for FTTx networks: An operator’s view,” in Proc. of IEEE Int. Conf. on Transparent Optical Networks (ITCON) (2010).
[Crossref]

Amaral, G. C.

Araky, N.

K. Enbutsu, N. Araky, N. Honda, and Y. Azuma, “Individual fiber line testing technique for PON using wavelength assigned FBG termination and TLS-OTDR enhanced with reflected trace analysis method,” in Joint Conf. Opto-Electronics and Commun. Conf. and the Australian Conf. on Optical Fibre Tech. (IEEE, 2008).
[Crossref]

Azuma, Y.

K. Enbutsu, N. Araky, N. Honda, and Y. Azuma, “Individual fiber line testing technique for PON using wavelength assigned FBG termination and TLS-OTDR enhanced with reflected trace analysis method,” in Joint Conf. Opto-Electronics and Commun. Conf. and the Australian Conf. on Optical Fibre Tech. (IEEE, 2008).
[Crossref]

Ban, A.

K. Ozawa, M. Shigehara, J. Hanai, A. Ban, T. Naitou, and K. Shimoura, “Field trial of in-service individual line monitoring of PONs using a tunable OTDR,” Proc. SPIE 4185, 880–883 (2000).

Beri, S.

Blondel, M.

L. Wuilmart, V. Moeyaert, D. Daniaux, P. Megret, and M. Blondel, “A PC-based method for the localisation and quantization of faults in passive tree-structured optical networks using the OTDR technique,” in Proc. of IEEE Conf. on Lasers and Electro-Optics Society, 122–123, (1996).
[Crossref]

Bulus Rossini, L. A.

M. P. Fernández, P. A. Costanzo Caso, and L. A. Bulus Rossini, “False Detections in an Optical Coding-Based PON Monitoring Scheme,” IEEE Photonics Technol. Lett. 29(10), 802–805 (2017).
[Crossref]

M. P. Fernández, P. A. Costanzo Caso, and L. A. Bulus Rossini, “Design and performance evaluation of an optical coding scheme for PON monitoring,” in Proc. of XVI Workshop Info. Proc. & Control (RPIC) (2015).

Cen, M.

Chen, J.

Chen, S.

Cho, K. Y.

Chowdhury, P.

G. Kramer, M. De Andrade, R. Roy, and P. Chowdhury, “Evolution of Optical Access Networks: Architectures and Capacity Upgrades,” Proc. IEEE 100(5), 1188–1196 (2012).
[Crossref]

Chung, Y. C.

Costanzo Caso, P. A.

M. P. Fernández, P. A. Costanzo Caso, and L. A. Bulus Rossini, “False Detections in an Optical Coding-Based PON Monitoring Scheme,” IEEE Photonics Technol. Lett. 29(10), 802–805 (2017).
[Crossref]

M. P. Fernández, P. A. Costanzo Caso, and L. A. Bulus Rossini, “Design and performance evaluation of an optical coding scheme for PON monitoring,” in Proc. of XVI Workshop Info. Proc. & Control (RPIC) (2015).

Daniaux, D.

L. Wuilmart, V. Moeyaert, D. Daniaux, P. Megret, and M. Blondel, “A PC-based method for the localisation and quantization of faults in passive tree-structured optical networks using the OTDR technique,” in Proc. of IEEE Conf. on Lasers and Electro-Optics Society, 122–123, (1996).
[Crossref]

De Andrade, M.

G. Kramer, M. De Andrade, R. Roy, and P. Chowdhury, “Evolution of Optical Access Networks: Architectures and Capacity Upgrades,” Proc. IEEE 100(5), 1188–1196 (2012).
[Crossref]

Ehrhardt, A.

A. Ehrhardt, H. Foisel, F. Escher, A. Templin, and M. Adamy, “Monitoring of the transparent fibre infrastructure for FTTx networks: An operator’s view,” in Proc. of IEEE Int. Conf. on Transparent Optical Networks (ITCON) (2010).
[Crossref]

Enbutsu, K.

K. Enbutsu, N. Araky, N. Honda, and Y. Azuma, “Individual fiber line testing technique for PON using wavelength assigned FBG termination and TLS-OTDR enhanced with reflected trace analysis method,” in Joint Conf. Opto-Electronics and Commun. Conf. and the Australian Conf. on Optical Fibre Tech. (IEEE, 2008).
[Crossref]

Escher, F.

A. Ehrhardt, H. Foisel, F. Escher, A. Templin, and M. Adamy, “Monitoring of the transparent fibre infrastructure for FTTx networks: An operator’s view,” in Proc. of IEEE Int. Conf. on Transparent Optical Networks (ITCON) (2010).
[Crossref]

Esmail, M. A.

M. A. Esmail and H. Fathallah, “Physical Layer Monitoring Techniques for TDM-Passive Optical Networks: A Survey,” IEEE Comm. Surv. and Tutor. 15(2), 943–958 (2013).
[Crossref]

Fathallah, H.

M. A. Esmail and H. Fathallah, “Physical Layer Monitoring Techniques for TDM-Passive Optical Networks: A Survey,” IEEE Comm. Surv. and Tutor. 15(2), 943–958 (2013).
[Crossref]

M. M. Rad, H. Fathallah, S. LaRochelle, and L. Rusch, “Computationally Efficient Monitoring of PON Fiber Link Quality Using Periodic Coding,” J. Opt. Commun. Netw. 3(1), 77–86 (2011).
[Crossref]

H. Fathallah and L. Rusch, “Code-division multiplexing for in-service out-of-band monitoring of live FTTH-PONs,” J. Opt. Net. 6(7), 819–827 (2007).
[Crossref]

Feigel, B.

Fernández, M. P.

M. P. Fernández, P. A. Costanzo Caso, and L. A. Bulus Rossini, “False Detections in an Optical Coding-Based PON Monitoring Scheme,” IEEE Photonics Technol. Lett. 29(10), 802–805 (2017).
[Crossref]

M. P. Fernández, P. A. Costanzo Caso, and L. A. Bulus Rossini, “Design and performance evaluation of an optical coding scheme for PON monitoring,” in Proc. of XVI Workshop Info. Proc. & Control (RPIC) (2015).

Foisel, H.

A. Ehrhardt, H. Foisel, F. Escher, A. Templin, and M. Adamy, “Monitoring of the transparent fibre infrastructure for FTTx networks: An operator’s view,” in Proc. of IEEE Int. Conf. on Transparent Optical Networks (ITCON) (2010).
[Crossref]

Garcia, J. D.

Getaneh, A.

Hanai, J.

K. Ozawa, M. Shigehara, J. Hanai, A. Ban, T. Naitou, and K. Shimoura, “Field trial of in-service individual line monitoring of PONs using a tunable OTDR,” Proc. SPIE 4185, 880–883 (2000).

Herrera, L. E. Y.

Honda, N.

K. Enbutsu, N. Araky, N. Honda, and Y. Azuma, “Individual fiber line testing technique for PON using wavelength assigned FBG termination and TLS-OTDR enhanced with reflected trace analysis method,” in Joint Conf. Opto-Electronics and Commun. Conf. and the Australian Conf. on Optical Fibre Tech. (IEEE, 2008).
[Crossref]

Huang, D.

Iida, H.

Ito, F.

Jeuris, K.

Khoder, M.

Koshikiya, Y.

Kramer, G.

G. Kramer, M. De Andrade, R. Roy, and P. Chowdhury, “Evolution of Optical Access Networks: Architectures and Capacity Upgrades,” Proc. IEEE 100(5), 1188–1196 (2012).
[Crossref]

LaRochelle, S.

Lee, J. C.

Lee, S.

Lee, W.

Li, W.

Liu, D.

Liu, H.

Lu, F.

Luo, Y.

Lv, L.

Mas Machuca, C.

C. Mas Machuca, J. Chen, and L. Wosinska, “Cost-Efficient Protection in TDM PONs,” IEEE Commun. Mag. 50(8), 110–117 (2012).
[Crossref]

Megret, P.

L. Wuilmart, V. Moeyaert, D. Daniaux, P. Megret, and M. Blondel, “A PC-based method for the localisation and quantization of faults in passive tree-structured optical networks using the OTDR technique,” in Proc. of IEEE Conf. on Lasers and Electro-Optics Society, 122–123, (1996).
[Crossref]

Mégret, P.

Mei, X.

Moeyaert, V.

M. Cen, J. Chen, V. Moeyaert, P. Mégret, and M. Wuilpart, “Full monitoring for long-reach TWDM passive optical networks,” Opt. Express 24(14), 15782–15797 (2016).
[Crossref] [PubMed]

L. Wuilmart, V. Moeyaert, D. Daniaux, P. Megret, and M. Blondel, “A PC-based method for the localisation and quantization of faults in passive tree-structured optical networks using the OTDR technique,” in Proc. of IEEE Conf. on Lasers and Electro-Optics Society, 122–123, (1996).
[Crossref]

Mou, C.

Myong, S. I.

Naitou, T.

K. Ozawa, M. Shigehara, J. Hanai, A. Ban, T. Naitou, and K. Shimoura, “Field trial of in-service individual line monitoring of PONs using a tunable OTDR,” Proc. SPIE 4185, 880–883 (2000).

Ozawa, K.

K. Ozawa, M. Shigehara, J. Hanai, A. Ban, T. Naitou, and K. Shimoura, “Field trial of in-service individual line monitoring of PONs using a tunable OTDR,” Proc. SPIE 4185, 880–883 (2000).

Pang, F.

Qian, T.

Rad, M. M.

Roy, R.

G. Kramer, M. De Andrade, R. Roy, and P. Chowdhury, “Evolution of Optical Access Networks: Architectures and Capacity Upgrades,” Proc. IEEE 100(5), 1188–1196 (2012).
[Crossref]

Rusch, L.

M. M. Rad, H. Fathallah, S. LaRochelle, and L. Rusch, “Computationally Efficient Monitoring of PON Fiber Link Quality Using Periodic Coding,” J. Opt. Commun. Netw. 3(1), 77–86 (2011).
[Crossref]

H. Fathallah and L. Rusch, “Code-division multiplexing for in-service out-of-band monitoring of live FTTH-PONs,” J. Opt. Net. 6(7), 819–827 (2007).
[Crossref]

Shao, Y.

Shigehara, M.

K. Ozawa, M. Shigehara, J. Hanai, A. Ban, T. Naitou, and K. Shimoura, “Field trial of in-service individual line monitoring of PONs using a tunable OTDR,” Proc. SPIE 4185, 880–883 (2000).

Shim, H. K.

Shimoura, K.

K. Ozawa, M. Shigehara, J. Hanai, A. Ban, T. Naitou, and K. Shimoura, “Field trial of in-service individual line monitoring of PONs using a tunable OTDR,” Proc. SPIE 4185, 880–883 (2000).

Souto, M. H.

Sun, Q.

Sun, X.

Takushima, Y.

Tanaka, K.

Templin, A.

A. Ehrhardt, H. Foisel, F. Escher, A. Templin, and M. Adamy, “Monitoring of the transparent fibre infrastructure for FTTx networks: An operator’s view,” in Proc. of IEEE Int. Conf. on Transparent Optical Networks (ITCON) (2010).
[Crossref]

Temporão, G. P.

Thienpont, H.

Urban, P. J.

Vall-llosera, G.

Van Erps, J.

Van Goidsenhoven, D.

von der Weid, J. P.

Wang, T.

Watté, J.

Wosinska, L.

C. Mas Machuca, J. Chen, and L. Wosinska, “Cost-Efficient Protection in TDM PONs,” IEEE Commun. Mag. 50(8), 110–117 (2012).
[Crossref]

Wuilmart, L.

L. Wuilmart, V. Moeyaert, D. Daniaux, P. Megret, and M. Blondel, “A PC-based method for the localisation and quantization of faults in passive tree-structured optical networks using the OTDR technique,” in Proc. of IEEE Conf. on Lasers and Electro-Optics Society, 122–123, (1996).
[Crossref]

Wuilpart, M.

Xia, L.

Xu, Z.

Yu, C.

Yu, G.

Zhang, X.

Zhao, X.

Zhu, M.

IEEE Comm. Surv. and Tutor. (1)

M. A. Esmail and H. Fathallah, “Physical Layer Monitoring Techniques for TDM-Passive Optical Networks: A Survey,” IEEE Comm. Surv. and Tutor. 15(2), 943–958 (2013).
[Crossref]

IEEE Commun. Mag. (1)

C. Mas Machuca, J. Chen, and L. Wosinska, “Cost-Efficient Protection in TDM PONs,” IEEE Commun. Mag. 50(8), 110–117 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. P. Fernández, P. A. Costanzo Caso, and L. A. Bulus Rossini, “False Detections in an Optical Coding-Based PON Monitoring Scheme,” IEEE Photonics Technol. Lett. 29(10), 802–805 (2017).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (2)

J. Opt. Net. (1)

H. Fathallah and L. Rusch, “Code-division multiplexing for in-service out-of-band monitoring of live FTTH-PONs,” J. Opt. Net. 6(7), 819–827 (2007).
[Crossref]

Opt. Express (6)

Proc. IEEE (1)

G. Kramer, M. De Andrade, R. Roy, and P. Chowdhury, “Evolution of Optical Access Networks: Architectures and Capacity Upgrades,” Proc. IEEE 100(5), 1188–1196 (2012).
[Crossref]

Proc. SPIE (1)

K. Ozawa, M. Shigehara, J. Hanai, A. Ban, T. Naitou, and K. Shimoura, “Field trial of in-service individual line monitoring of PONs using a tunable OTDR,” Proc. SPIE 4185, 880–883 (2000).

Other (7)

K. Enbutsu, N. Araky, N. Honda, and Y. Azuma, “Individual fiber line testing technique for PON using wavelength assigned FBG termination and TLS-OTDR enhanced with reflected trace analysis method,” in Joint Conf. Opto-Electronics and Commun. Conf. and the Australian Conf. on Optical Fibre Tech. (IEEE, 2008).
[Crossref]

M. P. Fernández, P. A. Costanzo Caso, and L. A. Bulus Rossini, “Effects of backscattering, dispersion, coherence and noise in a PON monitoring system,” in Proceedings of IEEE Biennial Cong. of Argentina (IEEE, 2016).

S. M. Kay, Fundamentals of Statistical Signal Processing (Prentice Hall, 1993, Vol. 2: Detection Theory).

M. P. Fernández, P. A. Costanzo Caso, and L. A. Bulus Rossini, “Design and performance evaluation of an optical coding scheme for PON monitoring,” in Proc. of XVI Workshop Info. Proc. & Control (RPIC) (2015).

A. Ehrhardt, H. Foisel, F. Escher, A. Templin, and M. Adamy, “Monitoring of the transparent fibre infrastructure for FTTx networks: An operator’s view,” in Proc. of IEEE Int. Conf. on Transparent Optical Networks (ITCON) (2010).
[Crossref]

L. Wuilmart, V. Moeyaert, D. Daniaux, P. Megret, and M. Blondel, “A PC-based method for the localisation and quantization of faults in passive tree-structured optical networks using the OTDR technique,” in Proc. of IEEE Conf. on Lasers and Electro-Optics Society, 122–123, (1996).
[Crossref]

J. Laferriere, M. Saget, and A. Champavere, “Original method for analyzing multipath networks by OTDR measurement,” in Conference on Optical Fiber Communications, 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper TuT4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Scheme of OTDR-based monitoring system and (b) operation of the DSPE-OTDR.
Fig. 2
Fig. 2 Decision regions and probabilities for the two hypotheses tests. Recall that both the mean of the hypotheses and the decision thresholds depend on the observation sample z i .
Fig. 3
Fig. 3 Achievable OPL to detect (a) reflections and (b) losses (when P FA = 10 4 , P D   = 0.95). Probability of loss detection versus (c) the ONT return loss and (d) the fault insertion loss.
Fig. 4
Fig. 4 (a) Histogram of OTDR noise for averaging times of 1 and 3 minutes, (c) measured reflection from the ONT.
Fig. 5
Fig. 5 Application of DSPE-OTDR in different scenarios: (a) a connector misalignment in a 1:32 splitter, (b) a fiber bending in a 1:32 splitter, (c) a connector misalignment in a 1:64 splitter and (d) a fiber bending in a 1:64 splitter.
Fig. 6
Fig. 6 OTDR signal and estimated insertion loss for (a) link break, (b) connector misalignment and (c) fiber bending.
Fig. 7
Fig. 7 Estimation error for the insertion loss: (a) samples used for the estimation, (b) theoretical and experimental error and (c) experimental estimation error in dB.
Fig. 8
Fig. 8 Supported fault scenarios: (a) single fault, (b) multiple faults with no overlap, (c) multiple faults with overlap, (d) multiple faults in a single drop fiber.

Tables (2)

Tables Icon

Table 1 Measured fiber and OTDR parameters

Tables Icon

Table 2 Comparison between conventional OTDR and DSPE-OTDR capabilities.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

y R ( z i )= y REF ( z i )+ f e 1 N 2 10 2α z e 10 P 0 10 R L e 10 .
y L ( z i )= y REF ( z i )+ f e 1 N 2 10 2α z i 10 P 0  W K( 10 2I L e 10 1 ),
y L ( z i )= y REF ( z i )+ f e 1 N 2 10 2α z ONTe 10 P 0 10 R L ONTe 10 ( 10 2I L e 10 1 ).
H 0 y( z i ) ~ N( y REF ( z i ), σ N 2 ) H k y( z i ) ~ N( y k ( z i ), σ N 2 )
y( z i ) H R > < H 0 η R ( z i ) y( z i ) H 0 > < H L η L ( z i ) ,
P FA R =Q( η R y REF σ N )                 P FA L =1Q( η L y REF σ N ) ,
P D R =Q( η R y R σ N )                 P D L =1Q( η L y L σ N ) .
OP L 2 ( z i )= f e 1 N 2 10 2α z i 10                         DR= P 0  K W σ N  .
θ ^ k = arg max θ k l( θ k ),
l( θ k )= 1 2 σ N 2 m=1 M ( y( z m ) y k ( z m ) ) 2
RL ^ e =10log( m=1 M ( y( z m ) y REF ( z m ) ) M P 0 OP L 2 ( z e ) ) ,
IL ^ e =5log( m=1 M OP L 2 ( z m )( y( z m ) y REF ( z m ) ) P 0 WK m=1 M OP L 4 ( z m ) +1 ).
IL ^ e =5log( m=1 M ( y( z m ) y REF ( z m ) ) M P 0 OP L 2 ( z ONTe ) 10 R L ONTe 10 +1 ).
IL ^ e * = 10 2 IL ^ e 10 1                I L e * = 10 2I L e 10 1 ,
e= IL ^ e * I L e *   ~ N( 0, σ N 2 m=1 M ( OP L 2 ( z m ) P 0 WK ) 2 ) .
ϵ σ N 2 m=1 M ( OP L 2 ( z m ) P 0 WK ) 2 Q 1 ( δ 2 ) .
y REF ' ( z i )= y REF ( z i ) f 1 1 N 2 10 2α z i 10 P 0  W K( 10 2 IL ^ 1 10 1 ).

Metrics