Abstract

We report a time-reversal method based on the Richards-Wolf vectorial diffraction theory to generate a diffraction-limited near-spherical focal spot with arbitrary three-dimensional state of polarization using single objective lens. Three orthogonal dipole antennae are positioned above a flat mirror at a prescribed distance and an aplanatic objective lens is utilized to collect all the radiation fields emitted by the dipole antennae. The optical field in the pupil plane is calculated in a time-reversal manner and the vectorial Debye integral is used to verify the spatial intensity and polarization distributions in the focal region. The ability to confine the optical power within a subwavelength near-spherical volume with controllable three-dimensional polarization with single objective lens may be exploited in high-resolution imaging, high-density data storage, laser direct writing, lithography, spin-directional coupling, anisotropic particle trapping and manipulation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tightly focused optical field with controllable photonic spin orientation

Jian Chen, Chenhao Wan, Ling Jiang Kong, and Qiwen Zhan
Opt. Express 25(16) 19517-19528 (2017)

Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum

Jian Chen, Chenhao Wan, Lingjiang Kong, and Qiwen Zhan
Opt. Express 25(8) 8966-8974 (2017)

Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy

Weibin Chen and Qiwen Zhan
Opt. Lett. 34(16) 2444-2446 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  2. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
    [Crossref] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
    [Crossref] [PubMed]
  4. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
    [Crossref]
  5. O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
    [Crossref] [PubMed]
  6. Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
    [Crossref] [PubMed]
  7. K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
    [Crossref]
  8. M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
    [Crossref] [PubMed]
  9. F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
    [Crossref] [PubMed]
  10. J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
    [Crossref] [PubMed]
  11. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  12. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  13. F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104(20), 203901 (2010).
    [Crossref] [PubMed]
  14. A. Sentenac and P. C. Chaumet, “Subdiffraction light focusing on a grating substrate,” Phys. Rev. Lett. 101(1), 013901 (2008).
    [Crossref] [PubMed]
  15. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  16. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
    [Crossref]
  17. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), 7th (expanded) ed.
  18. Z. Chen and D. Zhao, “4Pi focusing of spatially modulated radially polarized vortex beams,” Opt. Lett. 37(8), 1286–1288 (2012).
    [Crossref] [PubMed]
  19. S. N. Khonina and I. Golub, “Engineering the smallest 3D symmetrical bright and dark focal spots,” J. Opt. Soc. Am. A 30(10), 2029–2033 (2013).
    [Crossref] [PubMed]
  20. T. Jabbour and S. Kuebler, “Vector diffraction analysis of high numerical aperture focused beams modified by two- and three-zone annular multi-phase plates,” Opt. Express 14(3), 1033–1043 (2006).
    [Crossref] [PubMed]
  21. S. N. Khonina, A. V. Ustinov, and S. G. Volotovsky, “Shaping of spherical light intensity based on the interference of tightly focused beams with different polarizations,” Opt. Laser Technol. 60, 99–106 (2014).
    [Crossref]
  22. E. Mudry, E. Le Moal, P. Ferrand, P. C. Chaumet, and A. Sentenac, “Isotropic diffraction-limited focusing using a single objective lens,” Phys. Rev. Lett. 105(20), 203903 (2010).
    [Crossref] [PubMed]
  23. W. K. Hiebert, A. Stankiewicz, and M. R. Freeman, “Direct observation of magnetic relaxation in a small permalloy disk by time-resolved scanning Kerr microscopy,” Phys. Rev. Lett. 79(6), 1134–1137 (1997).
    [Crossref]
  24. R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180(2), 140–147 (1995).
    [Crossref] [PubMed]
  25. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [Crossref] [PubMed]
  26. J. T. Fourkas, “Rapid determination of the three-dimensional orientation of single molecules,” Opt. Lett. 26(4), 211–213 (2001).
    [Crossref] [PubMed]
  27. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
    [Crossref] [PubMed]
  28. A. Débarre, R. Jaffiol, C. Julien, D. Nutarelli, A. Richard, P. Tchénio, F. Chaput, and J. P. Boilot, “Quantitative determination of the 3D dipole orientation of single molecules,” Eur. Phys. J. D 28(1), 67–77 (2004).
    [Crossref]
  29. S. Boichenko, “Theoretical investigation of confocal microscopy using an elliptically polarized cylindrical vector laser beam: Visualization of quantum emitters near interfaces,” Phys. Rev. A (Coll. Park) 97(4), 043825 (2018).
    [Crossref]
  30. X. Wang, S. Chang, L. Lin, L. Wang, and S. Hao, “Elimination of fluorescence intensity difference in orientation determination of single molecules by highly focused generalized cylindrical vector beams,” Optik (Stuttg.) 122(9), 773–776 (2011).
    [Crossref]
  31. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006).
    [Crossref] [PubMed]
  32. E. Y. S. Yew and C. J. R. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun. 275(2), 453–457 (2007).
    [Crossref]
  33. W. Chen and Q. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt. 12(4), 045707 (2010).
    [Crossref]
  34. J. Chen, C. Wan, L. Kong, and Q. Zhan, “Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum,” Opt. Express 25(8), 8966–8974 (2017).
    [Crossref] [PubMed]
  35. R. Carminati, R. Pierrat, J. de Rosny, and M. Fink, “Theory of the time reversal cavity for electromagnetic fields,” Opt. Lett. 32(21), 3107–3109 (2007).
    [Crossref] [PubMed]
  36. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
    [Crossref] [PubMed]
  37. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).
  38. M. Gu, Advanced Optical Imaging Theory (Springer, 1999).
  39. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
    [Crossref]
  40. B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [Crossref]
  41. N. Bokor and N. Davidson, “Toward a spherical spot distribution with 4π focusing of radially polarized light,” Opt. Lett. 29(17), 1968–1970 (2004).
    [Crossref] [PubMed]
  42. W. Chen and Q. Zhan, “Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy,” Opt. Lett. 34(16), 2444–2446 (2009).
    [Crossref] [PubMed]
  43. H. P. Urbach and S. F. Pereira, “Field in focus with a maximum longitudinal electric component,” Phys. Rev. Lett. 100(12), 123904 (2008).
    [Crossref] [PubMed]
  44. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
    [Crossref] [PubMed]

2018 (1)

S. Boichenko, “Theoretical investigation of confocal microscopy using an elliptically polarized cylindrical vector laser beam: Visualization of quantum emitters near interfaces,” Phys. Rev. A (Coll. Park) 97(4), 043825 (2018).
[Crossref]

2017 (1)

2015 (2)

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

2014 (3)

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

S. N. Khonina, A. V. Ustinov, and S. G. Volotovsky, “Shaping of spherical light intensity based on the interference of tightly focused beams with different polarizations,” Opt. Laser Technol. 60, 99–106 (2014).
[Crossref]

2013 (2)

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

S. N. Khonina and I. Golub, “Engineering the smallest 3D symmetrical bright and dark focal spots,” J. Opt. Soc. Am. A 30(10), 2029–2033 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

X. Wang, S. Chang, L. Lin, L. Wang, and S. Hao, “Elimination of fluorescence intensity difference in orientation determination of single molecules by highly focused generalized cylindrical vector beams,” Optik (Stuttg.) 122(9), 773–776 (2011).
[Crossref]

2010 (4)

W. Chen and Q. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt. 12(4), 045707 (2010).
[Crossref]

E. Mudry, E. Le Moal, P. Ferrand, P. C. Chaumet, and A. Sentenac, “Isotropic diffraction-limited focusing using a single objective lens,” Phys. Rev. Lett. 105(20), 203903 (2010).
[Crossref] [PubMed]

F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104(20), 203901 (2010).
[Crossref] [PubMed]

O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

H. P. Urbach and S. F. Pereira, “Field in focus with a maximum longitudinal electric component,” Phys. Rev. Lett. 100(12), 123904 (2008).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

A. Sentenac and P. C. Chaumet, “Subdiffraction light focusing on a grating substrate,” Phys. Rev. Lett. 101(1), 013901 (2008).
[Crossref] [PubMed]

2007 (6)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

E. Y. S. Yew and C. J. R. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun. 275(2), 453–457 (2007).
[Crossref]

R. Carminati, R. Pierrat, J. de Rosny, and M. Fink, “Theory of the time reversal cavity for electromagnetic fields,” Opt. Lett. 32(21), 3107–3109 (2007).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

2006 (2)

2004 (2)

A. Débarre, R. Jaffiol, C. Julien, D. Nutarelli, A. Richard, P. Tchénio, F. Chaput, and J. P. Boilot, “Quantitative determination of the 3D dipole orientation of single molecules,” Eur. Phys. J. D 28(1), 67–77 (2004).
[Crossref]

N. Bokor and N. Davidson, “Toward a spherical spot distribution with 4π focusing of radially polarized light,” Opt. Lett. 29(17), 1968–1970 (2004).
[Crossref] [PubMed]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2001 (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

J. T. Fourkas, “Rapid determination of the three-dimensional orientation of single molecules,” Opt. Lett. 26(4), 211–213 (2001).
[Crossref] [PubMed]

2000 (3)

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1997 (1)

W. K. Hiebert, A. Stankiewicz, and M. R. Freeman, “Direct observation of magnetic relaxation in a small permalloy disk by time-resolved scanning Kerr microscopy,” Phys. Rev. Lett. 79(6), 1134–1137 (1997).
[Crossref]

1995 (1)

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180(2), 140–147 (1995).
[Crossref] [PubMed]

1994 (1)

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

1959 (2)

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Banzer, P.

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

Bauer, T.

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

Beversluis, M. R.

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Bliokh, K. Y.

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[Crossref] [PubMed]

Boichenko, S.

S. Boichenko, “Theoretical investigation of confocal microscopy using an elliptically polarized cylindrical vector laser beam: Visualization of quantum emitters near interfaces,” Phys. Rev. A (Coll. Park) 97(4), 043825 (2018).
[Crossref]

Boilot, J. P.

A. Débarre, R. Jaffiol, C. Julien, D. Nutarelli, A. Richard, P. Tchénio, F. Chaput, and J. P. Boilot, “Quantitative determination of the 3D dipole orientation of single molecules,” Eur. Phys. J. D 28(1), 67–77 (2004).
[Crossref]

Bokor, N.

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Carminati, R.

Chang, S.

X. Wang, S. Chang, L. Lin, L. Wang, and S. Hao, “Elimination of fluorescence intensity difference in orientation determination of single molecules by highly focused generalized cylindrical vector beams,” Optik (Stuttg.) 122(9), 773–776 (2011).
[Crossref]

Chaput, F.

A. Débarre, R. Jaffiol, C. Julien, D. Nutarelli, A. Richard, P. Tchénio, F. Chaput, and J. P. Boilot, “Quantitative determination of the 3D dipole orientation of single molecules,” Eur. Phys. J. D 28(1), 67–77 (2004).
[Crossref]

Chaumet, P. C.

E. Mudry, E. Le Moal, P. Ferrand, P. C. Chaumet, and A. Sentenac, “Isotropic diffraction-limited focusing using a single objective lens,” Phys. Rev. Lett. 105(20), 203903 (2010).
[Crossref] [PubMed]

A. Sentenac and P. C. Chaumet, “Subdiffraction light focusing on a grating substrate,” Phys. Rev. Lett. 101(1), 013901 (2008).
[Crossref] [PubMed]

Chen, J.

Chen, W.

W. Chen and Q. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt. 12(4), 045707 (2010).
[Crossref]

W. Chen and Q. Zhan, “Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy,” Opt. Lett. 34(16), 2444–2446 (2009).
[Crossref] [PubMed]

Chen, Z.

Chiu, D. T.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Dainty, C.

O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[Crossref] [PubMed]

Davidson, N.

de Rosny, J.

F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104(20), 203901 (2010).
[Crossref] [PubMed]

R. Carminati, R. Pierrat, J. de Rosny, and M. Fink, “Theory of the time reversal cavity for electromagnetic fields,” Opt. Lett. 32(21), 3107–3109 (2007).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Débarre, A.

A. Débarre, R. Jaffiol, C. Julien, D. Nutarelli, A. Richard, P. Tchénio, F. Chaput, and J. P. Boilot, “Quantitative determination of the 3D dipole orientation of single molecules,” Eur. Phys. J. D 28(1), 67–77 (2004).
[Crossref]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
[Crossref]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
[Crossref]

Edgar, J. S.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Ferrand, P.

E. Mudry, E. Le Moal, P. Ferrand, P. C. Chaumet, and A. Sentenac, “Isotropic diffraction-limited focusing using a single objective lens,” Phys. Rev. Lett. 105(20), 203903 (2010).
[Crossref] [PubMed]

Fink, M.

F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104(20), 203901 (2010).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

R. Carminati, R. Pierrat, J. de Rosny, and M. Fink, “Theory of the time reversal cavity for electromagnetic fields,” Opt. Lett. 32(21), 3107–3109 (2007).
[Crossref] [PubMed]

Fourkas, J. T.

Freeman, M. R.

W. K. Hiebert, A. Stankiewicz, and M. R. Freeman, “Direct observation of magnetic relaxation in a small permalloy disk by time-resolved scanning Kerr microscopy,” Phys. Rev. Lett. 79(6), 1134–1137 (1997).
[Crossref]

Ginzburg, P.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
[Crossref]

Golub, I.

Hao, S.

X. Wang, S. Chang, L. Lin, L. Wang, and S. Hao, “Elimination of fluorescence intensity difference in orientation determination of single molecules by highly focused generalized cylindrical vector beams,” Optik (Stuttg.) 122(9), 773–776 (2011).
[Crossref]

Hecht, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref] [PubMed]

Hell, S. W.

Hiebert, W. K.

W. K. Hiebert, A. Stankiewicz, and M. R. Freeman, “Direct observation of magnetic relaxation in a small permalloy disk by time-resolved scanning Kerr microscopy,” Phys. Rev. Lett. 79(6), 1134–1137 (1997).
[Crossref]

Jabbour, T.

Jaffiol, R.

A. Débarre, R. Jaffiol, C. Julien, D. Nutarelli, A. Richard, P. Tchénio, F. Chaput, and J. P. Boilot, “Quantitative determination of the 3D dipole orientation of single molecules,” Eur. Phys. J. D 28(1), 67–77 (2004).
[Crossref]

Jeffries, G. D.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Julien, C.

A. Débarre, R. Jaffiol, C. Julien, D. Nutarelli, A. Richard, P. Tchénio, F. Chaput, and J. P. Boilot, “Quantitative determination of the 3D dipole orientation of single molecules,” Eur. Phys. J. D 28(1), 67–77 (2004).
[Crossref]

Khonina, S. N.

S. N. Khonina, A. V. Ustinov, and S. G. Volotovsky, “Shaping of spherical light intensity based on the interference of tightly focused beams with different polarizations,” Opt. Laser Technol. 60, 99–106 (2014).
[Crossref]

S. N. Khonina and I. Golub, “Engineering the smallest 3D symmetrical bright and dark focal spots,” J. Opt. Soc. Am. A 30(10), 2029–2033 (2013).
[Crossref] [PubMed]

Kong, L.

Kuebler, S.

Lara, D.

O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[Crossref] [PubMed]

Le Moal, E.

E. Mudry, E. Le Moal, P. Ferrand, P. C. Chaumet, and A. Sentenac, “Isotropic diffraction-limited focusing using a single objective lens,” Phys. Rev. Lett. 105(20), 203903 (2010).
[Crossref] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lemoult, F.

F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104(20), 203901 (2010).
[Crossref] [PubMed]

Lerosey, G.

F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104(20), 203901 (2010).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Leuchs, G.

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
[Crossref]

Lin, L.

X. Wang, S. Chang, L. Lin, L. Wang, and S. Hao, “Elimination of fluorescence intensity difference in orientation determination of single molecules by highly focused generalized cylindrical vector beams,” Optik (Stuttg.) 122(9), 773–776 (2011).
[Crossref]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Marino, G.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Martínez, A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

McGloin, D.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Mei, G.

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180(2), 140–147 (1995).
[Crossref] [PubMed]

Mudry, E.

E. Mudry, E. Le Moal, P. Ferrand, P. C. Chaumet, and A. Sentenac, “Isotropic diffraction-limited focusing using a single objective lens,” Phys. Rev. Lett. 105(20), 203903 (2010).
[Crossref] [PubMed]

Neugebauer, M.

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

Nori, F.

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Novotny, L.

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref] [PubMed]

Nutarelli, D.

A. Débarre, R. Jaffiol, C. Julien, D. Nutarelli, A. Richard, P. Tchénio, F. Chaput, and J. P. Boilot, “Quantitative determination of the 3D dipole orientation of single molecules,” Eur. Phys. J. D 28(1), 67–77 (2004).
[Crossref]

O’Connor, D.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Oldenbourg, R.

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180(2), 140–147 (1995).
[Crossref] [PubMed]

Ostrovskaya, E. A.

O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pereira, S. F.

H. P. Urbach and S. F. Pereira, “Field in focus with a maximum longitudinal electric component,” Phys. Rev. Lett. 100(12), 123904 (2008).
[Crossref] [PubMed]

Petersen, J.

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

Pierrat, R.

Psaltis, D.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
[Crossref]

Rauschenbeutel, A.

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

Richard, A.

A. Débarre, R. Jaffiol, C. Julien, D. Nutarelli, A. Richard, P. Tchénio, F. Chaput, and J. P. Boilot, “Quantitative determination of the 3D dipole orientation of single molecules,” Eur. Phys. J. D 28(1), 67–77 (2004).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Rodríguez-Fortuño, F. J.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Rodríguez-Herrera, O. G.

O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[Crossref] [PubMed]

Sentenac, A.

E. Mudry, E. Le Moal, P. Ferrand, P. C. Chaumet, and A. Sentenac, “Isotropic diffraction-limited focusing using a single objective lens,” Phys. Rev. Lett. 105(20), 203903 (2010).
[Crossref] [PubMed]

A. Sentenac and P. C. Chaumet, “Subdiffraction light focusing on a grating substrate,” Phys. Rev. Lett. 101(1), 013901 (2008).
[Crossref] [PubMed]

Sheppard, C. J. R.

E. Y. S. Yew and C. J. R. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun. 275(2), 453–457 (2007).
[Crossref]

Sick, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref] [PubMed]

Stankiewicz, A.

W. K. Hiebert, A. Stankiewicz, and M. R. Freeman, “Direct observation of magnetic relaxation in a small permalloy disk by time-resolved scanning Kerr microscopy,” Phys. Rev. Lett. 79(6), 1134–1137 (1997).
[Crossref]

Stranick, S. J.

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Tchénio, P.

A. Débarre, R. Jaffiol, C. Julien, D. Nutarelli, A. Richard, P. Tchénio, F. Chaput, and J. P. Boilot, “Quantitative determination of the 3D dipole orientation of single molecules,” Eur. Phys. J. D 28(1), 67–77 (2004).
[Crossref]

Tourin, A.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Urbach, H. P.

H. P. Urbach and S. F. Pereira, “Field in focus with a maximum longitudinal electric component,” Phys. Rev. Lett. 100(12), 123904 (2008).
[Crossref] [PubMed]

Ustinov, A. V.

S. N. Khonina, A. V. Ustinov, and S. G. Volotovsky, “Shaping of spherical light intensity based on the interference of tightly focused beams with different polarizations,” Opt. Laser Technol. 60, 99–106 (2014).
[Crossref]

Volotovsky, S. G.

S. N. Khonina, A. V. Ustinov, and S. G. Volotovsky, “Shaping of spherical light intensity based on the interference of tightly focused beams with different polarizations,” Opt. Laser Technol. 60, 99–106 (2014).
[Crossref]

Volz, J.

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

Wan, C.

Wang, L.

X. Wang, S. Chang, L. Lin, L. Wang, and S. Hao, “Elimination of fluorescence intensity difference in orientation determination of single molecules by highly focused generalized cylindrical vector beams,” Optik (Stuttg.) 122(9), 773–776 (2011).
[Crossref]

Wang, X.

X. Wang, S. Chang, L. Lin, L. Wang, and S. Hao, “Elimination of fluorescence intensity difference in orientation determination of single molecules by highly focused generalized cylindrical vector beams,” Optik (Stuttg.) 122(9), 773–776 (2011).
[Crossref]

Wichmann, J.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[Crossref]

Wurtz, G. A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Yang, C.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yew, E. Y. S.

E. Y. S. Yew and C. J. R. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun. 275(2), 453–457 (2007).
[Crossref]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Zhan, Q.

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhao, D.

Zhao, Y.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Eur. Phys. J. D (1)

A. Débarre, R. Jaffiol, C. Julien, D. Nutarelli, A. Richard, P. Tchénio, F. Chaput, and J. P. Boilot, “Quantitative determination of the 3D dipole orientation of single molecules,” Eur. Phys. J. D 28(1), 67–77 (2004).
[Crossref]

J. Microsc. (1)

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180(2), 140–147 (1995).
[Crossref] [PubMed]

J. Opt. (1)

W. Chen and Q. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt. 12(4), 045707 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Nature (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Opt. Commun. (2)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
[Crossref]

E. Y. S. Yew and C. J. R. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun. 275(2), 453–457 (2007).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

S. N. Khonina, A. V. Ustinov, and S. G. Volotovsky, “Shaping of spherical light intensity based on the interference of tightly focused beams with different polarizations,” Opt. Laser Technol. 60, 99–106 (2014).
[Crossref]

Opt. Lett. (6)

Optik (Stuttg.) (1)

X. Wang, S. Chang, L. Lin, L. Wang, and S. Hao, “Elimination of fluorescence intensity difference in orientation determination of single molecules by highly focused generalized cylindrical vector beams,” Optik (Stuttg.) 122(9), 773–776 (2011).
[Crossref]

Phys. Rep. (1)

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

Phys. Rev. A (Coll. Park) (1)

S. Boichenko, “Theoretical investigation of confocal microscopy using an elliptically polarized cylindrical vector laser beam: Visualization of quantum emitters near interfaces,” Phys. Rev. A (Coll. Park) 97(4), 043825 (2018).
[Crossref]

Phys. Rev. Lett. (11)

H. P. Urbach and S. F. Pereira, “Field in focus with a maximum longitudinal electric component,” Phys. Rev. Lett. 100(12), 123904 (2008).
[Crossref] [PubMed]

E. Mudry, E. Le Moal, P. Ferrand, P. C. Chaumet, and A. Sentenac, “Isotropic diffraction-limited focusing using a single objective lens,” Phys. Rev. Lett. 105(20), 203903 (2010).
[Crossref] [PubMed]

W. K. Hiebert, A. Stankiewicz, and M. R. Freeman, “Direct observation of magnetic relaxation in a small permalloy disk by time-resolved scanning Kerr microscopy,” Phys. Rev. Lett. 79(6), 1134–1137 (1997).
[Crossref]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref] [PubMed]

F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104(20), 203901 (2010).
[Crossref] [PubMed]

A. Sentenac and P. C. Chaumet, “Subdiffraction light focusing on a grating substrate,” Phys. Rev. Lett. 101(1), 013901 (2008).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[Crossref] [PubMed]

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (2)

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Science (5)

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

Other (3)

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), 7th (expanded) ed.

A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).

M. Gu, Advanced Optical Imaging Theory (Springer, 1999).

Supplementary Material (3)

NameDescription
» Visualization 1       Polarization evolution through focal region.
» Visualization 2       Polarization evolution through focal region.
» Visualization 3       Polarization evolution through focal region.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the proposed method. Three dipole antennae (labeled Dx1, Dy1 and Dz1, oscillating along x, y and z axis respectively) are situated at Point(0,0,-z0) and their corresponding image dipole antennae (labeled Dx2, Dy2 and Dz2, oscillating along x, y and z axis respectively) are situated at Point(0,0,z0). The radiation fields from both sets of dipole antennae are collected by an aplanatic objective lens.
Fig. 2
Fig. 2 Dipole coefficients are set to be p1 = 0, p2 = 0, p3 = 1. (a) Intensity and polarization distributions in the pupil plane; (b) Ex phase distribution in the pupil plane; (c) Ey phase distribution in the pupil plane; (d) Intensity distribution of the desired polarization state in the focal region (z = -z0 plane, see Visualization 1 for other z loci); (e) Intensity distribution of the first orthogonal polarization state in the focal region (z = -z0 plane); (f) Intensity distribution of the second orthogonal polarization state in the focal region (z = -z0 plane); (g) FWHM of the focal spot along the x-axis, y-axis and z-axis.
Fig. 3
Fig. 3 Dipole coefficients are set to be p1 = 1 2 , p2 = 0, p3 = 1 2 ejπ/2. (a) Intensity and polarization distributions in the pupil plane; (b) Ex phase distribution in the pupil plane; (c) Ey phase distribution in the pupil plane; (d) Intensity distribution of the desired polarization state in the focal region (z = -z0 plane, see Visualization 2 for other z loci); (e) Intensity distribution of the first orthogonal polarization state in the focal region (z = -z0 plane); (f) Intensity distribution of the second orthogonal polarization state in the focal region (z = -z0 plane); (g) FWHM of the focal spot along the x-axis, y-axis and z-axis.
Fig. 4
Fig. 4 Dipole coefficients are set to be p1 = 1 14 , p2 = 2 14 ejπ/6, p3 = 3 14 ejπ/3. (a) Intensity and polarization distributions in the pupil plane; (b) Ex phase distribution in the pupil plane; (c) Ey phase distribution in the pupil plane; (d) Intensity distribution of the desired polarization state in the focal region (z = -z0 plane, see Visualization 3 for other z loci); (e) Intensity distribution of the first orthogonal polarization state in the focal region (z = -z0 plane); (f) Intensity distribution of the second orthogonal polarization state in the focal region (z = -z0 plane); (g) FWHM of the focal spot along the x-axis, y-axis and z-axis.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E 3 = E 3 θ e θ = j η k I 0 l exp ( j k r ) 4 π r sin θ e θ ,
E 1 = E 1 θ e θ + E 1 ϕ e ϕ = j η k I 0 l exp ( j k r ) 4 π r [ cos θ cos ϕ e θ + sin ϕ e ϕ ] ,
E 2 = E 2 θ e θ + E 2 ϕ e ϕ = j η k I 0 l exp ( j k r ) 4 π r [ cos θ sin ϕ e θ cos ϕ e ϕ ] .
r s = n 1 cos θ 1 ( u 2 + i v 2 ) n 1 cos θ 1 + ( u 2 + i v 2 ) ,
r p = [ n 2 2 ( 1 κ 2 2 ) + 2 i n 2 2 κ 2 ] cos θ 1 n 1 ( u 2 + i v 2 ) [ n 2 2 ( 1 κ 2 2 ) + 2 i n 2 2 κ 2 ] cos θ 1 + n 1 ( u 2 + i v 2 ) ,
u 2 = 1 2 n 2 2 ( 1 κ 2 2 ) n 1 2 sin 2 θ 1 + [ n 2 2 ( 1 κ 2 2 ) n 1 2 sin 2 θ 1 ] 2 + 4 n 2 4 κ 2 2 ,
v 2 = 1 2 n 2 2 ( 1 κ 2 2 ) + n 1 2 sin 2 θ 1 + [ n 2 2 ( 1 κ 2 2 ) n 1 2 sin 2 θ 1 ] 2 + 4 n 2 4 κ 2 2 .
E Ω ( θ , ϕ ) = p 1 ( ( exp ( j k z 0 cos θ ) E 1 θ exp ( j k z 0 cos θ ) E 1 θ r s ) e θ + ( exp ( j k z 0 cos θ ) E 1 ϕ exp ( j k z 0 cos θ ) E 1 ϕ r p ) e ϕ ) + p 2 ( ( exp ( j k z 0 cos θ ) E 2 θ exp ( j k z 0 cos θ ) E 2 θ r s ) e θ + ( exp ( j k z 0 cos θ ) E 2 ϕ exp ( j k z 0 cos θ ) E 2 ϕ r p ) e ϕ ) + p 3 ( exp ( j k z 0 cos θ ) E 3 θ + exp ( j k z 0 cos θ ) E 3 θ r s ) e θ
e θ = cos θ cos ϕ e x + cos θ sin ϕ e y + sin θ e z ,
e ϕ = sin ϕ e x + cos ϕ e y .
E ( r p , Ψ , z p ) = i λ 0 θ max 0 2 π E Ω ( θ , ϕ ) exp ( j k r p sin θ cos ( ϕ Ψ ) + j k z p cos θ ) sin θ d θ d ϕ ,

Metrics