Abstract

We report a high-quality 3C-silicon carbide (SiC)-on-insulator (SiCOI) integrated photonic material platform formed by wafer bonding of crystalline 3C-SiC to a silicon oxide (SiO2)-on-silicon (Si) substrate. This material platform enables to develop integrated photonic devices in SiC without the need for undercutting the Si substrate, in contrast to the structures formed on conventional 3C-SiC-on-Si platforms. In addition, we show a unique process in the SiCOI platform for minimizing the effect of lattice mismatch during the growth of SiC on Si through polishing after bonding. This results in a high-quality SiCOI platform that enables record high Qs of 142,000 in 40 µm radius SiC microring resonators. The resulting SiCOI platform has a great potential for a wide range of applications in integrated optics, including nonlinear optical devices, quantum optical devices, and high-power optical devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-Q microresonators integrated with microheaters on a 3C-SiC-on-insulator platform

Xi Wu, Tianren Fan, Ali A. Eftekhar, and Ali Adibi
Opt. Lett. 44(20) 4941-4944 (2019)

High-quality integrated microdisk resonators in the visible-to-near-infrared wavelength range on a 3C-silicon carbide-on-insulator platform

Tianren Fan, Xi Wu, Ali A. Eftekhar, Matteo Bosi, Hesam Moradinejad, Eric V. Woods, and Ali Adibi
Opt. Lett. 45(1) 153-156 (2020)

High-Q suspended optical resonators in 3C silicon carbide obtained by thermal annealing

Keith Powell, Amirhassan Shams-Ansari, Smit Desai, Mitchell Austin, Jiangdong Deng, Neil Sinclair, Marko Lončar, and Xiaoke Yi
Opt. Express 28(4) 4938-4949 (2020)

References

  • View by:
  • |
  • |
  • |

  1. C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Alien, C. Thero, and M. Bhatnagar, “Silicon carbide high-power devices,” IEEE Trans. Electron Dev. 43(10), 1732–1741 (1996).
    [Crossref]
  2. M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” IEEE Trans. Electron Dev. 40(3), 645–655 (1993).
    [Crossref]
  3. T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, “Power conversion with SiC devices at extremely high ambient temperatures,” IEEE Trans. Power Electron. 22(4), 1321–1329 (2007).
    [Crossref]
  4. H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
    [Crossref]
  5. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
    [Crossref] [PubMed]
  6. G. L. DesAutels, C. Brewer, M. Walker, S. Juhl, M. Finet, S. Ristich, M. Whitaker, and P. Powers, “Femtosecond laser damage threshold and nonlinear characterization in bulk transparent SiC materials,” J. Opt. Soc. Am. B 25(1), 60–66 (2008).
    [Crossref]
  7. X. Lu, J. Y. Lee, S. Rogers, and Q. Lin, “Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22(25), 30826–30832 (2014).
    [Crossref] [PubMed]
  8. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15(24), 16161–16176 (2007).
    [Crossref] [PubMed]
  9. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  10. W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
    [Crossref] [PubMed]
  11. A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X. L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4(1), 1819 (2013).
    [Crossref] [PubMed]
  12. S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13(2), 151–156 (2014).
    [Crossref] [PubMed]
  13. A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. J. Karle, A. Gali, S. Prawer, J. C. McCallum, and B. C. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6(1), 7783 (2015).
    [Crossref] [PubMed]
  14. M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
    [Crossref]
  15. X. Lu, P. X. Feng, Q. Lin, and J. Y. Lee, “A silicon carbide microdisk resonator,” Opt. Lett. 38(8), 1304–1306 (2013).
    [Crossref] [PubMed]
  16. B.-S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19(12), 11084–11089 (2011).
    [Crossref] [PubMed]
  17. S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99(20), 201102 (2011).
    [Crossref]
  18. S. Yamada, B.-S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett. 36(20), 3981–3983 (2011).
    [Crossref] [PubMed]
  19. S. Yamada, B. S. Song, J. Upham, T. Asano, Y. Tanaka, and S. Noda, “Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm,” Opt. Express 20(14), 14789–14796 (2012).
    [Crossref] [PubMed]
  20. J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High Q SiC microresonators,” Opt. Express 21(14), 16882–16887 (2013).
    [Crossref] [PubMed]
  21. M. Radulaski, T. M. Babinec, S. Buckley, A. Rundquist, J. Provine, K. Alassaad, G. Ferro, and J. Vučković, “Photonic crystal cavities in cubic (3C) polytype silicon carbide films,” Opt. Express 21(26), 32623–32629 (2013).
    [Crossref] [PubMed]
  22. A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104(5), 051109 (2014).
    [Crossref]
  23. X. Lu, J. Y. Lee, P. X. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104(18), 181103 (2014).
    [Crossref]
  24. F. Martini and A. Politi, “Linear integrated optics in 3C silicon carbide,” Opt. Express 25(10), 10735–10742 (2017).
    [Crossref] [PubMed]
  25. L. D. Cioccio, F. Letertre, Y. L. Tiec, A. M. Papon, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation by the Smart-Cut process,” Mater. Sci. Eng. B 46(1–3), 349–356 (1997).
    [Crossref]
  26. J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. W. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40(17), 4138–4141 (2015).
    [Crossref] [PubMed]
  27. A. Vonsovici, G. T. Reed, and A. G. R. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Mater. Sci. Semicond. Process. 3(5–6), 367–374 (2000).
    [Crossref]
  28. Q. Tong, U. Gösele, C. Yuan, A. J. Steckl, and M. Reiche, “Silicon carbide wafer bonding,” J. Electrochem. Soc. 142(1), 232–236 (1995).
    [Crossref]
  29. G. S. Chung, “Wafer bonding characteristics for 3C-SiC-on-insulator structures using PECVD oxide,” J. Korean Phys. Soc. 45(6), 1557–1561 (2004).
  30. K. N. Vinod, C. A. Zorman, A. A. Yasseen, and M. Mehregany, “Fabrication of low defect density 3C-SiC on SiO2 structures using wafer bonding techniques,” J. Electron. Mater. 27(3), 17–20 (1998).
    [Crossref]
  31. C. D. Fung and J. J. Kopanski, “Thermal oxidation of 3C silicon carbide single-crystal layers on silicon,” Appl. Phys. Lett. 45(7), 757–759 (1984).
    [Crossref]
  32. H. Moradinejad, A. H. Atabaki, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Double-layer crystalline silicon on insulator material platform for integrated photonic applications,” IEEE Photonics J. 6(6), 1–8 (2014).
    [Crossref]
  33. A. H. Hosseinnia, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler,” Opt. Express 23(23), 30297–30307 (2015).
    [Crossref] [PubMed]
  34. D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: A review,” Mater. Sci. Eng. Rep. 48(1), 1–46 (2005).
    [Crossref]
  35. M. Bosi, C. Ferrari, D. Nilsson, and P. J. Ward, “3C-SiC carbonization optimization and void reduction on misoriented Si substrates: from a research reactor to a production scale reactor,” CrystEngComm 18(39), 7478–7486 (2016).
    [Crossref]
  36. B. Adolph, K. Tenelsen, V. I. Gavrilenko, and F. Bechstedt, “Optical and loss spectra of SiC polytypes from ab initio calculations,” Phys. Rev. B 55(3), 1422–1429 (1997).
    [Crossref]
  37. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
    [Crossref]
  38. S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall Roughness in Si3N4 Waveguides Directly Measured by Atomic Force Microscopy,” in Conference on Lasers and Electro-Optics, 2017 OSA Technical Digest Series (Optical Society of America, 2017), paper SM3K.6.
    [Crossref]

2017 (2)

2016 (2)

M. Bosi, C. Ferrari, D. Nilsson, and P. J. Ward, “3C-SiC carbonization optimization and void reduction on misoriented Si substrates: from a research reactor to a production scale reactor,” CrystEngComm 18(39), 7478–7486 (2016).
[Crossref]

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

2015 (3)

2014 (5)

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104(5), 051109 (2014).
[Crossref]

X. Lu, J. Y. Lee, P. X. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104(18), 181103 (2014).
[Crossref]

H. Moradinejad, A. H. Atabaki, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Double-layer crystalline silicon on insulator material platform for integrated photonic applications,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13(2), 151–156 (2014).
[Crossref] [PubMed]

X. Lu, J. Y. Lee, S. Rogers, and Q. Lin, “Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22(25), 30826–30832 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (1)

2011 (4)

B.-S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19(12), 11084–11089 (2011).
[Crossref] [PubMed]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99(20), 201102 (2011).
[Crossref]

S. Yamada, B.-S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett. 36(20), 3981–3983 (2011).
[Crossref] [PubMed]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

2008 (1)

2007 (3)

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15(24), 16161–16176 (2007).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, “Power conversion with SiC devices at extremely high ambient temperatures,” IEEE Trans. Power Electron. 22(4), 1321–1329 (2007).
[Crossref]

2005 (1)

D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: A review,” Mater. Sci. Eng. Rep. 48(1), 1–46 (2005).
[Crossref]

2004 (1)

G. S. Chung, “Wafer bonding characteristics for 3C-SiC-on-insulator structures using PECVD oxide,” J. Korean Phys. Soc. 45(6), 1557–1561 (2004).

2000 (1)

A. Vonsovici, G. T. Reed, and A. G. R. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Mater. Sci. Semicond. Process. 3(5–6), 367–374 (2000).
[Crossref]

1998 (1)

K. N. Vinod, C. A. Zorman, A. A. Yasseen, and M. Mehregany, “Fabrication of low defect density 3C-SiC on SiO2 structures using wafer bonding techniques,” J. Electron. Mater. 27(3), 17–20 (1998).
[Crossref]

1997 (2)

B. Adolph, K. Tenelsen, V. I. Gavrilenko, and F. Bechstedt, “Optical and loss spectra of SiC polytypes from ab initio calculations,” Phys. Rev. B 55(3), 1422–1429 (1997).
[Crossref]

L. D. Cioccio, F. Letertre, Y. L. Tiec, A. M. Papon, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation by the Smart-Cut process,” Mater. Sci. Eng. B 46(1–3), 349–356 (1997).
[Crossref]

1996 (1)

C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Alien, C. Thero, and M. Bhatnagar, “Silicon carbide high-power devices,” IEEE Trans. Electron Dev. 43(10), 1732–1741 (1996).
[Crossref]

1995 (1)

Q. Tong, U. Gösele, C. Yuan, A. J. Steckl, and M. Reiche, “Silicon carbide wafer bonding,” J. Electrochem. Soc. 142(1), 232–236 (1995).
[Crossref]

1994 (1)

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

1993 (1)

M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” IEEE Trans. Electron Dev. 40(3), 645–655 (1993).
[Crossref]

1989 (1)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

1984 (1)

C. D. Fung and J. J. Kopanski, “Thermal oxidation of 3C silicon carbide single-crystal layers on silicon,” Appl. Phys. Lett. 45(7), 757–759 (1984).
[Crossref]

Adair, R.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Adibi, A.

A. H. Hosseinnia, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler,” Opt. Express 23(23), 30297–30307 (2015).
[Crossref] [PubMed]

H. Moradinejad, A. H. Atabaki, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Double-layer crystalline silicon on insulator material platform for integrated photonic applications,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

Adolph, B.

B. Adolph, K. Tenelsen, V. I. Gavrilenko, and F. Bechstedt, “Optical and loss spectra of SiC polytypes from ab initio calculations,” Phys. Rev. B 55(3), 1422–1429 (1997).
[Crossref]

Aharonovich, I.

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104(5), 051109 (2014).
[Crossref]

Alassaad, K.

Alien, S.

C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Alien, C. Thero, and M. Bhatnagar, “Silicon carbide high-power devices,” IEEE Trans. Electron Dev. 43(10), 1732–1741 (1996).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Asano, T.

Atabaki, A. H.

A. H. Hosseinnia, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler,” Opt. Express 23(23), 30297–30307 (2015).
[Crossref] [PubMed]

H. Moradinejad, A. H. Atabaki, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Double-layer crystalline silicon on insulator material platform for integrated photonic applications,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

Attolini, G.

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

Awschalom, D. D.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X. L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4(1), 1819 (2013).
[Crossref] [PubMed]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Babinec, T. M.

Balda, J. C.

T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, “Power conversion with SiC devices at extremely high ambient temperatures,” IEEE Trans. Power Electron. 22(4), 1321–1329 (2007).
[Crossref]

Baliga, B. J.

M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” IEEE Trans. Electron Dev. 40(3), 645–655 (1993).
[Crossref]

Barbosa, F. A. S.

Barlow, F.

T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, “Power conversion with SiC devices at extremely high ambient temperatures,” IEEE Trans. Power Electron. 22(4), 1321–1329 (2007).
[Crossref]

Bechstedt, F.

B. Adolph, K. Tenelsen, V. I. Gavrilenko, and F. Bechstedt, “Optical and loss spectra of SiC polytypes from ab initio calculations,” Phys. Rev. B 55(3), 1422–1429 (1997).
[Crossref]

Bermel, P.

Bhatnagar, M.

C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Alien, C. Thero, and M. Bhatnagar, “Silicon carbide high-power devices,” IEEE Trans. Electron Dev. 43(10), 1732–1741 (1996).
[Crossref]

M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” IEEE Trans. Electron Dev. 40(3), 645–655 (1993).
[Crossref]

Bodrog, Z.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. J. Karle, A. Gali, S. Prawer, J. C. McCallum, and B. C. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6(1), 7783 (2015).
[Crossref] [PubMed]

Borionetti, G.

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

Bosi, M.

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

M. Bosi, C. Ferrari, D. Nilsson, and P. J. Ward, “3C-SiC carbonization optimization and void reduction on misoriented Si substrates: from a research reactor to a production scale reactor,” CrystEngComm 18(39), 7478–7486 (2016).
[Crossref]

Bracher, D.

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104(5), 051109 (2014).
[Crossref]

Bravo-Abad, J.

Brewer, C.

Bruel, M.

L. D. Cioccio, F. Letertre, Y. L. Tiec, A. M. Papon, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation by the Smart-Cut process,” Mater. Sci. Eng. B 46(1–3), 349–356 (1997).
[Crossref]

Bryant, A.

Buckley, B. B.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X. L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4(1), 1819 (2013).
[Crossref] [PubMed]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Buckley, S.

Buffagni, E.

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

Burns, M.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

Calicchio, M.

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

Calusine, G.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X. L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4(1), 1819 (2013).
[Crossref] [PubMed]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Cardenas, J.

Carter, C. H.

C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Alien, C. Thero, and M. Bhatnagar, “Silicon carbide high-power devices,” IEEE Trans. Electron Dev. 43(10), 1732–1741 (1996).
[Crossref]

Castelletto, S.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. J. Karle, A. Gali, S. Prawer, J. C. McCallum, and B. C. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6(1), 7783 (2015).
[Crossref] [PubMed]

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13(2), 151–156 (2014).
[Crossref] [PubMed]

Chase, L. L.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Chung, G. S.

G. S. Chung, “Wafer bonding characteristics for 3C-SiC-on-insulator structures using PECVD oxide,” J. Korean Phys. Soc. 45(6), 1557–1561 (2004).

Cioccio, L. D.

L. D. Cioccio, F. Letertre, Y. L. Tiec, A. M. Papon, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation by the Smart-Cut process,” Mater. Sci. Eng. B 46(1–3), 349–356 (1997).
[Crossref]

Cora, I.

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

DesAutels, G. L.

Dobrovitski, V. V.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X. L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4(1), 1819 (2013).
[Crossref] [PubMed]

Dutt, A.

Edgar, J. H.

D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: A review,” Mater. Sci. Eng. Rep. 48(1), 1–46 (2005).
[Crossref]

Eftekhar, A. A.

A. H. Hosseinnia, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler,” Opt. Express 23(23), 30297–30307 (2015).
[Crossref] [PubMed]

H. Moradinejad, A. H. Atabaki, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Double-layer crystalline silicon on insulator material platform for integrated photonic applications,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

Evans, A. G. R.

A. Vonsovici, G. T. Reed, and A. G. R. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Mater. Sci. Semicond. Process. 3(5–6), 367–374 (2000).
[Crossref]

Falk, A. L.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X. L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4(1), 1819 (2013).
[Crossref] [PubMed]

Feng, P. X.

X. Lu, J. Y. Lee, P. X. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104(18), 181103 (2014).
[Crossref]

X. Lu, P. X. Feng, Q. Lin, and J. Y. Lee, “A silicon carbide microdisk resonator,” Opt. Lett. 38(8), 1304–1306 (2013).
[Crossref] [PubMed]

Feng, P. X. L.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X. L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4(1), 1819 (2013).
[Crossref] [PubMed]

Ferrari, C.

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

M. Bosi, C. Ferrari, D. Nilsson, and P. J. Ward, “3C-SiC carbonization optimization and void reduction on misoriented Si substrates: from a research reactor to a production scale reactor,” CrystEngComm 18(39), 7478–7486 (2016).
[Crossref]

Ferro, G.

Finet, M.

Frigeri, C.

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

Funaki, T.

T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, “Power conversion with SiC devices at extremely high ambient temperatures,” IEEE Trans. Power Electron. 22(4), 1321–1329 (2007).
[Crossref]

Fung, C. D.

C. D. Fung and J. J. Kopanski, “Thermal oxidation of 3C silicon carbide single-crystal layers on silicon,” Appl. Phys. Lett. 45(7), 757–759 (1984).
[Crossref]

Gaeta, A. L.

Gali, A.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. J. Karle, A. Gali, S. Prawer, J. C. McCallum, and B. C. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6(1), 7783 (2015).
[Crossref] [PubMed]

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13(2), 151–156 (2014).
[Crossref] [PubMed]

Gao, G. B.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

Gavrilenko, V. I.

B. Adolph, K. Tenelsen, V. I. Gavrilenko, and F. Bechstedt, “Optical and loss spectra of SiC polytypes from ab initio calculations,” Phys. Rev. B 55(3), 1422–1429 (1997).
[Crossref]

Gösele, U.

Q. Tong, U. Gösele, C. Yuan, A. J. Steckl, and M. Reiche, “Silicon carbide wafer bonding,” J. Electrochem. Soc. 142(1), 232–236 (1995).
[Crossref]

Guha, B.

Heremans, F. J.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Hikihara, T.

T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, “Power conversion with SiC devices at extremely high ambient temperatures,” IEEE Trans. Power Electron. 22(4), 1321–1329 (2007).
[Crossref]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Hosseinnia, A. H.

A. H. Hosseinnia, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler,” Opt. Express 23(23), 30297–30307 (2015).
[Crossref] [PubMed]

H. Moradinejad, A. H. Atabaki, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Double-layer crystalline silicon on insulator material platform for integrated photonic applications,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

Hu, E. L.

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104(5), 051109 (2014).
[Crossref]

Ivády, V.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13(2), 151–156 (2014).
[Crossref] [PubMed]

Iwamoto, N.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. J. Karle, A. Gali, S. Prawer, J. C. McCallum, and B. C. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6(1), 7783 (2015).
[Crossref] [PubMed]

Jaussaud, C.

L. D. Cioccio, F. Letertre, Y. L. Tiec, A. M. Papon, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation by the Smart-Cut process,” Mater. Sci. Eng. B 46(1–3), 349–356 (1997).
[Crossref]

Ji, X.

Jiang, L.

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

Joannopoulos, J. D.

Johnson, B. C.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. J. Karle, A. Gali, S. Prawer, J. C. McCallum, and B. C. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6(1), 7783 (2015).
[Crossref] [PubMed]

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13(2), 151–156 (2014).
[Crossref] [PubMed]

Johnson, S. G.

Juhl, S.

Junghans, J.

T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, “Power conversion with SiC devices at extremely high ambient temperatures,” IEEE Trans. Power Electron. 22(4), 1321–1329 (2007).
[Crossref]

Karle, T. J.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. J. Karle, A. Gali, S. Prawer, J. C. McCallum, and B. C. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6(1), 7783 (2015).
[Crossref] [PubMed]

Kashyap, A. S.

T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, “Power conversion with SiC devices at extremely high ambient temperatures,” IEEE Trans. Power Electron. 22(4), 1321–1329 (2007).
[Crossref]

Kimoto, T.

T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, “Power conversion with SiC devices at extremely high ambient temperatures,” IEEE Trans. Power Electron. 22(4), 1321–1329 (2007).
[Crossref]

Kippenberg, T. J.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Koehl, W. F.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X. L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4(1), 1819 (2013).
[Crossref] [PubMed]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Kopanski, J. J.

C. D. Fung and J. J. Kopanski, “Thermal oxidation of 3C silicon carbide single-crystal layers on silicon,” Appl. Phys. Lett. 45(7), 757–759 (1984).
[Crossref]

Lau, R. K. W.

Lee, J. C.

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104(5), 051109 (2014).
[Crossref]

Lee, J. Y.

Letertre, F.

L. D. Cioccio, F. Letertre, Y. L. Tiec, A. M. Papon, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation by the Smart-Cut process,” Mater. Sci. Eng. B 46(1–3), 349–356 (1997).
[Crossref]

Lin, M. E.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

Lin, Q.

Lipson, M.

Lohrmann, A.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. J. Karle, A. Gali, S. Prawer, J. C. McCallum, and B. C. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6(1), 7783 (2015).
[Crossref] [PubMed]

Lu, X.

Magyar, A. P.

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104(5), 051109 (2014).
[Crossref]

Mantooth, H. A.

T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, “Power conversion with SiC devices at extremely high ambient temperatures,” IEEE Trans. Power Electron. 22(4), 1321–1329 (2007).
[Crossref]

Martini, F.

McCallum, J. C.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. J. Karle, A. Gali, S. Prawer, J. C. McCallum, and B. C. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6(1), 7783 (2015).
[Crossref] [PubMed]

Mehregany, M.

K. N. Vinod, C. A. Zorman, A. A. Yasseen, and M. Mehregany, “Fabrication of low defect density 3C-SiC on SiO2 structures using wafer bonding techniques,” J. Electron. Mater. 27(3), 17–20 (1998).
[Crossref]

Moore, K.

C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Alien, C. Thero, and M. Bhatnagar, “Silicon carbide high-power devices,” IEEE Trans. Electron Dev. 43(10), 1732–1741 (1996).
[Crossref]

Moradinejad, H.

H. Moradinejad, A. H. Atabaki, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Double-layer crystalline silicon on insulator material platform for integrated photonic applications,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

Morkoç, H.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

Negri, M.

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

Nilsson, D.

M. Bosi, C. Ferrari, D. Nilsson, and P. J. Ward, “3C-SiC carbonization optimization and void reduction on misoriented Si substrates: from a research reactor to a production scale reactor,” CrystEngComm 18(39), 7478–7486 (2016).
[Crossref]

Noda, S.

Nordquist, K. J.

C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Alien, C. Thero, and M. Bhatnagar, “Silicon carbide high-power devices,” IEEE Trans. Electron Dev. 43(10), 1732–1741 (1996).
[Crossref]

Ohshima, T.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. J. Karle, A. Gali, S. Prawer, J. C. McCallum, and B. C. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6(1), 7783 (2015).
[Crossref] [PubMed]

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13(2), 151–156 (2014).
[Crossref] [PubMed]

Okawachi, Y.

Osváth, Z.

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

Palmour, J. W.

C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Alien, C. Thero, and M. Bhatnagar, “Silicon carbide high-power devices,” IEEE Trans. Electron Dev. 43(10), 1732–1741 (1996).
[Crossref]

Papon, A. M.

L. D. Cioccio, F. Letertre, Y. L. Tiec, A. M. Papon, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation by the Smart-Cut process,” Mater. Sci. Eng. B 46(1–3), 349–356 (1997).
[Crossref]

Payne, S. A.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Pécz, B.

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

Phare, C. T.

Poitras, C. B.

Politi, A.

F. Martini and A. Politi, “Linear integrated optics in 3C silicon carbide,” Opt. Express 25(10), 10735–10742 (2017).
[Crossref] [PubMed]

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X. L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4(1), 1819 (2013).
[Crossref] [PubMed]

Powers, P.

Prawer, S.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. J. Karle, A. Gali, S. Prawer, J. C. McCallum, and B. C. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6(1), 7783 (2015).
[Crossref] [PubMed]

Provine, J.

Radulaski, M.

Reed, G. T.

A. Vonsovici, G. T. Reed, and A. G. R. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Mater. Sci. Semicond. Process. 3(5–6), 367–374 (2000).
[Crossref]

Reiche, M.

Q. Tong, U. Gösele, C. Yuan, A. J. Steckl, and M. Reiche, “Silicon carbide wafer bonding,” J. Electrochem. Soc. 142(1), 232–236 (1995).
[Crossref]

Riesz, F.

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

Ristich, S.

Roberts, S. P.

Rodriguez, A.

Rogers, S.

Rundquist, A.

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Shah, S. Y.

Soljacic, M.

Song, B. S.

S. Yamada, B. S. Song, J. Upham, T. Asano, Y. Tanaka, and S. Noda, “Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm,” Opt. Express 20(14), 14789–14796 (2012).
[Crossref] [PubMed]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99(20), 201102 (2011).
[Crossref]

Song, B.-S.

Stavrias, N.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13(2), 151–156 (2014).
[Crossref] [PubMed]

Steckl, A. J.

Q. Tong, U. Gösele, C. Yuan, A. J. Steckl, and M. Reiche, “Silicon carbide wafer bonding,” J. Electrochem. Soc. 142(1), 232–236 (1995).
[Crossref]

Strite, S.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

Sverdlov, B.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

Tanaka, Y.

Tenelsen, K.

B. Adolph, K. Tenelsen, V. I. Gavrilenko, and F. Bechstedt, “Optical and loss spectra of SiC polytypes from ab initio calculations,” Phys. Rev. B 55(3), 1422–1429 (1997).
[Crossref]

Thero, C.

C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Alien, C. Thero, and M. Bhatnagar, “Silicon carbide high-power devices,” IEEE Trans. Electron Dev. 43(10), 1732–1741 (1996).
[Crossref]

Tiec, Y. L.

L. D. Cioccio, F. Letertre, Y. L. Tiec, A. M. Papon, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation by the Smart-Cut process,” Mater. Sci. Eng. B 46(1–3), 349–356 (1997).
[Crossref]

Tong, Q.

Q. Tong, U. Gösele, C. Yuan, A. J. Steckl, and M. Reiche, “Silicon carbide wafer bonding,” J. Electrochem. Soc. 142(1), 232–236 (1995).
[Crossref]

Umeda, T.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13(2), 151–156 (2014).
[Crossref] [PubMed]

Upham, J.

Vinod, K. N.

K. N. Vinod, C. A. Zorman, A. A. Yasseen, and M. Mehregany, “Fabrication of low defect density 3C-SiC on SiO2 structures using wafer bonding techniques,” J. Electron. Mater. 27(3), 17–20 (1998).
[Crossref]

Vonsovici, A.

A. Vonsovici, G. T. Reed, and A. G. R. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Mater. Sci. Semicond. Process. 3(5–6), 367–374 (2000).
[Crossref]

Vuckovic, J.

Walker, M.

Ward, P. J.

M. Bosi, C. Ferrari, D. Nilsson, and P. J. Ward, “3C-SiC carbonization optimization and void reduction on misoriented Si substrates: from a research reactor to a production scale reactor,” CrystEngComm 18(39), 7478–7486 (2016).
[Crossref]

Weitzel, C. E.

C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Alien, C. Thero, and M. Bhatnagar, “Silicon carbide high-power devices,” IEEE Trans. Electron Dev. 43(10), 1732–1741 (1996).
[Crossref]

Whitaker, M.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Yamada, S.

Yasseen, A. A.

K. N. Vinod, C. A. Zorman, A. A. Yasseen, and M. Mehregany, “Fabrication of low defect density 3C-SiC on SiO2 structures using wafer bonding techniques,” J. Electron. Mater. 27(3), 17–20 (1998).
[Crossref]

Yu, M.

Yuan, C.

Q. Tong, U. Gösele, C. Yuan, A. J. Steckl, and M. Reiche, “Silicon carbide wafer bonding,” J. Electrochem. Soc. 142(1), 232–236 (1995).
[Crossref]

Zhang, M.

Zhuang, D.

D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: A review,” Mater. Sci. Eng. Rep. 48(1), 1–46 (2005).
[Crossref]

Zorman, C. A.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X. L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4(1), 1819 (2013).
[Crossref] [PubMed]

K. N. Vinod, C. A. Zorman, A. A. Yasseen, and M. Mehregany, “Fabrication of low defect density 3C-SiC on SiO2 structures using wafer bonding techniques,” J. Electron. Mater. 27(3), 17–20 (1998).
[Crossref]

Appl. Phys. Lett. (4)

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99(20), 201102 (2011).
[Crossref]

A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, and E. L. Hu, “High quality SiC microdisk resonators fabricated from monolithic epilayer wafers,” Appl. Phys. Lett. 104(5), 051109 (2014).
[Crossref]

X. Lu, J. Y. Lee, P. X. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104(18), 181103 (2014).
[Crossref]

C. D. Fung and J. J. Kopanski, “Thermal oxidation of 3C silicon carbide single-crystal layers on silicon,” Appl. Phys. Lett. 45(7), 757–759 (1984).
[Crossref]

CrystEngComm (2)

M. Bosi, C. Ferrari, D. Nilsson, and P. J. Ward, “3C-SiC carbonization optimization and void reduction on misoriented Si substrates: from a research reactor to a production scale reactor,” CrystEngComm 18(39), 7478–7486 (2016).
[Crossref]

M. Bosi, G. Attolini, M. Negri, C. Ferrari, E. Buffagni, C. Frigeri, M. Calicchio, B. Pécz, F. Riesz, I. Cora, Z. Osváth, L. Jiang, and G. Borionetti, “Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition,” CrystEngComm 18(15), 2770–2779 (2016).
[Crossref]

IEEE Photonics J. (1)

H. Moradinejad, A. H. Atabaki, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Double-layer crystalline silicon on insulator material platform for integrated photonic applications,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

IEEE Trans. Electron Dev. (2)

C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Alien, C. Thero, and M. Bhatnagar, “Silicon carbide high-power devices,” IEEE Trans. Electron Dev. 43(10), 1732–1741 (1996).
[Crossref]

M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” IEEE Trans. Electron Dev. 40(3), 645–655 (1993).
[Crossref]

IEEE Trans. Power Electron. (1)

T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, “Power conversion with SiC devices at extremely high ambient temperatures,” IEEE Trans. Power Electron. 22(4), 1321–1329 (2007).
[Crossref]

J. Appl. Phys. (1)

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

J. Electrochem. Soc. (1)

Q. Tong, U. Gösele, C. Yuan, A. J. Steckl, and M. Reiche, “Silicon carbide wafer bonding,” J. Electrochem. Soc. 142(1), 232–236 (1995).
[Crossref]

J. Electron. Mater. (1)

K. N. Vinod, C. A. Zorman, A. A. Yasseen, and M. Mehregany, “Fabrication of low defect density 3C-SiC on SiO2 structures using wafer bonding techniques,” J. Electron. Mater. 27(3), 17–20 (1998).
[Crossref]

J. Korean Phys. Soc. (1)

G. S. Chung, “Wafer bonding characteristics for 3C-SiC-on-insulator structures using PECVD oxide,” J. Korean Phys. Soc. 45(6), 1557–1561 (2004).

J. Opt. Soc. Am. B (1)

Mater. Sci. Eng. B (1)

L. D. Cioccio, F. Letertre, Y. L. Tiec, A. M. Papon, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation by the Smart-Cut process,” Mater. Sci. Eng. B 46(1–3), 349–356 (1997).
[Crossref]

Mater. Sci. Eng. Rep. (1)

D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: A review,” Mater. Sci. Eng. Rep. 48(1), 1–46 (2005).
[Crossref]

Mater. Sci. Semicond. Process. (1)

A. Vonsovici, G. T. Reed, and A. G. R. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Mater. Sci. Semicond. Process. 3(5–6), 367–374 (2000).
[Crossref]

Nat. Commun. (2)

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X. L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4(1), 1819 (2013).
[Crossref] [PubMed]

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. J. Karle, A. Gali, S. Prawer, J. C. McCallum, and B. C. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6(1), 7783 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13(2), 151–156 (2014).
[Crossref] [PubMed]

Nature (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Opt. Express (8)

X. Lu, J. Y. Lee, S. Rogers, and Q. Lin, “Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22(25), 30826–30832 (2014).
[Crossref] [PubMed]

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15(24), 16161–16176 (2007).
[Crossref] [PubMed]

B.-S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19(12), 11084–11089 (2011).
[Crossref] [PubMed]

A. H. Hosseinnia, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler,” Opt. Express 23(23), 30297–30307 (2015).
[Crossref] [PubMed]

F. Martini and A. Politi, “Linear integrated optics in 3C silicon carbide,” Opt. Express 25(10), 10735–10742 (2017).
[Crossref] [PubMed]

S. Yamada, B. S. Song, J. Upham, T. Asano, Y. Tanaka, and S. Noda, “Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm,” Opt. Express 20(14), 14789–14796 (2012).
[Crossref] [PubMed]

J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High Q SiC microresonators,” Opt. Express 21(14), 16882–16887 (2013).
[Crossref] [PubMed]

M. Radulaski, T. M. Babinec, S. Buckley, A. Rundquist, J. Provine, K. Alassaad, G. Ferro, and J. Vučković, “Photonic crystal cavities in cubic (3C) polytype silicon carbide films,” Opt. Express 21(26), 32623–32629 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (1)

Phys. Rev. B (1)

B. Adolph, K. Tenelsen, V. I. Gavrilenko, and F. Bechstedt, “Optical and loss spectra of SiC polytypes from ab initio calculations,” Phys. Rev. B 55(3), 1422–1429 (1997).
[Crossref]

Phys. Rev. B Condens. Matter (1)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Other (1)

S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall Roughness in Si3N4 Waveguides Directly Measured by Atomic Force Microscopy,” in Conference on Lasers and Electro-Optics, 2017 OSA Technical Digest Series (Optical Society of America, 2017), paper SM3K.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Fabrication process flow of the SiCOI material platform. (a) Piece #1, a prime Si wafer. (b) Epitaxial growth of 3C-SiC with top surface smoothened by CMP, leaving a 3C-SiC film with an average thickness of 800 nm (thickness variation ~100 nm). (c) Deposition of a 30 nm SiO2 layer using ALD. (d) Piece #2, a prime Si wafer. (e) Wet oxidation to grow 4 μm of thermal SiO2. (f) Piece #1 and piece #2 are bonded using a low-temperature hydrophilic bonding process. (g) Removal of the Si handle layer using Bosch process and KOH wet etching. Inset: A photo of the bonded SiCOI piece.
Fig. 2
Fig. 2 (a) Cross-sectional SEM image of the original 3C-SiC-on-Si sample. The average thickness of the SiC film is 800 nm. (b) Cross-sectional SEM image of the SiCOI sample. The average thickness of the SiC film maintains as 800 nm. The thickness of the BOX layer is 4 μm. (c) Top view SEM image of the broken edges of the SiCOI sample along the SiC crystal directions.
Fig. 3
Fig. 3 (a) Zoomed-out TEM image of the SiCOI lamella. The line-shape patterns shown in the region where SiC exists are from the diffraction of electrons due to the defects of the SiC lattice. The density of defects is reducing in the direction of SiC growth (from region A to B). (b) Zoomed-in TEM image of the top surface of a SiCOI lamella (region A in (a), also known as the transition layer) where there is a high density of defects. Some of the regions with defects are indicated by white color. (c) Zoomed-in TEM image of the bottom layer of the SiCOI lamella (region B in (a)) where there is a low density of defects in SiC.
Fig. 4
Fig. 4 (a) Top view SEM image of fabricated micro-donut resonators on SiCOI platform. Resonators have outer radius of 5 µm, 10 µm, 20 µm and width of 1.25 µm, 3 µm, 4 µm, respectively. (b) Top view SEM image of a 20 µm-radius micro-donut resonator-waveguide coupled region. The width of the bus waveguide is 800 nm. (c) Top view SEM image of input/output grating-taper coupled region. (d) Cross-sectional Hz profile of the first-order quasi-TE mode of a 20 µm-radius resonator according to the designed geometry.
Fig. 5
Fig. 5 (a) Transmission spectrum of a 20 µm-radius micro-donut resonator under TE polarization near 1550 nm wavelength. (b) Normalized transmission spectrum of the resonant mode at 1559.1 nm marked in (a), with experimental data and Lorentzian fitting shown in blue and red, respectively. The mode is near-critically coupled with an intrinsic Q of about 42,000. (c) The measured intrinsic Qs versus the outer radius of the micro-donut resonators fabricated on SiCOI platform.
Fig. 6
Fig. 6 (a) 2D AFM scan of the top surface of the original SiC/Si sample (with initial CMP after epitaxy) before the bonding process, scaled to −4.538 Å to 5.152 Å with RMS roughness (σ) of 1.33 Å. (b) 2D AFM scan of the top surface of SiCOI sample (same as the bottom surface of original SiC/Si sample) before the final CMP, scaled to −2.5 nm to 3.5 nm with σ = 7.25 Å, representing the large surface roughness of the SiC/Si transition layer (now on top of the SiCOI sample); (c) 2D AFM scan of the top surface of SiCOI sample after the final CMP, scaled to −8.824 Å to 9.963 Å with σ = 2.47 Å. (d) 3D AFM scan of the top surface of the original SiC/Si sample in (a), scaled to −8 nm to 8 nm with σ = 1.33 Å. (e) 3D AFM scan of the top surface of the SiCOI sample before the final CMP in (b), scaled to −8 nm to 8 nm with σ = 7.25 Å. (f) 3D AFM scan of the top surface of the SiCOI sample after the final CMP in (c), scaled to −8 nm to 8 nm with σ = 2.47 Å. Inset: A photo of the SiCOI sample after the final CMP.
Fig. 7
Fig. 7 (a) Angled-view SEM image of fabricated microring resonators on SiCOI platform (after CMP). Resonators have outer radii of 40 µm, 60 µm, 80 µm and width of 2.5 µm. (b) Top view SEM image of a 40 µm radius microring resonator-waveguide coupled region. Bus waveguide width is 800 nm. Due to sidewall etching, the topside width of the ring is reduced to 1.7 µm (c) Cross-sectional Hz profile of the first-order quasi-TE mode of the 40 µm radius-resonator according to the real geometry measured in (b).
Fig. 8
Fig. 8 (a) Transmission spectrum of a 40 µm microring resonator at the quasi-TE polarization near 1550 nm wavelength when the resonator-waveguide spacing is changed from 300 nm to 100 nm. For easy visualization, the spectra are shifted by a value of −15 (dB) with respect to each other along the vertical axis. (b) Normalized transmission spectrum of the cavity mode at 1550 nm marked in (a), with experimental data and Lorentzian fitting shown in blue and red, respectively. The mode is under-coupled with an intrinsic Q of about 110,000. (c) Normalized transmission spectrum of the cavity mode at 1533.8 nm wavelength marked in (a), with experimental data and Lorentzian fitting shown in blue and red, respectively. The mode is critically coupled with an intrinsic Q of about 97,000. (d) Normalized transmission spectrum of the cavity mode at 1561.3 nm wavelength marked in (a), with experimental data and Lorentzian fitting shown in blue and red, respectively. The mode is near-critically coupled with an intrinsic Q of about 142,000.
Fig. 9
Fig. 9 (a) Zoomed-in angled-view SEM image of the microring resonator in Fig. 7(b). (b) 2D AFM scan, and (c) 3D AFM scan of the sidewall of the microring resonator with RMS roughness σ = 2.56 nm.
Fig. 10
Fig. 10 (a) Top view SEM image of a 20 µm-radius micro-donut resonator-waveguide coupled region. The thickness of the device is 500 nm. (b) Transmission spectrum of a 20 µm-radius micro-donut resonator under TE polarization near 1550 nm wavelength. (c) Normalized transmission spectrum of the resonant mode at 1562.0 nm marked in (b), with experimental data and Lorentzian fitting shown in blue and red, respectively. The mode is near-critically coupled with an intrinsic Q of about 126,000.

Metrics