Abstract

We investigate a tapered, hybrid plasmonic waveguide which has previously been proposed as an optically efficient near-field transducer (NFT), or component thereof, in several devices which aim to exploit nanofocused light. We numerically analyze how light is transported through the waveguide and ultimately focused via effective-mode coupling and taper optimization. Crucial dimensional parameters in this optimization process are identified that are not only necessary to achieve maximum optical throughput, but also optimum thermal performance with specific application towards heat-assisted magnetic recording (HAMR). It is shown that existing devices constructed on similar waveguides may benefit from a heat spreader to avoid deformation of the plasmonic element which we achieve with no cost to the optical efficiency. For HAMR, our design is able to surpass many industry requirements in regard to both optical and thermal efficiency using pertinent figure of merits like 8.5% optical efficiency.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effective heat dissipation in an adiabatic near-field transducer for HAMR

Chuan Zhong, Patrick Flanigan, Nicolás Abadía, Frank Bello, Brian D. Jennings, Gwenael Atcheson, Jing Li, Jian-Yao Zheng, Jing Jing Wang, Richard Hobbs, David McCloskey, and John F. Donegan
Opt. Express 26(15) 18842-18854 (2018)

Split ring resonator as a nanoscale optical transducer for heat-assisted magnetic recording

Anurup Datta, Zhou Zeng, and Xianfan Xu
Opt. Express 27(20) 28264-28278 (2019)

Integrated head design using a nanobeak antenna for thermally assisted magnetic recording

Takuya Matsumoto, Fumiko Akagi, Masafumi Mochizuki, Harukazu Miyamoto, and Barry Stipe
Opt. Express 20(17) 18946-18954 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
    [Crossref]
  2. W. A. Challener and A. V. Itagi, “Near-field optics for heat-assisted magnetic recording (experiment, theory, and modeling),” Mod. Aspects Electrochem. 44, 53–111 (2009).
  3. T. Matsumoto, F. Akagi, M. Mochizuki, H. Miyamoto, and B. Stipe, “Integrated head design using a nanobeak antenna for thermally assisted magnetic recording,” Opt. Express 20(17), 18946–18954 (2012).
    [Crossref] [PubMed]
  4. H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
    [Crossref]
  5. D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “FePt heat assisted magnetic recording media,” J. Vac. Sci. Technol. B 34, 60801 (2016).
  6. X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28(15), 1320–1322 (2003).
    [Crossref] [PubMed]
  7. B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
    [Crossref]
  8. E. X. Jin and X. Xu, “Radiation transfer through nanoscale aperatures,” J. Quant. Spectrosc. Radiat. Transf. 93(1-3), 163–173 (2005).
    [Crossref]
  9. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
    [Crossref]
  10. K. Şendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
    [Crossref] [PubMed]
  11. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
    [Crossref]
  12. T. Maletzky, D. Zhou, E. X. Jin, and M. Dovek, “Near and far field experiments of power transfer by mode beating in plasmonic devices,” Proc. SPIE 9201, 92010J (2014).
    [Crossref]
  13. W. A. Challener and A. V. Itagi, “Near-field optics for heat-assisted magnetic recording (experiment, theory, and modeling),” in Modern Aspects of Electrochemistry, Modelling and Numerical Simulations II, M. Schlesinger, Ed., Vol. 44, pp. 53–111, Springer, New York (2009).
  14. J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for heat-assisted magnetic recording,” Nanophotonics 4(1), 503–510 (2015).
    [Crossref]
  15. C. Peng, “Efficient excitation of a monopole optical transducer for near-field recording,” J. Appl. Phys. 112(4), 043108 (2012).
    [Crossref]
  16. X. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express 19(14), 12865–12872 (2011).
    [Crossref] [PubMed]
  17. Y. Kong, M. Chabalko, E. Black, S. Powell, J. A. Bain, T. E. Schlesinger, and Y. Luo, “Evanescent Coupling Between Dielectric and PlasmonicWaveguides for HAMR Applications,” IEEE Trans. Magn. 47(10), 2364–2367 (2011).
    [Crossref]
  18. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
    [Crossref] [PubMed]
  19. V. Krishnamurthy, D. Keh, T. Ng, K. P. Lim, and Q. Wang, “Efficient Integrated Light-Delivery System Design for HAMR : Maximal Optical Coupling for Transducer and Nanowaveguide,” IEEE Trans. Magn. 52(2), 1–7 (2016).
    [Crossref]
  20. V. Krishnamurthy, D. K. T. Ng, Z. Cen, B. Xu, and Q. Wang, “Maximizing the plasmonic near-field transducer efficiency to its limit for HAMR,” J. Lightwave Technol. 34(4), 1184–1190 (2016).
    [Crossref]
  21. A. Ziabari, A. Shakouri, Y. Xuan, J.-H. Bahk, Y. Koh, M. Si, P. Ye, and A. Shakouri, “Non-diffusive heat transport in twin nanoheater lines on silicon,” in 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (2017), pp. 334–338.
    [Crossref]
  22. G. Singh, V. Krishnamurthy, J. Pu, and Q. Wang, “Efficient plasmonic transducer for nanoscale optical energy transfer in heat-assisted magnetic recording,” J. Lightwave Technol. 32(17), 3074–3080 (2014).
    [Crossref]
  23. T. Rausch, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, “Thermal Williams-Comstock model for predicting transition length in a heat-assisted magnetic recording system,” IEEE Trans. Magn. 40(1), 137–147 (2004).
    [Crossref]
  24. T. Rausch, J. D. Trantham, A. S. Chu, H. Dakroub, J. W. Riddering, C. P. Henry, J. D. Kiely, E. C. Gage, and J. W. Dykes, “HAMR drive performance and integration challenges,” IEEE Trans. Magn. 49(2), 730–733 (2013).
    [Crossref]
  25. A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
    [Crossref]
  26. S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic Hot Printing in Gold Nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
    [Crossref]
  27. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped Silicon and Silicides,” Opt. Express 16(9), 6507–6514 (2008).
    [Crossref] [PubMed]
  28. U. Guler, W. Li, A. Boltasseva, A. Kildishev, and V. M. Shalaev, “Titanium Nitride as a refractory plasmonic material for high temperature applications,” in CLEO:2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper FM4C.8.
  29. A. Dutta, N. Kinsey, S. Saha, U. Guler, V. M. Shalaev, and A. Boltasseva, “Plasmonic interconnects using Zirconium Nitride,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW2A.86.
    [Crossref]
  30. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).
    [Crossref]
  31. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Elsevier, 1999).
  32. M. Shur, Physics of Semiconductor Devices (Prentice-Hall, Inc., 1990).
  33. Lumerical Inc, http://www.lumerical.com/tcad-products/fdtd/
  34. Lumerical Inc, http://www.lumerical.com/tcad-products/mode/
  35. S. H. Chen, Y. Sakane, H. S. Nishihira, C. K. Kwok, T. V. Tran, and B.-S. Chang, “Composite lubricant for hard disk media,” U.S. Patent 7,998,912 (2011).
  36. K. Suzuki, K. Shimokawa, K. Hamakubo, and K. Itoh, “Lubricant compound for magnetic disk and magnetic disk,” U.S. Patent 9,558,778 (2017).
  37. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010).
    [Crossref] [PubMed]
  38. X. Xu, N. Zhou, Y. Li, and L. Traverso, “Optical and thermal behaviors of plasmonic bowtie aperture and its NSOM characterization for heat-assisted magnetic recording,” IEEE Trans. Magn. 52, 1–5 (2016).
  39. N. Li and B. M. Lairson, “Magnetic recording on FePt and FePtB intermetallic compound media,” IEEE Trans. Magn. 35(2), 1077–1082 (1999).
    [Crossref]
  40. S. Xu, S. Sinha, E. Rismaniyazdi, C. Wolf, P. Dorsey, and B. Knigge, “Effect of Carbon Overcoat on Heat-Assisted Magnetic Recording Performance,” IEEE Trans. Magn. 51, 1–5 (2015).
    [PubMed]
  41. P. M. Jones, Z. Z. Fan, X. Ma, H. Wang, and H. H. Tang, “Temperature induced changes in the optical and material characteristics of HAMR media COC and its effect on recording performance,” IEEE Trans. Magn.in press.
  42. T. Shiroyama, B. S. D. C. S. Varaprasad, Y. K. Takahashi, and K. Hono, “Influence of MgO underlayers on the structure and magnetic properties of FePt-C nanogranular films for heat-assisted magnetic recording media,” AIP Adv. 6(10), 105105 (2016).
    [Crossref]
  43. B. S. D. C. S. Varaprasad, B. Zhou, T. Mo, D. E. Laughlin, and J.-D. Zhu, “MgO-C interlayer for grain size control in FePt-C media for heat assisted magnetic recording,” AIP Adv. 7(5), 056503 (2017).
    [Crossref]
  44. D. R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC, 1995).
  45. H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
    [Crossref] [PubMed]
  46. C. Zhong, P. Flanigan, N. Abadía, B. Jennings, F. Bello, G. Atcheson, J. Li, J.-Y. Zheng, R. Hobbs, D. McCloskey, and J. F. Donegan, “Low-loss adiabatic dielectric-plasmonic hybrid waveguide for HAMR applications,” to be published.
  47. A. Datta and X. Xu, “Improved near-field transducer design for heat-assisted magnetic recording,” IEEE Trans. Magn. 52, 1–6 (2016).
  48. N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
    [Crossref]
  49. A. Krichevsky, C. B. Wolf, F. D. Bello, K. E. Ballantine, J. Donegan, and D. M. O. McCloskey, “Method and system for reducing undesirable reflections in a HAMR write apparatus,” U.S. Patent 9,484,051 (2016).
  50. COMSOL MultiphysicsTM v.5.0 www.comsol.com . COMSOL AB, Stockholm, Sweden.
  51. C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser.: Mater. Sci. Eng. 147, 012021 (2016).
    [Crossref]
  52. N. J. Karanjgaokar, C.-S. Oh, J. Lambros, and I. Chasiotis, “Inelastic deformation of nanocrystalline Au thin films as a function of temperature and strain rate,” Acta Mater. 60(13-14), 5352–5361 (2012).
    [Crossref]
  53. S. Xiong, R. Smith, N. Wang, D. Li, E. Schreck, S. Canchi, and Q. Dai, “Thermal response time of media in heat-assisted magnetic recording,” IEEE Trans. Magn. 53(10), 1–6 (2017).
    [Crossref]
  54. C. Peng and K. D. Ko, “Lightning rod resonance of a plasmonic near-field transducer,” Opt. Express 25(13), 14204–14209 (2017).
    [Crossref] [PubMed]

2017 (4)

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

B. S. D. C. S. Varaprasad, B. Zhou, T. Mo, D. E. Laughlin, and J.-D. Zhu, “MgO-C interlayer for grain size control in FePt-C media for heat assisted magnetic recording,” AIP Adv. 7(5), 056503 (2017).
[Crossref]

S. Xiong, R. Smith, N. Wang, D. Li, E. Schreck, S. Canchi, and Q. Dai, “Thermal response time of media in heat-assisted magnetic recording,” IEEE Trans. Magn. 53(10), 1–6 (2017).
[Crossref]

C. Peng and K. D. Ko, “Lightning rod resonance of a plasmonic near-field transducer,” Opt. Express 25(13), 14204–14209 (2017).
[Crossref] [PubMed]

2016 (6)

V. Krishnamurthy, D. K. T. Ng, Z. Cen, B. Xu, and Q. Wang, “Maximizing the plasmonic near-field transducer efficiency to its limit for HAMR,” J. Lightwave Technol. 34(4), 1184–1190 (2016).
[Crossref]

T. Shiroyama, B. S. D. C. S. Varaprasad, Y. K. Takahashi, and K. Hono, “Influence of MgO underlayers on the structure and magnetic properties of FePt-C nanogranular films for heat-assisted magnetic recording media,” AIP Adv. 6(10), 105105 (2016).
[Crossref]

A. Datta and X. Xu, “Improved near-field transducer design for heat-assisted magnetic recording,” IEEE Trans. Magn. 52, 1–6 (2016).

X. Xu, N. Zhou, Y. Li, and L. Traverso, “Optical and thermal behaviors of plasmonic bowtie aperture and its NSOM characterization for heat-assisted magnetic recording,” IEEE Trans. Magn. 52, 1–5 (2016).

V. Krishnamurthy, D. Keh, T. Ng, K. P. Lim, and Q. Wang, “Efficient Integrated Light-Delivery System Design for HAMR : Maximal Optical Coupling for Transducer and Nanowaveguide,” IEEE Trans. Magn. 52(2), 1–7 (2016).
[Crossref]

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “FePt heat assisted magnetic recording media,” J. Vac. Sci. Technol. B 34, 60801 (2016).

2015 (3)

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic Hot Printing in Gold Nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for heat-assisted magnetic recording,” Nanophotonics 4(1), 503–510 (2015).
[Crossref]

S. Xu, S. Sinha, E. Rismaniyazdi, C. Wolf, P. Dorsey, and B. Knigge, “Effect of Carbon Overcoat on Heat-Assisted Magnetic Recording Performance,” IEEE Trans. Magn. 51, 1–5 (2015).
[PubMed]

2014 (3)

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

T. Maletzky, D. Zhou, E. X. Jin, and M. Dovek, “Near and far field experiments of power transfer by mode beating in plasmonic devices,” Proc. SPIE 9201, 92010J (2014).
[Crossref]

G. Singh, V. Krishnamurthy, J. Pu, and Q. Wang, “Efficient plasmonic transducer for nanoscale optical energy transfer in heat-assisted magnetic recording,” J. Lightwave Technol. 32(17), 3074–3080 (2014).
[Crossref]

2013 (2)

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

T. Rausch, J. D. Trantham, A. S. Chu, H. Dakroub, J. W. Riddering, C. P. Henry, J. D. Kiely, E. C. Gage, and J. W. Dykes, “HAMR drive performance and integration challenges,” IEEE Trans. Magn. 49(2), 730–733 (2013).
[Crossref]

2012 (3)

N. J. Karanjgaokar, C.-S. Oh, J. Lambros, and I. Chasiotis, “Inelastic deformation of nanocrystalline Au thin films as a function of temperature and strain rate,” Acta Mater. 60(13-14), 5352–5361 (2012).
[Crossref]

C. Peng, “Efficient excitation of a monopole optical transducer for near-field recording,” J. Appl. Phys. 112(4), 043108 (2012).
[Crossref]

T. Matsumoto, F. Akagi, M. Mochizuki, H. Miyamoto, and B. Stipe, “Integrated head design using a nanobeak antenna for thermally assisted magnetic recording,” Opt. Express 20(17), 18946–18954 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Kong, M. Chabalko, E. Black, S. Powell, J. A. Bain, T. E. Schlesinger, and Y. Luo, “Evanescent Coupling Between Dielectric and PlasmonicWaveguides for HAMR Applications,” IEEE Trans. Magn. 47(10), 2364–2367 (2011).
[Crossref]

X. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express 19(14), 12865–12872 (2011).
[Crossref] [PubMed]

2010 (3)

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010).
[Crossref] [PubMed]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[Crossref] [PubMed]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

2009 (2)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

W. A. Challener and A. V. Itagi, “Near-field optics for heat-assisted magnetic recording (experiment, theory, and modeling),” Mod. Aspects Electrochem. 44, 53–111 (2009).

2008 (2)

2005 (2)

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).
[Crossref]

E. X. Jin and X. Xu, “Radiation transfer through nanoscale aperatures,” J. Quant. Spectrosc. Radiat. Transf. 93(1-3), 163–173 (2005).
[Crossref]

2004 (1)

T. Rausch, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, “Thermal Williams-Comstock model for predicting transition length in a heat-assisted magnetic recording system,” IEEE Trans. Magn. 40(1), 137–147 (2004).
[Crossref]

2003 (3)

K. Şendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[Crossref] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28(15), 1320–1322 (2003).
[Crossref] [PubMed]

1999 (1)

N. Li and B. M. Lairson, “Magnetic recording on FePt and FePtB intermetallic compound media,” IEEE Trans. Magn. 35(2), 1077–1082 (1999).
[Crossref]

1997 (1)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

Abadía, N.

C. Zhong, P. Flanigan, N. Abadía, B. Jennings, F. Bello, G. Atcheson, J. Li, J.-Y. Zheng, R. Hobbs, D. McCloskey, and J. F. Donegan, “Low-loss adiabatic dielectric-plasmonic hybrid waveguide for HAMR applications,” to be published.

Akagi, F.

Albrecht, M.

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “FePt heat assisted magnetic recording media,” J. Vac. Sci. Technol. B 34, 60801 (2016).

Albrecht, T. R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Arbouet, A.

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic Hot Printing in Gold Nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Atcheson, G.

C. Zhong, P. Flanigan, N. Abadía, B. Jennings, F. Bello, G. Atcheson, J. Li, J.-Y. Zheng, R. Hobbs, D. McCloskey, and J. F. Donegan, “Low-loss adiabatic dielectric-plasmonic hybrid waveguide for HAMR applications,” to be published.

Aussenegg, F. R.

Avrutsky, I.

Bain, J. A.

Y. Kong, M. Chabalko, E. Black, S. Powell, J. A. Bain, T. E. Schlesinger, and Y. Luo, “Evanescent Coupling Between Dielectric and PlasmonicWaveguides for HAMR Applications,” IEEE Trans. Magn. 47(10), 2364–2367 (2011).
[Crossref]

T. Rausch, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, “Thermal Williams-Comstock model for predicting transition length in a heat-assisted magnetic recording system,” IEEE Trans. Magn. 40(1), 137–147 (2004).
[Crossref]

Balamane, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Bello, F.

C. Zhong, P. Flanigan, N. Abadía, B. Jennings, F. Bello, G. Atcheson, J. Li, J.-Y. Zheng, R. Hobbs, D. McCloskey, and J. F. Donegan, “Low-loss adiabatic dielectric-plasmonic hybrid waveguide for HAMR applications,” to be published.

Black, E.

Y. Kong, M. Chabalko, E. Black, S. Powell, J. A. Bain, T. E. Schlesinger, and Y. Luo, “Evanescent Coupling Between Dielectric and PlasmonicWaveguides for HAMR Applications,” IEEE Trans. Magn. 47(10), 2364–2367 (2011).
[Crossref]

Boone, T. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Buchwald, W.

Canchi, S.

S. Xiong, R. Smith, N. Wang, D. Li, E. Schreck, S. Canchi, and Q. Dai, “Thermal response time of media in heat-assisted magnetic recording,” IEEE Trans. Magn. 53(10), 1–6 (2017).
[Crossref]

Cen, Z.

Chabalko, M.

Y. Kong, M. Chabalko, E. Black, S. Powell, J. A. Bain, T. E. Schlesinger, and Y. Luo, “Evanescent Coupling Between Dielectric and PlasmonicWaveguides for HAMR Applications,” IEEE Trans. Magn. 47(10), 2364–2367 (2011).
[Crossref]

Challener, W.

K. Şendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[Crossref] [PubMed]

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

W. A. Challener and A. V. Itagi, “Near-field optics for heat-assisted magnetic recording (experiment, theory, and modeling),” Mod. Aspects Electrochem. 44, 53–111 (2009).

Chasiotis, I.

N. J. Karanjgaokar, C.-S. Oh, J. Lambros, and I. Chasiotis, “Inelastic deformation of nanocrystalline Au thin films as a function of temperature and strain rate,” Acta Mater. 60(13-14), 5352–5361 (2012).
[Crossref]

Chu, A. S.

T. Rausch, J. D. Trantham, A. S. Chu, H. Dakroub, J. W. Riddering, C. P. Henry, J. D. Kiely, E. C. Gage, and J. W. Dykes, “HAMR drive performance and integration challenges,” IEEE Trans. Magn. 49(2), 730–733 (2013).
[Crossref]

Corbett, B.

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for heat-assisted magnetic recording,” Nanophotonics 4(1), 503–510 (2015).
[Crossref]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Cuche, A.

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic Hot Printing in Gold Nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Dai, Q.

S. Xiong, R. Smith, N. Wang, D. Li, E. Schreck, S. Canchi, and Q. Dai, “Thermal response time of media in heat-assisted magnetic recording,” IEEE Trans. Magn. 53(10), 1–6 (2017).
[Crossref]

Dakroub, H.

T. Rausch, J. D. Trantham, A. S. Chu, H. Dakroub, J. W. Riddering, C. P. Henry, J. D. Kiely, E. C. Gage, and J. W. Dykes, “HAMR drive performance and integration challenges,” IEEE Trans. Magn. 49(2), 730–733 (2013).
[Crossref]

Datta, A.

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

A. Datta and X. Xu, “Improved near-field transducer design for heat-assisted magnetic recording,” IEEE Trans. Magn. 52, 1–6 (2016).

Ditlbacher, H.

Dobisz, E.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Donegan, J. F.

C. Zhong, P. Flanigan, N. Abadía, B. Jennings, F. Bello, G. Atcheson, J. Li, J.-Y. Zheng, R. Hobbs, D. McCloskey, and J. F. Donegan, “Low-loss adiabatic dielectric-plasmonic hybrid waveguide for HAMR applications,” to be published.

Dorsey, P.

S. Xu, S. Sinha, E. Rismaniyazdi, C. Wolf, P. Dorsey, and B. Knigge, “Effect of Carbon Overcoat on Heat-Assisted Magnetic Recording Performance,” IEEE Trans. Magn. 51, 1–5 (2015).
[PubMed]

Dovek, M.

T. Maletzky, D. Zhou, E. X. Jin, and M. Dovek, “Near and far field experiments of power transfer by mode beating in plasmonic devices,” Proc. SPIE 9201, 92010J (2014).
[Crossref]

Dujardin, E.

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic Hot Printing in Gold Nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Dykes, J. W.

T. Rausch, J. D. Trantham, A. S. Chu, H. Dakroub, J. W. Riddering, C. P. Henry, J. D. Kiely, E. C. Gage, and J. W. Dykes, “HAMR drive performance and integration challenges,” IEEE Trans. Magn. 49(2), 730–733 (2013).
[Crossref]

Fan, Z. Z.

P. M. Jones, Z. Z. Fan, X. Ma, H. Wang, and H. H. Tang, “Temperature induced changes in the optical and material characteristics of HAMR media COC and its effect on recording performance,” IEEE Trans. Magn.in press.

Flanigan, P.

C. Zhong, P. Flanigan, N. Abadía, B. Jennings, F. Bello, G. Atcheson, J. Li, J.-Y. Zheng, R. Hobbs, D. McCloskey, and J. F. Donegan, “Low-loss adiabatic dielectric-plasmonic hybrid waveguide for HAMR applications,” to be published.

Gage, E. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

T. Rausch, J. D. Trantham, A. S. Chu, H. Dakroub, J. W. Riddering, C. P. Henry, J. D. Kiely, E. C. Gage, and J. W. Dykes, “HAMR drive performance and integration challenges,” IEEE Trans. Magn. 49(2), 730–733 (2013).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Galler, N.

Gao, K.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Girard, C.

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic Hot Printing in Gold Nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Gosciniak, J.

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for heat-assisted magnetic recording,” Nanophotonics 4(1), 503–510 (2015).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).
[Crossref]

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

Gubbins, M.

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for heat-assisted magnetic recording,” Nanophotonics 4(1), 503–510 (2015).
[Crossref]

Hammack, A. T.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

He, X.

Hellwig, O.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Henry, C. P.

T. Rausch, J. D. Trantham, A. S. Chu, H. Dakroub, J. W. Riddering, C. P. Henry, J. D. Kiely, E. C. Gage, and J. W. Dykes, “HAMR drive performance and integration challenges,” IEEE Trans. Magn. 49(2), 730–733 (2013).
[Crossref]

Hesselink, L.

Hirotsune, A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Hobbs, R.

C. Zhong, P. Flanigan, N. Abadía, B. Jennings, F. Bello, G. Atcheson, J. Li, J.-Y. Zheng, R. Hobbs, D. McCloskey, and J. F. Donegan, “Low-loss adiabatic dielectric-plasmonic hybrid waveguide for HAMR applications,” to be published.

Hohenau, A.

Hono, K.

T. Shiroyama, B. S. D. C. S. Varaprasad, Y. K. Takahashi, and K. Hono, “Influence of MgO underlayers on the structure and magnetic properties of FePt-C nanogranular films for heat-assisted magnetic recording media,” AIP Adv. 6(10), 105105 (2016).
[Crossref]

Hsia, Y.-T.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

W. A. Challener and A. V. Itagi, “Near-field optics for heat-assisted magnetic recording (experiment, theory, and modeling),” Mod. Aspects Electrochem. 44, 53–111 (2009).

Jennings, B.

C. Zhong, P. Flanigan, N. Abadía, B. Jennings, F. Bello, G. Atcheson, J. Li, J.-Y. Zheng, R. Hobbs, D. McCloskey, and J. F. Donegan, “Low-loss adiabatic dielectric-plasmonic hybrid waveguide for HAMR applications,” to be published.

Jin, E. X.

T. Maletzky, D. Zhou, E. X. Jin, and M. Dovek, “Near and far field experiments of power transfer by mode beating in plasmonic devices,” Proc. SPIE 9201, 92010J (2014).
[Crossref]

E. X. Jin and X. Xu, “Radiation transfer through nanoscale aperatures,” J. Quant. Spectrosc. Radiat. Transf. 93(1-3), 163–173 (2005).
[Crossref]

Jones, P. M.

P. M. Jones, Z. Z. Fan, X. Ma, H. Wang, and H. H. Tang, “Temperature induced changes in the optical and material characteristics of HAMR media COC and its effect on recording performance,” IEEE Trans. Magn.in press.

Ju, G.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Karanjgaokar, N. J.

N. J. Karanjgaokar, C.-S. Oh, J. Lambros, and I. Chasiotis, “Inelastic deformation of nanocrystalline Au thin films as a function of temperature and strain rate,” Acta Mater. 60(13-14), 5352–5361 (2012).
[Crossref]

Karns, D.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Katine, J.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Keh, D.

V. Krishnamurthy, D. Keh, T. Ng, K. P. Lim, and Q. Wang, “Efficient Integrated Light-Delivery System Design for HAMR : Maximal Optical Coupling for Transducer and Nanowaveguide,” IEEE Trans. Magn. 52(2), 1–7 (2016).
[Crossref]

Kercher, D. S.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Kiely, J. D.

T. Rausch, J. D. Trantham, A. S. Chu, H. Dakroub, J. W. Riddering, C. P. Henry, J. D. Kiely, E. C. Gage, and J. W. Dykes, “HAMR drive performance and integration challenges,” IEEE Trans. Magn. 49(2), 730–733 (2013).
[Crossref]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Knigge, B.

S. Xu, S. Sinha, E. Rismaniyazdi, C. Wolf, P. Dorsey, and B. Knigge, “Effect of Carbon Overcoat on Heat-Assisted Magnetic Recording Performance,” IEEE Trans. Magn. 51, 1–5 (2015).
[PubMed]

Ko, K. D.

Koller, D. M.

Kong, Y.

Y. Kong, M. Chabalko, E. Black, S. Powell, J. A. Bain, T. E. Schlesinger, and Y. Luo, “Evanescent Coupling Between Dielectric and PlasmonicWaveguides for HAMR Applications,” IEEE Trans. Magn. 47(10), 2364–2367 (2011).
[Crossref]

Krenn, J. R.

Krishnamurthy, V.

Lairson, B. M.

N. Li and B. M. Lairson, “Magnetic recording on FePt and FePtB intermetallic compound media,” IEEE Trans. Magn. 35(2), 1077–1082 (1999).
[Crossref]

Lambros, J.

N. J. Karanjgaokar, C.-S. Oh, J. Lambros, and I. Chasiotis, “Inelastic deformation of nanocrystalline Au thin films as a function of temperature and strain rate,” Acta Mater. 60(13-14), 5352–5361 (2012).
[Crossref]

Laughlin, D. E.

B. S. D. C. S. Varaprasad, B. Zhou, T. Mo, D. E. Laughlin, and J.-D. Zhu, “MgO-C interlayer for grain size control in FePt-C media for heat assisted magnetic recording,” AIP Adv. 7(5), 056503 (2017).
[Crossref]

Leitner, A.

Li, D.

S. Xiong, R. Smith, N. Wang, D. Li, E. Schreck, S. Canchi, and Q. Dai, “Thermal response time of media in heat-assisted magnetic recording,” IEEE Trans. Magn. 53(10), 1–6 (2017).
[Crossref]

Li, J.

C. Zhong, P. Flanigan, N. Abadía, B. Jennings, F. Bello, G. Atcheson, J. Li, J.-Y. Zheng, R. Hobbs, D. McCloskey, and J. F. Donegan, “Low-loss adiabatic dielectric-plasmonic hybrid waveguide for HAMR applications,” to be published.

Li, J.-L.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Li, N.

N. Li and B. M. Lairson, “Magnetic recording on FePt and FePtB intermetallic compound media,” IEEE Trans. Magn. 35(2), 1077–1082 (1999).
[Crossref]

Li, Q.

Li, Y.

X. Xu, N. Zhou, Y. Li, and L. Traverso, “Optical and thermal behaviors of plasmonic bowtie aperture and its NSOM characterization for heat-assisted magnetic recording,” IEEE Trans. Magn. 52, 1–5 (2016).

Lim, K. P.

V. Krishnamurthy, D. Keh, T. Ng, K. P. Lim, and Q. Wang, “Efficient Integrated Light-Delivery System Design for HAMR : Maximal Optical Coupling for Transducer and Nanowaveguide,” IEEE Trans. Magn. 52(2), 1–7 (2016).
[Crossref]

Luo, Y.

Y. Kong, M. Chabalko, E. Black, S. Powell, J. A. Bain, T. E. Schlesinger, and Y. Luo, “Evanescent Coupling Between Dielectric and PlasmonicWaveguides for HAMR Applications,” IEEE Trans. Magn. 47(10), 2364–2367 (2011).
[Crossref]

Lyberatos, A.

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “FePt heat assisted magnetic recording media,” J. Vac. Sci. Technol. B 34, 60801 (2016).

Ma, X.

P. M. Jones, Z. Z. Fan, X. Ma, H. Wang, and H. H. Tang, “Temperature induced changes in the optical and material characteristics of HAMR media COC and its effect on recording performance,” IEEE Trans. Magn.in press.

Maletzky, T.

T. Maletzky, D. Zhou, E. X. Jin, and M. Dovek, “Near and far field experiments of power transfer by mode beating in plasmonic devices,” Proc. SPIE 9201, 92010J (2014).
[Crossref]

Matsumoto, T.

McCloskey, D.

C. Zhong, P. Flanigan, N. Abadía, B. Jennings, F. Bello, G. Atcheson, J. Li, J.-Y. Zheng, R. Hobbs, D. McCloskey, and J. F. Donegan, “Low-loss adiabatic dielectric-plasmonic hybrid waveguide for HAMR applications,” to be published.

Mitin, D.

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “FePt heat assisted magnetic recording media,” J. Vac. Sci. Technol. B 34, 60801 (2016).

Miyamoto, H.

Mo, T.

B. S. D. C. S. Varaprasad, B. Zhou, T. Mo, D. E. Laughlin, and J.-D. Zhu, “MgO-C interlayer for grain size control in FePt-C media for heat assisted magnetic recording,” AIP Adv. 7(5), 056503 (2017).
[Crossref]

Mochizuki, M.

Mooney, M.

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for heat-assisted magnetic recording,” Nanophotonics 4(1), 503–510 (2015).
[Crossref]

Mosendz, O.

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “FePt heat assisted magnetic recording media,” J. Vac. Sci. Technol. B 34, 60801 (2016).

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

Nemoto, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Ng, D. K. T.

Ng, T.

V. Krishnamurthy, D. Keh, T. Ng, K. P. Lim, and Q. Wang, “Efficient Integrated Light-Delivery System Design for HAMR : Maximal Optical Coupling for Transducer and Nanowaveguide,” IEEE Trans. Magn. 52(2), 1–7 (2016).
[Crossref]

Oh, C.-S.

N. J. Karanjgaokar, C.-S. Oh, J. Lambros, and I. Chasiotis, “Inelastic deformation of nanocrystalline Au thin films as a function of temperature and strain rate,” Acta Mater. 60(13-14), 5352–5361 (2012).
[Crossref]

Parker, G.

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “FePt heat assisted magnetic recording media,” J. Vac. Sci. Technol. B 34, 60801 (2016).

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

Peale, R. E.

Peng, C.

C. Peng and K. D. Ko, “Lightning rod resonance of a plasmonic near-field transducer,” Opt. Express 25(13), 14204–14209 (2017).
[Crossref] [PubMed]

C. Peng, “Efficient excitation of a monopole optical transducer for near-field recording,” J. Appl. Phys. 112(4), 043108 (2012).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Peng, Y.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Poon, C. C.

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Powell, S.

Y. Kong, M. Chabalko, E. Black, S. Powell, J. A. Bain, T. E. Schlesinger, and Y. Luo, “Evanescent Coupling Between Dielectric and PlasmonicWaveguides for HAMR Applications,” IEEE Trans. Magn. 47(10), 2364–2367 (2011).
[Crossref]

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

Pu, J.

Qiu, M.

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Rausch, T.

T. Rausch, J. D. Trantham, A. S. Chu, H. Dakroub, J. W. Riddering, C. P. Henry, J. D. Kiely, E. C. Gage, and J. W. Dykes, “HAMR drive performance and integration challenges,” IEEE Trans. Magn. 49(2), 730–733 (2013).
[Crossref]

T. Rausch, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, “Thermal Williams-Comstock model for predicting transition length in a heat-assisted magnetic recording system,” IEEE Trans. Magn. 40(1), 137–147 (2004).
[Crossref]

Rawat, V.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Richter, H. J.

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

Riddering, J. W.

T. Rausch, J. D. Trantham, A. S. Chu, H. Dakroub, J. W. Riddering, C. P. Henry, J. D. Kiely, E. C. Gage, and J. W. Dykes, “HAMR drive performance and integration challenges,” IEEE Trans. Magn. 49(2), 730–733 (2013).
[Crossref]

Rismaniyazdi, E.

S. Xu, S. Sinha, E. Rismaniyazdi, C. Wolf, P. Dorsey, and B. Knigge, “Effect of Carbon Overcoat on Heat-Assisted Magnetic Recording Performance,” IEEE Trans. Magn. 51, 1–5 (2015).
[PubMed]

Robertson, N.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Ruiz, R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Safonova, N. Y.

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “FePt heat assisted magnetic recording media,” J. Vac. Sci. Technol. B 34, 60801 (2016).

Schlesinger, T. E.

Y. Kong, M. Chabalko, E. Black, S. Powell, J. A. Bain, T. E. Schlesinger, and Y. Luo, “Evanescent Coupling Between Dielectric and PlasmonicWaveguides for HAMR Applications,” IEEE Trans. Magn. 47(10), 2364–2367 (2011).
[Crossref]

T. Rausch, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, “Thermal Williams-Comstock model for predicting transition length in a heat-assisted magnetic recording system,” IEEE Trans. Magn. 40(1), 137–147 (2004).
[Crossref]

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

Scholz, W.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Schreck, E.

S. Xiong, R. Smith, N. Wang, D. Li, E. Schreck, S. Canchi, and Q. Dai, “Thermal response time of media in heat-assisted magnetic recording,” IEEE Trans. Magn. 53(10), 1–6 (2017).
[Crossref]

Seigler, M.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Sendur, K.

K. Şendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[Crossref] [PubMed]

Sharma, J.

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic Hot Printing in Gold Nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Shi, X.

Shiroyama, T.

T. Shiroyama, B. S. D. C. S. Varaprasad, Y. K. Takahashi, and K. Hono, “Influence of MgO underlayers on the structure and magnetic properties of FePt-C nanogranular films for heat-assisted magnetic recording media,” AIP Adv. 6(10), 105105 (2016).
[Crossref]

Singh, G.

Sinha, S.

S. Xu, S. Sinha, E. Rismaniyazdi, C. Wolf, P. Dorsey, and B. Knigge, “Effect of Carbon Overcoat on Heat-Assisted Magnetic Recording Performance,” IEEE Trans. Magn. 51, 1–5 (2015).
[PubMed]

Smith, R.

S. Xiong, R. Smith, N. Wang, D. Li, E. Schreck, S. Canchi, and Q. Dai, “Thermal response time of media in heat-assisted magnetic recording,” IEEE Trans. Magn. 53(10), 1–6 (2017).
[Crossref]

Song, Y.

Soref, R.

Staffaroni, M.

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

Stancil, D. D.

T. Rausch, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, “Thermal Williams-Comstock model for predicting transition length in a heat-assisted magnetic recording system,” IEEE Trans. Magn. 40(1), 137–147 (2004).
[Crossref]

Stipe, B.

Stipe, B. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Strand, T. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Takahashi, Y. K.

T. Shiroyama, B. S. D. C. S. Varaprasad, Y. K. Takahashi, and K. Hono, “Influence of MgO underlayers on the structure and magnetic properties of FePt-C nanogranular films for heat-assisted magnetic recording media,” AIP Adv. 6(10), 105105 (2016).
[Crossref]

Tang, H. H.

P. M. Jones, Z. Z. Fan, X. Ma, H. Wang, and H. H. Tang, “Temperature induced changes in the optical and material characteristics of HAMR media COC and its effect on recording performance,” IEEE Trans. Magn.in press.

Terris, B. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Teulle, A.

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic Hot Printing in Gold Nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Thornton, R. L.

Trantham, J. D.

T. Rausch, J. D. Trantham, A. S. Chu, H. Dakroub, J. W. Riddering, C. P. Henry, J. D. Kiely, E. C. Gage, and J. W. Dykes, “HAMR drive performance and integration challenges,” IEEE Trans. Magn. 49(2), 730–733 (2013).
[Crossref]

Traverso, L.

X. Xu, N. Zhou, Y. Li, and L. Traverso, “Optical and thermal behaviors of plasmonic bowtie aperture and its NSOM characterization for heat-assisted magnetic recording,” IEEE Trans. Magn. 52, 1–5 (2016).

Varaprasad, B. S. D. C. S.

B. S. D. C. S. Varaprasad, B. Zhou, T. Mo, D. E. Laughlin, and J.-D. Zhu, “MgO-C interlayer for grain size control in FePt-C media for heat assisted magnetic recording,” AIP Adv. 7(5), 056503 (2017).
[Crossref]

T. Shiroyama, B. S. D. C. S. Varaprasad, Y. K. Takahashi, and K. Hono, “Influence of MgO underlayers on the structure and magnetic properties of FePt-C nanogranular films for heat-assisted magnetic recording media,” AIP Adv. 6(10), 105105 (2016).
[Crossref]

Viarbitskaya, S.

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic Hot Printing in Gold Nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Wang, H.

P. M. Jones, Z. Z. Fan, X. Ma, H. Wang, and H. H. Tang, “Temperature induced changes in the optical and material characteristics of HAMR media COC and its effect on recording performance,” IEEE Trans. Magn.in press.

Wang, J.

Wang, N.

S. Xiong, R. Smith, N. Wang, D. Li, E. Schreck, S. Canchi, and Q. Dai, “Thermal response time of media in heat-assisted magnetic recording,” IEEE Trans. Magn. 53(10), 1–6 (2017).
[Crossref]

Wang, Q.

Weller, D.

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “FePt heat assisted magnetic recording media,” J. Vac. Sci. Technol. B 34, 60801 (2016).

Wolf, C.

S. Xu, S. Sinha, E. Rismaniyazdi, C. Wolf, P. Dorsey, and B. Knigge, “Effect of Carbon Overcoat on Heat-Assisted Magnetic Recording Performance,” IEEE Trans. Magn. 51, 1–5 (2015).
[PubMed]

Xiong, S.

S. Xiong, R. Smith, N. Wang, D. Li, E. Schreck, S. Canchi, and Q. Dai, “Thermal response time of media in heat-assisted magnetic recording,” IEEE Trans. Magn. 53(10), 1–6 (2017).
[Crossref]

Xu, B.

Xu, S.

S. Xu, S. Sinha, E. Rismaniyazdi, C. Wolf, P. Dorsey, and B. Knigge, “Effect of Carbon Overcoat on Heat-Assisted Magnetic Recording Performance,” IEEE Trans. Magn. 51, 1–5 (2015).
[PubMed]

Xu, X.

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

X. Xu, N. Zhou, Y. Li, and L. Traverso, “Optical and thermal behaviors of plasmonic bowtie aperture and its NSOM characterization for heat-assisted magnetic recording,” IEEE Trans. Magn. 52, 1–5 (2016).

A. Datta and X. Xu, “Improved near-field transducer design for heat-assisted magnetic recording,” IEEE Trans. Magn. 52, 1–6 (2016).

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

E. X. Jin and X. Xu, “Radiation transfer through nanoscale aperatures,” J. Quant. Spectrosc. Radiat. Transf. 93(1-3), 163–173 (2005).
[Crossref]

Yan, M.

Yang, L.

Yang, T.

Yang, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Zakai, R.

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

Zheng, J.-Y.

C. Zhong, P. Flanigan, N. Abadía, B. Jennings, F. Bello, G. Atcheson, J. Li, J.-Y. Zheng, R. Hobbs, D. McCloskey, and J. F. Donegan, “Low-loss adiabatic dielectric-plasmonic hybrid waveguide for HAMR applications,” to be published.

Zhong, C.

C. Zhong, P. Flanigan, N. Abadía, B. Jennings, F. Bello, G. Atcheson, J. Li, J.-Y. Zheng, R. Hobbs, D. McCloskey, and J. F. Donegan, “Low-loss adiabatic dielectric-plasmonic hybrid waveguide for HAMR applications,” to be published.

Zhou, B.

B. S. D. C. S. Varaprasad, B. Zhou, T. Mo, D. E. Laughlin, and J.-D. Zhu, “MgO-C interlayer for grain size control in FePt-C media for heat assisted magnetic recording,” AIP Adv. 7(5), 056503 (2017).
[Crossref]

Zhou, D.

T. Maletzky, D. Zhou, E. X. Jin, and M. Dovek, “Near and far field experiments of power transfer by mode beating in plasmonic devices,” Proc. SPIE 9201, 92010J (2014).
[Crossref]

Zhou, N.

X. Xu, N. Zhou, Y. Li, and L. Traverso, “Optical and thermal behaviors of plasmonic bowtie aperture and its NSOM characterization for heat-assisted magnetic recording,” IEEE Trans. Magn. 52, 1–5 (2016).

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Zhu, J.-D.

B. S. D. C. S. Varaprasad, B. Zhou, T. Mo, D. E. Laughlin, and J.-D. Zhu, “MgO-C interlayer for grain size control in FePt-C media for heat assisted magnetic recording,” AIP Adv. 7(5), 056503 (2017).
[Crossref]

Zhu, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

ACS Photonics (1)

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic Hot Printing in Gold Nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Acta Mater. (1)

N. J. Karanjgaokar, C.-S. Oh, J. Lambros, and I. Chasiotis, “Inelastic deformation of nanocrystalline Au thin films as a function of temperature and strain rate,” Acta Mater. 60(13-14), 5352–5361 (2012).
[Crossref]

AIP Adv. (2)

T. Shiroyama, B. S. D. C. S. Varaprasad, Y. K. Takahashi, and K. Hono, “Influence of MgO underlayers on the structure and magnetic properties of FePt-C nanogranular films for heat-assisted magnetic recording media,” AIP Adv. 6(10), 105105 (2016).
[Crossref]

B. S. D. C. S. Varaprasad, B. Zhou, T. Mo, D. E. Laughlin, and J.-D. Zhu, “MgO-C interlayer for grain size control in FePt-C media for heat assisted magnetic recording,” AIP Adv. 7(5), 056503 (2017).
[Crossref]

Appl. Phys. Lett. (1)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

IEEE Trans. Magn. (10)

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

Y. Kong, M. Chabalko, E. Black, S. Powell, J. A. Bain, T. E. Schlesinger, and Y. Luo, “Evanescent Coupling Between Dielectric and PlasmonicWaveguides for HAMR Applications,” IEEE Trans. Magn. 47(10), 2364–2367 (2011).
[Crossref]

V. Krishnamurthy, D. Keh, T. Ng, K. P. Lim, and Q. Wang, “Efficient Integrated Light-Delivery System Design for HAMR : Maximal Optical Coupling for Transducer and Nanowaveguide,” IEEE Trans. Magn. 52(2), 1–7 (2016).
[Crossref]

T. Rausch, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, “Thermal Williams-Comstock model for predicting transition length in a heat-assisted magnetic recording system,” IEEE Trans. Magn. 40(1), 137–147 (2004).
[Crossref]

T. Rausch, J. D. Trantham, A. S. Chu, H. Dakroub, J. W. Riddering, C. P. Henry, J. D. Kiely, E. C. Gage, and J. W. Dykes, “HAMR drive performance and integration challenges,” IEEE Trans. Magn. 49(2), 730–733 (2013).
[Crossref]

X. Xu, N. Zhou, Y. Li, and L. Traverso, “Optical and thermal behaviors of plasmonic bowtie aperture and its NSOM characterization for heat-assisted magnetic recording,” IEEE Trans. Magn. 52, 1–5 (2016).

N. Li and B. M. Lairson, “Magnetic recording on FePt and FePtB intermetallic compound media,” IEEE Trans. Magn. 35(2), 1077–1082 (1999).
[Crossref]

S. Xu, S. Sinha, E. Rismaniyazdi, C. Wolf, P. Dorsey, and B. Knigge, “Effect of Carbon Overcoat on Heat-Assisted Magnetic Recording Performance,” IEEE Trans. Magn. 51, 1–5 (2015).
[PubMed]

A. Datta and X. Xu, “Improved near-field transducer design for heat-assisted magnetic recording,” IEEE Trans. Magn. 52, 1–6 (2016).

S. Xiong, R. Smith, N. Wang, D. Li, E. Schreck, S. Canchi, and Q. Dai, “Thermal response time of media in heat-assisted magnetic recording,” IEEE Trans. Magn. 53(10), 1–6 (2017).
[Crossref]

J. Appl. Phys. (3)

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).
[Crossref]

C. Peng, “Efficient excitation of a monopole optical transducer for near-field recording,” J. Appl. Phys. 112(4), 043108 (2012).
[Crossref]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

J. Lightwave Technol. (2)

J. Microsc. (1)

K. Şendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[Crossref] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (1)

E. X. Jin and X. Xu, “Radiation transfer through nanoscale aperatures,” J. Quant. Spectrosc. Radiat. Transf. 93(1-3), 163–173 (2005).
[Crossref]

J. Vac. Sci. Technol. B (1)

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “FePt heat assisted magnetic recording media,” J. Vac. Sci. Technol. B 34, 60801 (2016).

Mod. Aspects Electrochem. (1)

W. A. Challener and A. V. Itagi, “Near-field optics for heat-assisted magnetic recording (experiment, theory, and modeling),” Mod. Aspects Electrochem. 44, 53–111 (2009).

Nanophotonics (2)

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for heat-assisted magnetic recording,” Nanophotonics 4(1), 503–510 (2015).
[Crossref]

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Nat. Photonics (2)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Opt. Eng. (1)

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Proc. SPIE (1)

T. Maletzky, D. Zhou, E. X. Jin, and M. Dovek, “Near and far field experiments of power transfer by mode beating in plasmonic devices,” Proc. SPIE 9201, 92010J (2014).
[Crossref]

Other (16)

W. A. Challener and A. V. Itagi, “Near-field optics for heat-assisted magnetic recording (experiment, theory, and modeling),” in Modern Aspects of Electrochemistry, Modelling and Numerical Simulations II, M. Schlesinger, Ed., Vol. 44, pp. 53–111, Springer, New York (2009).

U. Guler, W. Li, A. Boltasseva, A. Kildishev, and V. M. Shalaev, “Titanium Nitride as a refractory plasmonic material for high temperature applications,” in CLEO:2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper FM4C.8.

A. Dutta, N. Kinsey, S. Saha, U. Guler, V. M. Shalaev, and A. Boltasseva, “Plasmonic interconnects using Zirconium Nitride,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW2A.86.
[Crossref]

A. Ziabari, A. Shakouri, Y. Xuan, J.-H. Bahk, Y. Koh, M. Si, P. Ye, and A. Shakouri, “Non-diffusive heat transport in twin nanoheater lines on silicon,” in 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (2017), pp. 334–338.
[Crossref]

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Elsevier, 1999).

M. Shur, Physics of Semiconductor Devices (Prentice-Hall, Inc., 1990).

Lumerical Inc, http://www.lumerical.com/tcad-products/fdtd/

Lumerical Inc, http://www.lumerical.com/tcad-products/mode/

S. H. Chen, Y. Sakane, H. S. Nishihira, C. K. Kwok, T. V. Tran, and B.-S. Chang, “Composite lubricant for hard disk media,” U.S. Patent 7,998,912 (2011).

K. Suzuki, K. Shimokawa, K. Hamakubo, and K. Itoh, “Lubricant compound for magnetic disk and magnetic disk,” U.S. Patent 9,558,778 (2017).

P. M. Jones, Z. Z. Fan, X. Ma, H. Wang, and H. H. Tang, “Temperature induced changes in the optical and material characteristics of HAMR media COC and its effect on recording performance,” IEEE Trans. Magn.in press.

C. Zhong, P. Flanigan, N. Abadía, B. Jennings, F. Bello, G. Atcheson, J. Li, J.-Y. Zheng, R. Hobbs, D. McCloskey, and J. F. Donegan, “Low-loss adiabatic dielectric-plasmonic hybrid waveguide for HAMR applications,” to be published.

D. R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC, 1995).

A. Krichevsky, C. B. Wolf, F. D. Bello, K. E. Ballantine, J. Donegan, and D. M. O. McCloskey, “Method and system for reducing undesirable reflections in a HAMR write apparatus,” U.S. Patent 9,484,051 (2016).

COMSOL MultiphysicsTM v.5.0 www.comsol.com . COMSOL AB, Stockholm, Sweden.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser.: Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Initial structure for the NFT, a Si strip waveguide with evanescent coupling to an Au plasmonic structure. The position of the write pole and the FePt disk are also shown. The width and height of the dielectric waveguide are fixed at w = 450nm and h = 250nm respectively. The dimensions of the tapered region must be optimized in the simulations
Fig. 2
Fig. 2 (a) Efficiency versus hmetal for optimization of the parameter hinsulator. (b) Further optimization of hinsulator from plot of the real component of the effective mode indexes in the hybrid plasmonic waveguide and matching them to the input slab waveguide (c) optimization of the length of the NFT Ltaper for w = 450 nm, h = 250 nm, wtip = 50 nm, hinsultaor = 10 nm and hmetal = 60 nm. We show the efficiency versus the taper length with two maxima at 330 nm and 450 nm as well as the reflectivity within the Si waveguide.
Fig. 3
Fig. 3 Normalized optical power in the FePt layer for different values of wtip and the optimized values: w = 450 nm, h = 250 nm, hinsulator = 10 nm, hmetal = 60 nm, and Ltaper = 330 nm. Each legend represents the normalized optical power in the middle of the FePt layer. The horizontal axis represents the cross-track direction and the vertical axis is down track.
Fig. 4
Fig. 4 Modified structure of Fig. 1 with a heat spreader in the back to reduce the temperature of the tapered metal. The dimensions of the heat spreader must be optimized to reduce the temperature of the NFT.
Fig. 5
Fig. 5 Temperature distribution in the NFT taken over a cross-section that cuts through the center of the Au taper for an input power 3.75 mW with the heat spreader included (a) and without the heat spreader included (b). The same scale is used in both figures (a) and (b) demonstrating much of the Au taper is kept under 350 K using the heat spreader. Outlines of the taper, heat spreader, write pole and media are shown.
Fig. 6
Fig. 6 (a) Thermal spot on the surface of the FePt layer for the optimized parameters of w = 450 nm, h = 250 nm, wtip = 20 nm, hmetal = 60 nm, hinsulator = 10 nm, Ltaper = 330 nm, and injecting 3.75 mW of input power. The horizontal axis represents the cross-track direction for bit writing while the vertical is down track. The write pole sits at top edge of the 100 × 100 nm2 box shown and 9 nm into the page. Cross (b) and down track (c) gradients are shown demonstrating a desired symmetry cross track for consistent bit writing/reading. Temperature contours of 550 K, 650 K, and 750 K are shown on each plot.
Fig. 7
Fig. 7 (a) Maximum temperature in the FePt layer, the magnetic write pole and the NFT versus the input optical power (Pin) (b) The cross-track gradient and the down-track gradient versus the input optical power. The gray (red online) curves plot the temperature gradients at a position where temperature reaches minus 20 K from the maximum temperature in the recording layer. For comparison, values in Fig. 5 are reported for an input power of 3.75 mW.

Tables (3)

Tables Icon

Table 1 Refractive index, heat capacity and conductivity of the materials used in the simulation. COC stands for Carbon Overcoat

Tables Icon

Table 2 Initial parameters to be optimized in light-heat process

Tables Icon

Table 3 Steady State Thermal Efficiency Parameters for the Antenna-Based Hybrid Waveguide

Metrics