Abstract

Nonlinear optical processes are strongly dominated by phase relationships among electromagnetic fields involved. In this paper, we theoretically and experimentally show that in a Raman-resonant four-wave-mixing process, the first anti-Stokes and Stokes generations can be tailored in a variety of ways by manipulating the phase relationships among the relevant electromagnetic fields.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-wavelength-pumped Raman-resonant four-wave mixing

Tsuneo Nakata and Fumihiko Kannari
J. Opt. Soc. Am. B 10(10) 1870-1879 (1993)

References

  • View by:
  • |
  • |
  • |

  1. J. Zheng and M. Katsuragawa, “Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process,” Sci. Rep. 5, 8874 (2015).
  2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
    [Crossref]
  3. J. Muzart, F. Bellon, C. A. Arguello, and R. C. C. Leite, “Generation de second harmonique non colineaire et colineaire dans ZnS. Accor de Phase (“phase matching”) par la structure lamellaire du cristal,” Opt. Commun. 6(4), 329–332 (1972).
    [Crossref]
  4. D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficency second-harmonic generation,” Appl. Phys. Lett. 59(21), 2657–2659 (1991).
    [Crossref]
  5. K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmonic Generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994).
    [Crossref]
  6. A. A. Rangelov, N. V. Vitanov, and G. Montemezzani, “Robust and broadband frequency conversion in composite crystals with tailored segment widths and χ(2) nonlinearities of alternating signs,” Opt. Lett. 39(10), 2959–2962 (2014).
    [Crossref] [PubMed]
  7. M. H. Levitt, “Composite Pulses,” Prog. Nucl. Reson. Spectrosc. 18(2), 61–121 (1986).
    [Crossref]
  8. H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photonics Rev. 8(3), 333–367 (2014).
    [Crossref]
  9. G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, “Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings,” J. Opt. Soc. Am. B 18(4), 534–539 (2001).
    [Crossref]
  10. A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Two-dimensional nonlinear beam shaping,” Opt. Lett. 37(11), 2136–2138 (2012).
    [Crossref] [PubMed]
  11. A. Shapira, L. Naor, and A. Arie, “Nonlinear optical holograms for spatial and spectral shaping of light waves,” Sci. Bulletin 60(16), 1403–1415 (2015).
    [Crossref]
  12. N. H. Shon, F. L. Kien, K. Hakuta, and A. V. Sokolov, “Two-dimensional model for femtosecond pulse conversion and compression using high-order stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 033809 (2002).
    [Crossref]
  13. M. Zhi, X. Wang, and A. V. Sokolov, “Broadband coherent light generation in diamond driven by femtosecond pulses,” Opt. Express 16(16), 12139–12147 (2008).
    [Crossref] [PubMed]
  14. S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
    [Crossref]
  15. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
    [Crossref] [PubMed]
  16. J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven Raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
    [Crossref] [PubMed]
  17. M. Katsuragawa, J. Q. Liang, F. L. Kien, and K. Hakuta, “Efficient frequency conversion of incoherent fluorescent light,” Phys. Rev. A 65(2), 025801 (2002).
    [Crossref]
  18. F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, and A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60(2), 1562–1571 (1999).
    [Crossref]
  19. K. Yoshii, J. K. Anthony, and M. Katsuragawa, “The simplest route to generating a train of attosecond pulses,” Light Sci. Appl. 2(3), e58 (2013).
    [Crossref]
  20. M. Katsuragawa and K. Yoshii, “Arbitrary manipulation of amplitude and phase of a set of highly discrete coherent spectra,” Phys. Rev. A 95(3), 033846 (2017).
    [Crossref]
  21. K. Yoshii, Y. Nakamura, K. Hagihara and M. Katsuragawa, “Generation of a Train of Ultrashort Pulses by Simply Inserting Transparent Plates on the Optical Path,” in CLEO/QELS 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper FTh1D.5.
  22. C. Ohae, N. S. Suhaimi, T. Gavara, K. Nakagawa, F. -L. Hong, K. Minoshima, and M. Katsuragawa, “Ultrafast Pulse Train at 125-THz Repetition Rate in the CW Regime,” in Nonlinear Optics (2017), paper NTh2B.1.
  23. C. Zhang, D. Tregubov, K. Yoshii, C. Ohae, M. Suzuki, K. Minoshima, and M. Katsuragawa, “Simple optical technology to arbitrarily manipulate amplitude and phase and its application to generation of ultrafast pulses above 100 THz repetition rate,” The 24th Congress of the International Comission for Optics (ICO-24), paper Th1A–06, 2017.
  24. C. Ohae, J. Zheng, K. Ito, M. Suzuki, K. Minoshima, and M. Katsuragawa, “Tailored nonlinear optical process by manipulating the relative phases among the relevant electromagnetic fields,” in Nonlinear Optics (2017), paper NM3B.1.
  25. J. Zheng and M. Katsuragawa, “Arbitrary dual-frequency generation in Raman-resonant four-wave-mixing process,” in Nonlinear Optics (2017), paper NM3B.3.
  26. J. Z. Li, M. Katsuragawa, M. Suzuki, and K. Hakuta, “Stimulated Raman scattering in solid hydrogen: Measurement of coherence decay,” Phys. Rev. A 58(1), R58–R60 (1998).
    [Crossref]
  27. M. Katsuragawa and T. Onose, “Dual-Wavelength Injection-Locked Pulsed Laser,” Opt. Lett. 30(18), 2421–2423 (2005).
    [Crossref] [PubMed]
  28. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]

2017 (1)

M. Katsuragawa and K. Yoshii, “Arbitrary manipulation of amplitude and phase of a set of highly discrete coherent spectra,” Phys. Rev. A 95(3), 033846 (2017).
[Crossref]

2015 (2)

A. Shapira, L. Naor, and A. Arie, “Nonlinear optical holograms for spatial and spectral shaping of light waves,” Sci. Bulletin 60(16), 1403–1415 (2015).
[Crossref]

J. Zheng and M. Katsuragawa, “Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process,” Sci. Rep. 5, 8874 (2015).

2014 (2)

2013 (1)

K. Yoshii, J. K. Anthony, and M. Katsuragawa, “The simplest route to generating a train of attosecond pulses,” Light Sci. Appl. 2(3), e58 (2013).
[Crossref]

2012 (1)

2008 (1)

2005 (1)

2002 (2)

N. H. Shon, F. L. Kien, K. Hakuta, and A. V. Sokolov, “Two-dimensional model for femtosecond pulse conversion and compression using high-order stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 033809 (2002).
[Crossref]

M. Katsuragawa, J. Q. Liang, F. L. Kien, and K. Hakuta, “Efficient frequency conversion of incoherent fluorescent light,” Phys. Rev. A 65(2), 025801 (2002).
[Crossref]

2001 (1)

2000 (2)

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[Crossref] [PubMed]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven Raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[Crossref] [PubMed]

1999 (1)

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, and A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60(2), 1562–1571 (1999).
[Crossref]

1998 (1)

J. Z. Li, M. Katsuragawa, M. Suzuki, and K. Hakuta, “Stimulated Raman scattering in solid hydrogen: Measurement of coherence decay,” Phys. Rev. A 58(1), R58–R60 (1998).
[Crossref]

1997 (1)

S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
[Crossref]

1994 (1)

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmonic Generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994).
[Crossref]

1991 (1)

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficency second-harmonic generation,” Appl. Phys. Lett. 59(21), 2657–2659 (1991).
[Crossref]

1986 (1)

M. H. Levitt, “Composite Pulses,” Prog. Nucl. Reson. Spectrosc. 18(2), 61–121 (1986).
[Crossref]

1972 (1)

J. Muzart, F. Bellon, C. A. Arguello, and R. C. C. Leite, “Generation de second harmonique non colineaire et colineaire dans ZnS. Accor de Phase (“phase matching”) par la structure lamellaire du cristal,” Opt. Commun. 6(4), 329–332 (1972).
[Crossref]

1965 (1)

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Anthony, J. K.

K. Yoshii, J. K. Anthony, and M. Katsuragawa, “The simplest route to generating a train of attosecond pulses,” Light Sci. Appl. 2(3), e58 (2013).
[Crossref]

Arguello, C. A.

J. Muzart, F. Bellon, C. A. Arguello, and R. C. C. Leite, “Generation de second harmonique non colineaire et colineaire dans ZnS. Accor de Phase (“phase matching”) par la structure lamellaire du cristal,” Opt. Commun. 6(4), 329–332 (1972).
[Crossref]

Arie, A.

A. Shapira, L. Naor, and A. Arie, “Nonlinear optical holograms for spatial and spectral shaping of light waves,” Sci. Bulletin 60(16), 1403–1415 (2015).
[Crossref]

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photonics Rev. 8(3), 333–367 (2014).
[Crossref]

A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Two-dimensional nonlinear beam shaping,” Opt. Lett. 37(11), 2136–2138 (2012).
[Crossref] [PubMed]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Bellon, F.

J. Muzart, F. Bellon, C. A. Arguello, and R. C. C. Leite, “Generation de second harmonique non colineaire et colineaire dans ZnS. Accor de Phase (“phase matching”) par la structure lamellaire du cristal,” Opt. Commun. 6(4), 329–332 (1972).
[Crossref]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Byer, R. L.

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficency second-harmonic generation,” Appl. Phys. Lett. 59(21), 2657–2659 (1991).
[Crossref]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Fejer, M. M.

G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, “Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings,” J. Opt. Soc. Am. B 18(4), 534–539 (2001).
[Crossref]

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficency second-harmonic generation,” Appl. Phys. Lett. 59(21), 2657–2659 (1991).
[Crossref]

Galvanauskas, A.

Gavara, T.

C. Ohae, N. S. Suhaimi, T. Gavara, K. Nakagawa, F. -L. Hong, K. Minoshima, and M. Katsuragawa, “Ultrafast Pulse Train at 125-THz Repetition Rate in the CW Regime,” in Nonlinear Optics (2017), paper NTh2B.1.

Hakuta, K.

M. Katsuragawa, J. Q. Liang, F. L. Kien, and K. Hakuta, “Efficient frequency conversion of incoherent fluorescent light,” Phys. Rev. A 65(2), 025801 (2002).
[Crossref]

N. H. Shon, F. L. Kien, K. Hakuta, and A. V. Sokolov, “Two-dimensional model for femtosecond pulse conversion and compression using high-order stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 033809 (2002).
[Crossref]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven Raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[Crossref] [PubMed]

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, and A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60(2), 1562–1571 (1999).
[Crossref]

J. Z. Li, M. Katsuragawa, M. Suzuki, and K. Hakuta, “Stimulated Raman scattering in solid hydrogen: Measurement of coherence decay,” Phys. Rev. A 58(1), R58–R60 (1998).
[Crossref]

Harris, S. E.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[Crossref] [PubMed]

S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
[Crossref]

Harter, D.

Hong, F. -L.

C. Ohae, N. S. Suhaimi, T. Gavara, K. Nakagawa, F. -L. Hong, K. Minoshima, and M. Katsuragawa, “Ultrafast Pulse Train at 125-THz Repetition Rate in the CW Regime,” in Nonlinear Optics (2017), paper NTh2B.1.

Imeshev, G.

Ito, K.

C. Ohae, J. Zheng, K. Ito, M. Suzuki, K. Minoshima, and M. Katsuragawa, “Tailored nonlinear optical process by manipulating the relative phases among the relevant electromagnetic fields,” in Nonlinear Optics (2017), paper NM3B.1.

Jundt, D. H.

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficency second-harmonic generation,” Appl. Phys. Lett. 59(21), 2657–2659 (1991).
[Crossref]

Juwiler, I.

Kato, M.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmonic Generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994).
[Crossref]

Katsuragawa, M.

M. Katsuragawa and K. Yoshii, “Arbitrary manipulation of amplitude and phase of a set of highly discrete coherent spectra,” Phys. Rev. A 95(3), 033846 (2017).
[Crossref]

J. Zheng and M. Katsuragawa, “Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process,” Sci. Rep. 5, 8874 (2015).

K. Yoshii, J. K. Anthony, and M. Katsuragawa, “The simplest route to generating a train of attosecond pulses,” Light Sci. Appl. 2(3), e58 (2013).
[Crossref]

M. Katsuragawa and T. Onose, “Dual-Wavelength Injection-Locked Pulsed Laser,” Opt. Lett. 30(18), 2421–2423 (2005).
[Crossref] [PubMed]

M. Katsuragawa, J. Q. Liang, F. L. Kien, and K. Hakuta, “Efficient frequency conversion of incoherent fluorescent light,” Phys. Rev. A 65(2), 025801 (2002).
[Crossref]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven Raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[Crossref] [PubMed]

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, and A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60(2), 1562–1571 (1999).
[Crossref]

J. Z. Li, M. Katsuragawa, M. Suzuki, and K. Hakuta, “Stimulated Raman scattering in solid hydrogen: Measurement of coherence decay,” Phys. Rev. A 58(1), R58–R60 (1998).
[Crossref]

J. Zheng and M. Katsuragawa, “Arbitrary dual-frequency generation in Raman-resonant four-wave-mixing process,” in Nonlinear Optics (2017), paper NM3B.3.

C. Ohae, N. S. Suhaimi, T. Gavara, K. Nakagawa, F. -L. Hong, K. Minoshima, and M. Katsuragawa, “Ultrafast Pulse Train at 125-THz Repetition Rate in the CW Regime,” in Nonlinear Optics (2017), paper NTh2B.1.

C. Ohae, J. Zheng, K. Ito, M. Suzuki, K. Minoshima, and M. Katsuragawa, “Tailored nonlinear optical process by manipulating the relative phases among the relevant electromagnetic fields,” in Nonlinear Optics (2017), paper NM3B.1.

Kien, F. L.

M. Katsuragawa, J. Q. Liang, F. L. Kien, and K. Hakuta, “Efficient frequency conversion of incoherent fluorescent light,” Phys. Rev. A 65(2), 025801 (2002).
[Crossref]

N. H. Shon, F. L. Kien, K. Hakuta, and A. V. Sokolov, “Two-dimensional model for femtosecond pulse conversion and compression using high-order stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 033809 (2002).
[Crossref]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven Raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[Crossref] [PubMed]

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, and A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60(2), 1562–1571 (1999).
[Crossref]

Leite, R. C. C.

J. Muzart, F. Bellon, C. A. Arguello, and R. C. C. Leite, “Generation de second harmonique non colineaire et colineaire dans ZnS. Accor de Phase (“phase matching”) par la structure lamellaire du cristal,” Opt. Commun. 6(4), 329–332 (1972).
[Crossref]

Levitt, M. H.

M. H. Levitt, “Composite Pulses,” Prog. Nucl. Reson. Spectrosc. 18(2), 61–121 (1986).
[Crossref]

Li, J. Z.

J. Z. Li, M. Katsuragawa, M. Suzuki, and K. Hakuta, “Stimulated Raman scattering in solid hydrogen: Measurement of coherence decay,” Phys. Rev. A 58(1), R58–R60 (1998).
[Crossref]

Liang, J. Q.

M. Katsuragawa, J. Q. Liang, F. L. Kien, and K. Hakuta, “Efficient frequency conversion of incoherent fluorescent light,” Phys. Rev. A 65(2), 025801 (2002).
[Crossref]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven Raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[Crossref] [PubMed]

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, and A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60(2), 1562–1571 (1999).
[Crossref]

Magel, G. A.

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficency second-harmonic generation,” Appl. Phys. Lett. 59(21), 2657–2659 (1991).
[Crossref]

Malitson, I. H.

Minoshima, K.

C. Ohae, J. Zheng, K. Ito, M. Suzuki, K. Minoshima, and M. Katsuragawa, “Tailored nonlinear optical process by manipulating the relative phases among the relevant electromagnetic fields,” in Nonlinear Optics (2017), paper NM3B.1.

C. Ohae, N. S. Suhaimi, T. Gavara, K. Nakagawa, F. -L. Hong, K. Minoshima, and M. Katsuragawa, “Ultrafast Pulse Train at 125-THz Repetition Rate in the CW Regime,” in Nonlinear Optics (2017), paper NTh2B.1.

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmonic Generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994).
[Crossref]

Montemezzani, G.

Muzart, J.

J. Muzart, F. Bellon, C. A. Arguello, and R. C. C. Leite, “Generation de second harmonique non colineaire et colineaire dans ZnS. Accor de Phase (“phase matching”) par la structure lamellaire du cristal,” Opt. Commun. 6(4), 329–332 (1972).
[Crossref]

Nakagawa, K.

C. Ohae, N. S. Suhaimi, T. Gavara, K. Nakagawa, F. -L. Hong, K. Minoshima, and M. Katsuragawa, “Ultrafast Pulse Train at 125-THz Repetition Rate in the CW Regime,” in Nonlinear Optics (2017), paper NTh2B.1.

Naor, L.

A. Shapira, L. Naor, and A. Arie, “Nonlinear optical holograms for spatial and spectral shaping of light waves,” Sci. Bulletin 60(16), 1403–1415 (2015).
[Crossref]

Ohae, C.

C. Ohae, N. S. Suhaimi, T. Gavara, K. Nakagawa, F. -L. Hong, K. Minoshima, and M. Katsuragawa, “Ultrafast Pulse Train at 125-THz Repetition Rate in the CW Regime,” in Nonlinear Optics (2017), paper NTh2B.1.

C. Ohae, J. Zheng, K. Ito, M. Suzuki, K. Minoshima, and M. Katsuragawa, “Tailored nonlinear optical process by manipulating the relative phases among the relevant electromagnetic fields,” in Nonlinear Optics (2017), paper NM3B.1.

Ohtsuki, K.

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, and A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60(2), 1562–1571 (1999).
[Crossref]

Onose, T.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Porat, G.

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photonics Rev. 8(3), 333–367 (2014).
[Crossref]

Rangelov, A. A.

Sato, H.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmonic Generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994).
[Crossref]

Shapira, A.

A. Shapira, L. Naor, and A. Arie, “Nonlinear optical holograms for spatial and spectral shaping of light waves,” Sci. Bulletin 60(16), 1403–1415 (2015).
[Crossref]

A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Two-dimensional nonlinear beam shaping,” Opt. Lett. 37(11), 2136–2138 (2012).
[Crossref] [PubMed]

Shiloh, R.

Shon, N. H.

N. H. Shon, F. L. Kien, K. Hakuta, and A. V. Sokolov, “Two-dimensional model for femtosecond pulse conversion and compression using high-order stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 033809 (2002).
[Crossref]

Sokolov, A. V.

M. Zhi, X. Wang, and A. V. Sokolov, “Broadband coherent light generation in diamond driven by femtosecond pulses,” Opt. Express 16(16), 12139–12147 (2008).
[Crossref] [PubMed]

N. H. Shon, F. L. Kien, K. Hakuta, and A. V. Sokolov, “Two-dimensional model for femtosecond pulse conversion and compression using high-order stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 033809 (2002).
[Crossref]

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[Crossref] [PubMed]

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, and A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60(2), 1562–1571 (1999).
[Crossref]

S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
[Crossref]

Suchowski, H.

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photonics Rev. 8(3), 333–367 (2014).
[Crossref]

Suhaimi, N. S.

C. Ohae, N. S. Suhaimi, T. Gavara, K. Nakagawa, F. -L. Hong, K. Minoshima, and M. Katsuragawa, “Ultrafast Pulse Train at 125-THz Repetition Rate in the CW Regime,” in Nonlinear Optics (2017), paper NTh2B.1.

Suzuki, M.

J. Z. Li, M. Katsuragawa, M. Suzuki, and K. Hakuta, “Stimulated Raman scattering in solid hydrogen: Measurement of coherence decay,” Phys. Rev. A 58(1), R58–R60 (1998).
[Crossref]

C. Ohae, J. Zheng, K. Ito, M. Suzuki, K. Minoshima, and M. Katsuragawa, “Tailored nonlinear optical process by manipulating the relative phases among the relevant electromagnetic fields,” in Nonlinear Optics (2017), paper NM3B.1.

Vitanov, N. V.

Walker, D. R.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[Crossref] [PubMed]

Wang, X.

Yamamoto, K.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmonic Generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994).
[Crossref]

Yavuz, D. D.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[Crossref] [PubMed]

Yin, G. Y.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[Crossref] [PubMed]

Yoshii, K.

M. Katsuragawa and K. Yoshii, “Arbitrary manipulation of amplitude and phase of a set of highly discrete coherent spectra,” Phys. Rev. A 95(3), 033846 (2017).
[Crossref]

K. Yoshii, J. K. Anthony, and M. Katsuragawa, “The simplest route to generating a train of attosecond pulses,” Light Sci. Appl. 2(3), e58 (2013).
[Crossref]

Zheng, J.

J. Zheng and M. Katsuragawa, “Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process,” Sci. Rep. 5, 8874 (2015).

C. Ohae, J. Zheng, K. Ito, M. Suzuki, K. Minoshima, and M. Katsuragawa, “Tailored nonlinear optical process by manipulating the relative phases among the relevant electromagnetic fields,” in Nonlinear Optics (2017), paper NM3B.1.

J. Zheng and M. Katsuragawa, “Arbitrary dual-frequency generation in Raman-resonant four-wave-mixing process,” in Nonlinear Optics (2017), paper NM3B.3.

Zhi, M.

Appl. Phys. Lett. (1)

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficency second-harmonic generation,” Appl. Phys. Lett. 59(21), 2657–2659 (1991).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmonic Generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photonics Rev. 8(3), 333–367 (2014).
[Crossref]

Light Sci. Appl. (1)

K. Yoshii, J. K. Anthony, and M. Katsuragawa, “The simplest route to generating a train of attosecond pulses,” Light Sci. Appl. 2(3), e58 (2013).
[Crossref]

Opt. Commun. (1)

J. Muzart, F. Bellon, C. A. Arguello, and R. C. C. Leite, “Generation de second harmonique non colineaire et colineaire dans ZnS. Accor de Phase (“phase matching”) par la structure lamellaire du cristal,” Opt. Commun. 6(4), 329–332 (1972).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Phys. Rev. A (6)

S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
[Crossref]

M. Katsuragawa and K. Yoshii, “Arbitrary manipulation of amplitude and phase of a set of highly discrete coherent spectra,” Phys. Rev. A 95(3), 033846 (2017).
[Crossref]

M. Katsuragawa, J. Q. Liang, F. L. Kien, and K. Hakuta, “Efficient frequency conversion of incoherent fluorescent light,” Phys. Rev. A 65(2), 025801 (2002).
[Crossref]

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, and A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60(2), 1562–1571 (1999).
[Crossref]

J. Z. Li, M. Katsuragawa, M. Suzuki, and K. Hakuta, “Stimulated Raman scattering in solid hydrogen: Measurement of coherence decay,” Phys. Rev. A 58(1), R58–R60 (1998).
[Crossref]

N. H. Shon, F. L. Kien, K. Hakuta, and A. V. Sokolov, “Two-dimensional model for femtosecond pulse conversion and compression using high-order stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 033809 (2002).
[Crossref]

Phys. Rev. Lett. (2)

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[Crossref] [PubMed]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven Raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[Crossref] [PubMed]

Prog. Nucl. Reson. Spectrosc. (1)

M. H. Levitt, “Composite Pulses,” Prog. Nucl. Reson. Spectrosc. 18(2), 61–121 (1986).
[Crossref]

Sci. Bulletin (1)

A. Shapira, L. Naor, and A. Arie, “Nonlinear optical holograms for spatial and spectral shaping of light waves,” Sci. Bulletin 60(16), 1403–1415 (2015).
[Crossref]

Sci. Rep. (1)

J. Zheng and M. Katsuragawa, “Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process,” Sci. Rep. 5, 8874 (2015).

Other (5)

K. Yoshii, Y. Nakamura, K. Hagihara and M. Katsuragawa, “Generation of a Train of Ultrashort Pulses by Simply Inserting Transparent Plates on the Optical Path,” in CLEO/QELS 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper FTh1D.5.

C. Ohae, N. S. Suhaimi, T. Gavara, K. Nakagawa, F. -L. Hong, K. Minoshima, and M. Katsuragawa, “Ultrafast Pulse Train at 125-THz Repetition Rate in the CW Regime,” in Nonlinear Optics (2017), paper NTh2B.1.

C. Zhang, D. Tregubov, K. Yoshii, C. Ohae, M. Suzuki, K. Minoshima, and M. Katsuragawa, “Simple optical technology to arbitrarily manipulate amplitude and phase and its application to generation of ultrafast pulses above 100 THz repetition rate,” The 24th Congress of the International Comission for Optics (ICO-24), paper Th1A–06, 2017.

C. Ohae, J. Zheng, K. Ito, M. Suzuki, K. Minoshima, and M. Katsuragawa, “Tailored nonlinear optical process by manipulating the relative phases among the relevant electromagnetic fields,” in Nonlinear Optics (2017), paper NM3B.1.

J. Zheng and M. Katsuragawa, “Arbitrary dual-frequency generation in Raman-resonant four-wave-mixing process,” in Nonlinear Optics (2017), paper NM3B.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conceptual illustration illustrating the nonlinear optical process.

Fig. 2
Fig. 2

Raman-resonant four-wave-mixing process implementing the manipulation of the phase relationships among the electromagnetic fields relevant to this nonlinear optical process. (a) adiabatic driving (two-photon detuning: δ) of vibrational Raman coherence, ρab, in para-hydrogen molecule, where the driving laser radiations are E0: 801 nm and E-1: 1202 nm. (b) 1st order Raman-resonant four-wave-mixing process: generations of 1st anti-Stokes, E+1T: 343 nm and 1st Stokes, E-1T: 481 nm, initiated from the incident third laser radiation, E0T: 401 nm. (c) Conceptual configuration of the Raman-resonant four-wave-mixing process implementing a manipulation of relative phases (Δϕ+, Δϕ- to Δϕ'+, Δϕ'- and Δϕ”+, Δϕ”-) with transparent dispersive plates (thicknesses of the plates: t1 + Δt1, t2 + Δt2).

Fig. 3
Fig. 3

Layout of the experimental system. CL: collimate lens, GLP: Glan laser polarizer, NF: notch filter, FL: focusing lens, ATN: attenuator. The entire system consists of lasers at three wavelengths (Raman-coherence driving lasers, E0: 801 nm, E-1: 1202 nm, and third laser, E0T: 401 nm), a copper-made Raman cell (interaction length: 340 mm) installed with a phase-manipulation device, and a detection system. The Raman cell is filled with gaseous para-hydrogen (density: 1.0 x 1020 cm−3). The two fused silica plates are also installed in the cell and their setting angles are controlled by the rotary stages placed outside the cell.

Fig. 4
Fig. 4

Results of tailoring 1st anti-Stokes and Stokes generations in the Raman-resonant four-wave-mixing process by manipulating the phase relationships among the relevant electromagnetic fields. (a) plots of the relative phases, Δ φ + (a-1) and Δ φ (a-2) as a function of the effective optical thickness of a fused silica plate. (b) (numerical calculation) contour plots of the anti-Stokes (b-1) and Stokes (b-2) energies generated against the effective optical thicknesses of the fused silica plates, FS1 (horizontal axis), FS2 (vertical axis), inserted in the Raman cell. (c) contour plots of the anti-Stokes (c-1) and Stokes (c-2) energies observed for 961 ( = 31 x 31) inserted angles of the two fused silica plates, FS1, FS2. The effective optical thicknesses corresponded to those in (b-1), (b-2). (d) anti-Stokes (d-1) and Stokes (d-2) energies plot as a function of the effective optical thicknesses of the fused silica plate, FS1: the generated anti-Stokes and Stokes energies are shown as white dotted lines in (b-1), (c-1) and (b-2), (c-2), respectively. The gray solid lines represent those obtained in the numerical calculation and the blue dots show those in the experiment. (e) contour plots depicted by overlapping the anti-Stokes and Stokes energies obtained in (c-1), (c-2), where the plots are digitized into three levels (light red: region assigned above 80%, light blue: region assigned below 20%, against the full dynamic range of the generated energies). Four cases are shown: (e-1) both the anti-Stokes and Stokes, colored in red, were generated strongly; (e-2) only the anti-Stokes (orange) was generated strongly; (e-3) only the Stokes (pink) was generated strongly; and (e-4) both the anti-Stokes and Stokes (blue) were weak.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n +1 ξ = N| ρ ab | ε 0 c d 0 ω 0 ω +1 sin( ϕ +1 ϕ 0 + ϕ ρ ) n 0
n 1 ξ = N| ρ ab | ε 0 c d 1 * ω 0 ω 1 sin( ϕ 0 ϕ 1 + ϕ ρ ) n 0