Abstract

We provide experimental and numerical demonstrations of plasmonic propagation dynamics in a multi-level coupled system, and present the first observation of plasmonic breathers propagating in such systems. The effect is observed both for the simplest symmetric case of a thin metal layer surrounded by two identical dielectrics, and also for a more complex system that includes five and more layers. By a careful choice of the permittivities and thicknesses of the intermediate layers, we can adiabatically eliminate the plasmonic waves in all the intermediate interfaces, thus enabling efficient vertical delivery and extraction of plasmonic signals between the top layer and deeply buried layers. The observation relies on controlling the excited mode by breaking the symmetry of excitation, which is crucial for obtaining the results experimentally. We also observe this breathing effect for transversely shaped plasmonic beams, with Hermite-Gauss, Airy and Weber wavefronts, that despite the oscillatory nature of propagation in such systems, still preserve all their unique wavefront properties. Finally, we show that such approaches can be extended to plasmonic propagation in a general multi-layered system, opening a path for efficient three-dimensional integrated plasmonic circuitry.

© 2018 Optical Society of America

Full Article  |  PDF Article

Corrections

29 January 2018: A typographical correction was made to the author listing.


OSA Recommended Articles
Rainbow-trapping by adiabatic tuning of intragroove plasmon coupling

A. O. Montazeri, Y. Fang, P. Sarrafi, and N. P. Kherani
Opt. Express 24(23) 26745-26755 (2016)

Toy model for plasmonic metamaterial resonances coupled to two-level system gain

Martin Wegener, Juan Luis García-Pomar, Costas M. Soukoulis, Nina Meinzer, Matthias Ruther, and Stefan Linden
Opt. Express 16(24) 19785-19798 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)
  2. A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221 (2014)
    [Crossref]
  3. A. Libster-Hershko, I. Epstein, and A. Arie, “Rapidly Accelerating Mathieu and Weber Surface Plasmon Beams,” Phys. Rev. Lett. 113, 123902 (2014).
    [Crossref] [PubMed]
  4. P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191 (2011).
    [Crossref] [PubMed]
  5. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
    [Crossref] [PubMed]
  6. J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109, 093904 (2012).
    [Crossref] [PubMed]
  7. I. Epstein, R. Remez, Y. Tsur, and A. Arie, “Generation of intensity-controlled two-dimensional shape-preserving beams in plasmonic lossy media,” Optica 3, 15 (2016).
    [Crossref]
  8. G. Yuan, E. T. Rogers, T. Roy, L. Du, Z. Shen, and N. I. Zheludev, “Plasmonic Super-oscillations and Sub-Diffraction Focusing,” in CLEO 2014 (OSA, Washington, D.C., 2014), p. FTu2K.5.
  9. I. Epstein, I. Dolev, D. Bar-Lev, and A. Arie, “Plasmon-enhanced Bragg diffraction,” Phys. Rev. B - Condens. Matter Mater. Phys. 86, 205122 (2012).
    [Crossref]
  10. I. Avrutsky, C. W. Smith, J. W. Cleary, and J. R. Hendrickson, “Resonant Diffraction Into Symmetry-Prohibited Orders of Metal Gratings,” IEEE J. Quantum Electron. 51, 1 (2015).
    [Crossref]
  11. M. E. A. Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, “Highly doped InP as a low loss plasmonic material for mid-IR region,” Opt. Express 24, 29077 (2016).
    [Crossref] [PubMed]
  12. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20 (2006).
    [Crossref]
  13. V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728 (2012).
    [Crossref]
  14. Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).
    [Crossref]
  15. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Phot. 7, 133–137 (2013).
    [Crossref]
  16. S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Phot. 2, 52–56 (2008).
    [Crossref]
  17. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
    [Crossref] [PubMed]
  18. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007)
  19. A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. QUANTUM Electron. 12, 1233 (2006).
    [Crossref]
  20. D. K. Gramotnev, K. C. Vernon, and D. F. P. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99 (2008).
    [Crossref]
  21. Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V Krasavin, A. V Zayats, L. Markey, and A. Dereux, “Wavelength selective directional coupling with dielectric loaded plasmonic waveguides,” Opt. Lett. 34, 310(2009).
    [Crossref] [PubMed]
  22. M. T. Noghani and M. H. Vadjed Samiei, “Ultrashort hybrid metal insulator plasmonic directional coupler,” Appl. Opt. 52, 7498 (2013).
    [Crossref] [PubMed]
  23. F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
    [Crossref]
  24. M. Z. Alam, J. N. Caspers, J. S. Aitchison, and M. Mojahedi, “Compact low loss and broadband hybrid plasmonic directional coupler,” Opt. Express 21, 16029 (2013).
    [Crossref] [PubMed]
  25. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long ranging surface plasmon polariton waveguides,” Opt. Exp. 13, 977–984 (2005).
    [Crossref]
  26. R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, “Quantum interference in plasmonic circuits”, Nat. Nanotech. 8, 719–722 (2013).
    [Crossref]
  27. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1, 484 (2009).
    [Crossref]
  28. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
    [Crossref]
  29. D. K. Gramotnev, K. C. Vernon, and D. F. Pile, “Directional coupler using gap plasmon waveguides”, Applied Physics B 93, 99–106 (2008).
    [Crossref]
  30. G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Exp. 16, 2129 (2008).
    [Crossref]
  31. N. V Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by diabetic passage techniques,” Annu. Rev. Phys. Chem. 52, 763 (2001).
    [Crossref]
  32. H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333 (2014).
    [Crossref]
  33. M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
    [Crossref] [PubMed]
  34. M. Mrejen, H. Suchowski, T. Hatakeyama, Y. Wang, and X. Zhang, “Experimental Realization of Two Decoupled Directional Couplers in a Subwavelength Packing by Adiabatic Elimination,” Nano Letters 15, 7383–7387 (2015).
    [Crossref] [PubMed]
  35. V. Shaidiuk, S. G. Menabde, and N. Park, “Effect of structural asymmetry on three layer plasmonic waveguide properties,” JOSA B 33, 963–970 (2016).
    [Crossref]
  36. S. Yu, X. Piao, and N. Park, “Target decoupling in a coupled optical system resistant to random perturbation,” Sci. Rep. 7, 2139 (2016).
    [Crossref]
  37. R. Driben, V. V. Konotop, and T. Meier, “Coupled Airy breathers,” Opt. Lett. 39, 5523 (2014).
    [Crossref] [PubMed]
  38. I. Epstein, Y. Tsur, and A. Arie, “Surface-plasmon wavefront and spectral shaping by near-field holography,” Laser Photon. Rev. 10, 360 (2016).
    [Crossref]
  39. I. Epstein, Y. Lilach, and A. Arie, “Shaping plasmonic light beams with near-field plasmonic holograms,” J. Opt. Soc. Am. B 31, 1642 (2014).
    [Crossref]
  40. I. Epstein and A. Arie, “Arbitrary Bending Plasmonic Light Waves,” Phys. Rev. Lett. 112, 023903 (2014).
    [Crossref] [PubMed]
  41. S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons”, Light Sci. Appl. 5, e16034 (2016).
    [Crossref]
  42. G. I. Stegeman and J. J. Burke, “Long range surface plasmons in electrode structures,” Appl. Phys. Lett. 43, 221 (1983)
    [Crossref]
  43. A. A. Orlov, S.V. Zhukovsky, I. V. Iorsh, and P. A. Belov, “Controlling light with plasmonic multilayers, Photonics and Nanostructures,” Fundamentals and Applications 12, 213 (2014)

2016 (6)

V. Shaidiuk, S. G. Menabde, and N. Park, “Effect of structural asymmetry on three layer plasmonic waveguide properties,” JOSA B 33, 963–970 (2016).
[Crossref]

S. Yu, X. Piao, and N. Park, “Target decoupling in a coupled optical system resistant to random perturbation,” Sci. Rep. 7, 2139 (2016).
[Crossref]

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons”, Light Sci. Appl. 5, e16034 (2016).
[Crossref]

I. Epstein, Y. Tsur, and A. Arie, “Surface-plasmon wavefront and spectral shaping by near-field holography,” Laser Photon. Rev. 10, 360 (2016).
[Crossref]

I. Epstein, R. Remez, Y. Tsur, and A. Arie, “Generation of intensity-controlled two-dimensional shape-preserving beams in plasmonic lossy media,” Optica 3, 15 (2016).
[Crossref]

M. E. A. Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, “Highly doped InP as a low loss plasmonic material for mid-IR region,” Opt. Express 24, 29077 (2016).
[Crossref] [PubMed]

2015 (4)

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

M. Mrejen, H. Suchowski, T. Hatakeyama, Y. Wang, and X. Zhang, “Experimental Realization of Two Decoupled Directional Couplers in a Subwavelength Packing by Adiabatic Elimination,” Nano Letters 15, 7383–7387 (2015).
[Crossref] [PubMed]

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).
[Crossref]

I. Avrutsky, C. W. Smith, J. W. Cleary, and J. R. Hendrickson, “Resonant Diffraction Into Symmetry-Prohibited Orders of Metal Gratings,” IEEE J. Quantum Electron. 51, 1 (2015).
[Crossref]

2014 (7)

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221 (2014)
[Crossref]

A. Libster-Hershko, I. Epstein, and A. Arie, “Rapidly Accelerating Mathieu and Weber Surface Plasmon Beams,” Phys. Rev. Lett. 113, 123902 (2014).
[Crossref] [PubMed]

I. Epstein and A. Arie, “Arbitrary Bending Plasmonic Light Waves,” Phys. Rev. Lett. 112, 023903 (2014).
[Crossref] [PubMed]

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333 (2014).
[Crossref]

A. A. Orlov, S.V. Zhukovsky, I. V. Iorsh, and P. A. Belov, “Controlling light with plasmonic multilayers, Photonics and Nanostructures,” Fundamentals and Applications 12, 213 (2014)

I. Epstein, Y. Lilach, and A. Arie, “Shaping plasmonic light beams with near-field plasmonic holograms,” J. Opt. Soc. Am. B 31, 1642 (2014).
[Crossref]

R. Driben, V. V. Konotop, and T. Meier, “Coupled Airy breathers,” Opt. Lett. 39, 5523 (2014).
[Crossref] [PubMed]

2013 (4)

M. Z. Alam, J. N. Caspers, J. S. Aitchison, and M. Mojahedi, “Compact low loss and broadband hybrid plasmonic directional coupler,” Opt. Express 21, 16029 (2013).
[Crossref] [PubMed]

M. T. Noghani and M. H. Vadjed Samiei, “Ultrashort hybrid metal insulator plasmonic directional coupler,” Appl. Opt. 52, 7498 (2013).
[Crossref] [PubMed]

R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, “Quantum interference in plasmonic circuits”, Nat. Nanotech. 8, 719–722 (2013).
[Crossref]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Phot. 7, 133–137 (2013).
[Crossref]

2012 (4)

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728 (2012).
[Crossref]

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
[Crossref]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

I. Epstein, I. Dolev, D. Bar-Lev, and A. Arie, “Plasmon-enhanced Bragg diffraction,” Phys. Rev. B - Condens. Matter Mater. Phys. 86, 205122 (2012).
[Crossref]

2011 (2)

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref] [PubMed]

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191 (2011).
[Crossref] [PubMed]

2009 (2)

2008 (4)

D. K. Gramotnev, K. C. Vernon, and D. F. Pile, “Directional coupler using gap plasmon waveguides”, Applied Physics B 93, 99–106 (2008).
[Crossref]

G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Exp. 16, 2129 (2008).
[Crossref]

D. K. Gramotnev, K. C. Vernon, and D. F. P. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99 (2008).
[Crossref]

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Phot. 2, 52–56 (2008).
[Crossref]

2006 (2)

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. QUANTUM Electron. 12, 1233 (2006).
[Crossref]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20 (2006).
[Crossref]

2005 (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[Crossref]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long ranging surface plasmon polariton waveguides,” Opt. Exp. 13, 977–984 (2005).
[Crossref]

2001 (1)

N. V Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by diabetic passage techniques,” Annu. Rev. Phys. Chem. 52, 763 (2001).
[Crossref]

2000 (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

1983 (1)

G. I. Stegeman and J. J. Burke, “Long range surface plasmons in electrode structures,” Appl. Phys. Lett. 43, 221 (1983)
[Crossref]

Abbey, B.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons”, Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Aitchison, J. S.

Alam, M. Z.

Arie, A.

I. Epstein, R. Remez, Y. Tsur, and A. Arie, “Generation of intensity-controlled two-dimensional shape-preserving beams in plasmonic lossy media,” Optica 3, 15 (2016).
[Crossref]

I. Epstein, Y. Tsur, and A. Arie, “Surface-plasmon wavefront and spectral shaping by near-field holography,” Laser Photon. Rev. 10, 360 (2016).
[Crossref]

I. Epstein, Y. Lilach, and A. Arie, “Shaping plasmonic light beams with near-field plasmonic holograms,” J. Opt. Soc. Am. B 31, 1642 (2014).
[Crossref]

I. Epstein and A. Arie, “Arbitrary Bending Plasmonic Light Waves,” Phys. Rev. Lett. 112, 023903 (2014).
[Crossref] [PubMed]

A. Libster-Hershko, I. Epstein, and A. Arie, “Rapidly Accelerating Mathieu and Weber Surface Plasmon Beams,” Phys. Rev. Lett. 113, 123902 (2014).
[Crossref] [PubMed]

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333 (2014).
[Crossref]

I. Epstein, I. Dolev, D. Bar-Lev, and A. Arie, “Plasmon-enhanced Bragg diffraction,” Phys. Rev. B - Condens. Matter Mater. Phys. 86, 205122 (2012).
[Crossref]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[Crossref]

Avrutsky, I.

I. Avrutsky, C. W. Smith, J. W. Cleary, and J. R. Hendrickson, “Resonant Diffraction Into Symmetry-Prohibited Orders of Metal Gratings,” IEEE J. Quantum Electron. 51, 1 (2015).
[Crossref]

Balaur, E.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons”, Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Bar-Lev, D.

I. Epstein, I. Dolev, D. Bar-Lev, and A. Arie, “Plasmon-enhanced Bragg diffraction,” Phys. Rev. B - Condens. Matter Mater. Phys. 86, 205122 (2012).
[Crossref]

Belov, P. A.

A. A. Orlov, S.V. Zhukovsky, I. V. Iorsh, and P. A. Belov, “Controlling light with plasmonic multilayers, Photonics and Nanostructures,” Fundamentals and Applications 12, 213 (2014)

Bergmann, K.

N. V Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by diabetic passage techniques,” Annu. Rev. Phys. Chem. 52, 763 (2001).
[Crossref]

Berini, P.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1, 484 (2009).
[Crossref]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long ranging surface plasmon polariton waveguides,” Opt. Exp. 13, 977–984 (2005).
[Crossref]

Boltasseva, A.

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. QUANTUM Electron. 12, 1233 (2006).
[Crossref]

Bozhevolnyi, S. I.

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V Krasavin, A. V Zayats, L. Markey, and A. Dereux, “Wavelength selective directional coupling with dielectric loaded plasmonic waveguides,” Opt. Lett. 34, 310(2009).
[Crossref] [PubMed]

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. QUANTUM Electron. 12, 1233 (2006).
[Crossref]

Braun, P. V.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Phot. 2, 52–56 (2008).
[Crossref]

Brongersma, M. L.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20 (2006).
[Crossref]

Burke, J. J.

G. I. Stegeman and J. J. Burke, “Long range surface plasmons in electrode structures,” Appl. Phys. Lett. 43, 221 (1983)
[Crossref]

Capasso, F.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

Caspers, J. N.

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20 (2006).
[Crossref]

Charbonneau, R.

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long ranging surface plasmon polariton waveguides,” Opt. Exp. 13, 977–984 (2005).
[Crossref]

Chen, Z.

Christodoulides, D. N.

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221 (2014)
[Crossref]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

Cleary, J. W.

I. Avrutsky, C. W. Smith, J. W. Cleary, and J. R. Hendrickson, “Resonant Diffraction Into Symmetry-Prohibited Orders of Metal Gratings,” IEEE J. Quantum Electron. 51, 1 (2015).
[Crossref]

Cluzel, B.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

Dai, D.

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
[Crossref]

de Fornel, F.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

Dellinger, J.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

Dereux, A.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[Crossref]

Dolev, I.

I. Epstein, I. Dolev, D. Bar-Lev, and A. Arie, “Plasmon-enhanced Bragg diffraction,” Phys. Rev. B - Condens. Matter Mater. Phys. 86, 205122 (2012).
[Crossref]

Driben, R.

Du, L.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons”, Light Sci. Appl. 5, e16034 (2016).
[Crossref]

G. Yuan, E. T. Rogers, T. Roy, L. Du, Z. Shen, and N. I. Zheludev, “Plasmonic Super-oscillations and Sub-Diffraction Focusing,” in CLEO 2014 (OSA, Washington, D.C., 2014), p. FTu2K.5.

Epstein, I.

I. Epstein, R. Remez, Y. Tsur, and A. Arie, “Generation of intensity-controlled two-dimensional shape-preserving beams in plasmonic lossy media,” Optica 3, 15 (2016).
[Crossref]

I. Epstein, Y. Tsur, and A. Arie, “Surface-plasmon wavefront and spectral shaping by near-field holography,” Laser Photon. Rev. 10, 360 (2016).
[Crossref]

I. Epstein, Y. Lilach, and A. Arie, “Shaping plasmonic light beams with near-field plasmonic holograms,” J. Opt. Soc. Am. B 31, 1642 (2014).
[Crossref]

I. Epstein and A. Arie, “Arbitrary Bending Plasmonic Light Waves,” Phys. Rev. Lett. 112, 023903 (2014).
[Crossref] [PubMed]

A. Libster-Hershko, I. Epstein, and A. Arie, “Rapidly Accelerating Mathieu and Weber Surface Plasmon Beams,” Phys. Rev. Lett. 113, 123902 (2014).
[Crossref] [PubMed]

I. Epstein, I. Dolev, D. Bar-Lev, and A. Arie, “Plasmon-enhanced Bragg diffraction,” Phys. Rev. B - Condens. Matter Mater. Phys. 86, 205122 (2012).
[Crossref]

Fan, S.

G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Exp. 16, 2129 (2008).
[Crossref]

Fang, Y.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).
[Crossref]

Feng, L.

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

Garcia-Santamaria, F.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Phot. 2, 52–56 (2008).
[Crossref]

Genevet, P.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

Gondaira, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Phot. 7, 133–137 (2013).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev, K. C. Vernon, and D. F. P. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99 (2008).
[Crossref]

D. K. Gramotnev, K. C. Vernon, and D. F. Pile, “Directional coupler using gap plasmon waveguides”, Applied Physics B 93, 99–106 (2008).
[Crossref]

Halfmann, T.

N. V Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by diabetic passage techniques,” Annu. Rev. Phys. Chem. 52, 763 (2001).
[Crossref]

Hatakeyama, T.

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

M. Mrejen, H. Suchowski, T. Hatakeyama, Y. Wang, and X. Zhang, “Experimental Realization of Two Decoupled Directional Couplers in a Subwavelength Packing by Adiabatic Elimination,” Nano Letters 15, 7383–7387 (2015).
[Crossref] [PubMed]

Heeres, R. W.

R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, “Quantum interference in plasmonic circuits”, Nat. Nanotech. 8, 719–722 (2013).
[Crossref]

Hendrickson, J. R.

I. Avrutsky, C. W. Smith, J. W. Cleary, and J. R. Hendrickson, “Resonant Diffraction Into Symmetry-Prohibited Orders of Metal Gratings,” IEEE J. Quantum Electron. 51, 1 (2015).
[Crossref]

Holmgaard, T.

Iorsh, I. V.

A. A. Orlov, S.V. Zhukovsky, I. V. Iorsh, and P. A. Belov, “Controlling light with plasmonic multilayers, Photonics and Nanostructures,” Fundamentals and Applications 12, 213 (2014)

Ishizaki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Phot. 7, 133–137 (2013).
[Crossref]

Kivshar, Y. S.

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221 (2014)
[Crossref]

Klein, A. E.

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221 (2014)
[Crossref]

Konotop, V. V.

Kou, S. S.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons”, Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Koumura, M.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Phot. 7, 133–137 (2013).
[Crossref]

Kouwenhoven, L. P.

R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, “Quantum interference in plasmonic circuits”, Nat. Nanotech. 8, 719–722 (2013).
[Crossref]

Krasavin, A. V

Kudryavtsev, K. E.

Lahoud, N.

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long ranging surface plasmon polariton waveguides,” Opt. Exp. 13, 977–984 (2005).
[Crossref]

Lavrinenko, A. V.

Li, L.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref] [PubMed]

Li, T.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref] [PubMed]

Libster-Hershko, A.

A. Libster-Hershko, I. Epstein, and A. Arie, “Rapidly Accelerating Mathieu and Weber Surface Plasmon Beams,” Phys. Rev. Lett. 113, 123902 (2014).
[Crossref] [PubMed]

Lilach, Y.

Lin, J.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons”, Light Sci. Appl. 5, e16034 (2016).
[Crossref]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

Liu, Y.

Lou, F.

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
[Crossref]

Lu, C.

Ma, R.-M.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728 (2012).
[Crossref]

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)

Markey, L.

Mattiussi, G.

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long ranging surface plasmon polariton waveguides,” Opt. Exp. 13, 977–984 (2005).
[Crossref]

Meier, T.

Menabde, S. G.

V. Shaidiuk, S. G. Menabde, and N. Park, “Effect of structural asymmetry on three layer plasmonic waveguide properties,” JOSA B 33, 963–970 (2016).
[Crossref]

Minovich, A. E.

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221 (2014)
[Crossref]

Mojahedi, M.

Morozov, S. V.

Mrejen, M.

M. Mrejen, H. Suchowski, T. Hatakeyama, Y. Wang, and X. Zhang, “Experimental Realization of Two Decoupled Directional Couplers in a Subwavelength Packing by Adiabatic Elimination,” Nano Letters 15, 7383–7387 (2015).
[Crossref] [PubMed]

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

Neshev, D. N.

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221 (2014)
[Crossref]

Noda, S.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Phot. 7, 133–137 (2013).
[Crossref]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

Noghani, M. T.

O’Brien, K.

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

Orlov, A. A.

A. A. Orlov, S.V. Zhukovsky, I. V. Iorsh, and P. A. Belov, “Controlling light with plasmonic multilayers, Photonics and Nanostructures,” Fundamentals and Applications 12, 213 (2014)

Oulton, R. F.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728 (2012).
[Crossref]

Panah, M. E. A.

Park, N.

V. Shaidiuk, S. G. Menabde, and N. Park, “Effect of structural asymmetry on three layer plasmonic waveguide properties,” JOSA B 33, 963–970 (2016).
[Crossref]

S. Yu, X. Piao, and N. Park, “Target decoupling in a coupled optical system resistant to random perturbation,” Sci. Rep. 7, 2139 (2016).
[Crossref]

Pertsch, T.

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221 (2014)
[Crossref]

Piao, X.

S. Yu, X. Piao, and N. Park, “Target decoupling in a coupled optical system resistant to random perturbation,” Sci. Rep. 7, 2139 (2016).
[Crossref]

Pile, D. F.

D. K. Gramotnev, K. C. Vernon, and D. F. Pile, “Directional coupler using gap plasmon waveguides”, Applied Physics B 93, 99–106 (2008).
[Crossref]

Pile, D. F. P.

D. K. Gramotnev, K. C. Vernon, and D. F. P. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99 (2008).
[Crossref]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[Crossref]

Porat, G.

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333 (2014).
[Crossref]

Remez, R.

Rinne, S. A.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Phot. 2, 52–56 (2008).
[Crossref]

Rogers, E. T.

G. Yuan, E. T. Rogers, T. Roy, L. Du, Z. Shen, and N. I. Zheludev, “Plasmonic Super-oscillations and Sub-Diffraction Focusing,” in CLEO 2014 (OSA, Washington, D.C., 2014), p. FTu2K.5.

Roy, T.

G. Yuan, E. T. Rogers, T. Roy, L. Du, Z. Shen, and N. I. Zheludev, “Plasmonic Super-oscillations and Sub-Diffraction Focusing,” in CLEO 2014 (OSA, Washington, D.C., 2014), p. FTu2K.5.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007)

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20 (2006).
[Crossref]

Semenova, E. S.

Shaidiuk, V.

V. Shaidiuk, S. G. Menabde, and N. Park, “Effect of structural asymmetry on three layer plasmonic waveguide properties,” JOSA B 33, 963–970 (2016).
[Crossref]

Shen, Z.

G. Yuan, E. T. Rogers, T. Roy, L. Du, Z. Shen, and N. I. Zheludev, “Plasmonic Super-oscillations and Sub-Diffraction Focusing,” in CLEO 2014 (OSA, Washington, D.C., 2014), p. FTu2K.5.

Shore, B. W.

N. V Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by diabetic passage techniques,” Annu. Rev. Phys. Chem. 52, 763 (2001).
[Crossref]

Smith, C. W.

I. Avrutsky, C. W. Smith, J. W. Cleary, and J. R. Hendrickson, “Resonant Diffraction Into Symmetry-Prohibited Orders of Metal Gratings,” IEEE J. Quantum Electron. 51, 1 (2015).
[Crossref]

Sorger, V. J.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728 (2012).
[Crossref]

Stegeman, G. I.

G. I. Stegeman and J. J. Burke, “Long range surface plasmons in electrode structures,” Appl. Phys. Lett. 43, 221 (1983)
[Crossref]

Suchowski, H.

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

M. Mrejen, H. Suchowski, T. Hatakeyama, Y. Wang, and X. Zhang, “Experimental Realization of Two Decoupled Directional Couplers in a Subwavelength Packing by Adiabatic Elimination,” Nano Letters 15, 7383–7387 (2015).
[Crossref] [PubMed]

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333 (2014).
[Crossref]

Sun, M.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).
[Crossref]

Suzuki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Phot. 7, 133–137 (2013).
[Crossref]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[Crossref]

Takayama, O.

Tang, D.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons”, Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007)

Thylen, L.

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
[Crossref]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

Tsur, Y.

I. Epstein, R. Remez, Y. Tsur, and A. Arie, “Generation of intensity-controlled two-dimensional shape-preserving beams in plasmonic lossy media,” Optica 3, 15 (2016).
[Crossref]

I. Epstein, Y. Tsur, and A. Arie, “Surface-plasmon wavefront and spectral shaping by near-field holography,” Laser Photon. Rev. 10, 360 (2016).
[Crossref]

Vadjed Samiei, M. H.

Vernon, K. C.

D. K. Gramotnev, K. C. Vernon, and D. F. P. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99 (2008).
[Crossref]

D. K. Gramotnev, K. C. Vernon, and D. F. Pile, “Directional coupler using gap plasmon waveguides”, Applied Physics B 93, 99–106 (2008).
[Crossref]

Veronis, G.

G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Exp. 16, 2129 (2008).
[Crossref]

Vitanov, N. V

N. V Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by diabetic passage techniques,” Annu. Rev. Phys. Chem. 52, 763 (2001).
[Crossref]

Wang, Q.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons”, Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Wang, S.

Wang, S. M.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref] [PubMed]

Wang, Y.

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

M. Mrejen, H. Suchowski, T. Hatakeyama, Y. Wang, and X. Zhang, “Experimental Realization of Two Decoupled Directional Couplers in a Subwavelength Packing by Adiabatic Elimination,” Nano Letters 15, 7383–7387 (2015).
[Crossref] [PubMed]

Wang, Z.

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
[Crossref]

Wosinski, L.

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
[Crossref]

Wu, C.

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

Yin, X.

Yu, S.

S. Yu, X. Piao, and N. Park, “Target decoupling in a coupled optical system resistant to random perturbation,” Sci. Rep. 7, 2139 (2016).
[Crossref]

Yuan, G.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons”, Light Sci. Appl. 5, e16034 (2016).
[Crossref]

G. Yuan, E. T. Rogers, T. Roy, L. Du, Z. Shen, and N. I. Zheludev, “Plasmonic Super-oscillations and Sub-Diffraction Focusing,” in CLEO 2014 (OSA, Washington, D.C., 2014), p. FTu2K.5.

Yuan, X.-C.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons”, Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Zayats, A. V

Zhang, C.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref] [PubMed]

Zhang, D.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons”, Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Zhang, P.

Zhang, X.

M. Mrejen, H. Suchowski, T. Hatakeyama, Y. Wang, and X. Zhang, “Experimental Realization of Two Decoupled Directional Couplers in a Subwavelength Packing by Adiabatic Elimination,” Nano Letters 15, 7383–7387 (2015).
[Crossref] [PubMed]

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728 (2012).
[Crossref]

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191 (2011).
[Crossref] [PubMed]

Zheludev, N. I.

G. Yuan, E. T. Rogers, T. Roy, L. Du, Z. Shen, and N. I. Zheludev, “Plasmonic Super-oscillations and Sub-Diffraction Focusing,” in CLEO 2014 (OSA, Washington, D.C., 2014), p. FTu2K.5.

Zhu, S. N.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref] [PubMed]

Zhukovsky, S.V.

A. A. Orlov, S.V. Zhukovsky, I. V. Iorsh, and P. A. Belov, “Controlling light with plasmonic multilayers, Photonics and Nanostructures,” Fundamentals and Applications 12, 213 (2014)

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20 (2006).
[Crossref]

Zwiller, V.

R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, “Quantum interference in plasmonic circuits”, Nat. Nanotech. 8, 719–722 (2013).
[Crossref]

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1, 484 (2009).
[Crossref]

Annu. Rev. Phys. Chem. (1)

N. V Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by diabetic passage techniques,” Annu. Rev. Phys. Chem. 52, 763 (2001).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

D. K. Gramotnev, K. C. Vernon, and D. F. P. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99 (2008).
[Crossref]

Appl. Phys. Lett. (2)

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
[Crossref]

G. I. Stegeman and J. J. Burke, “Long range surface plasmons in electrode structures,” Appl. Phys. Lett. 43, 221 (1983)
[Crossref]

Applied Physics B (1)

D. K. Gramotnev, K. C. Vernon, and D. F. Pile, “Directional coupler using gap plasmon waveguides”, Applied Physics B 93, 99–106 (2008).
[Crossref]

Fundamentals and Applications (1)

A. A. Orlov, S.V. Zhukovsky, I. V. Iorsh, and P. A. Belov, “Controlling light with plasmonic multilayers, Photonics and Nanostructures,” Fundamentals and Applications 12, 213 (2014)

IEEE J. Quantum Electron. (1)

I. Avrutsky, C. W. Smith, J. W. Cleary, and J. R. Hendrickson, “Resonant Diffraction Into Symmetry-Prohibited Orders of Metal Gratings,” IEEE J. Quantum Electron. 51, 1 (2015).
[Crossref]

IEEE J. Sel. Top. QUANTUM Electron. (1)

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. QUANTUM Electron. 12, 1233 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

JOSA B (1)

V. Shaidiuk, S. G. Menabde, and N. Park, “Effect of structural asymmetry on three layer plasmonic waveguide properties,” JOSA B 33, 963–970 (2016).
[Crossref]

Laser Photon. Rev. (3)

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333 (2014).
[Crossref]

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221 (2014)
[Crossref]

I. Epstein, Y. Tsur, and A. Arie, “Surface-plasmon wavefront and spectral shaping by near-field holography,” Laser Photon. Rev. 10, 360 (2016).
[Crossref]

Light Sci. Appl. (2)

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons”, Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).
[Crossref]

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20 (2006).
[Crossref]

MRS Bull. (1)

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728 (2012).
[Crossref]

Nano Letters (1)

M. Mrejen, H. Suchowski, T. Hatakeyama, Y. Wang, and X. Zhang, “Experimental Realization of Two Decoupled Directional Couplers in a Subwavelength Packing by Adiabatic Elimination,” Nano Letters 15, 7383–7387 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

Nat. Nanotech. (1)

R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, “Quantum interference in plasmonic circuits”, Nat. Nanotech. 8, 719–722 (2013).
[Crossref]

Nat. Phot. (2)

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Phot. 7, 133–137 (2013).
[Crossref]

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Phot. 2, 52–56 (2008).
[Crossref]

Opt. Exp. (2)

G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Exp. 16, 2129 (2008).
[Crossref]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long ranging surface plasmon polariton waveguides,” Opt. Exp. 13, 977–984 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Optica (1)

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[Crossref]

Phys. Rev. B - Condens. Matter Mater. Phys. (1)

I. Epstein, I. Dolev, D. Bar-Lev, and A. Arie, “Plasmon-enhanced Bragg diffraction,” Phys. Rev. B - Condens. Matter Mater. Phys. 86, 205122 (2012).
[Crossref]

Phys. Rev. Lett. (4)

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref] [PubMed]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

A. Libster-Hershko, I. Epstein, and A. Arie, “Rapidly Accelerating Mathieu and Weber Surface Plasmon Beams,” Phys. Rev. Lett. 113, 123902 (2014).
[Crossref] [PubMed]

I. Epstein and A. Arie, “Arbitrary Bending Plasmonic Light Waves,” Phys. Rev. Lett. 112, 023903 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Yu, X. Piao, and N. Park, “Target decoupling in a coupled optical system resistant to random perturbation,” Sci. Rep. 7, 2139 (2016).
[Crossref]

Science (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007)

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)

G. Yuan, E. T. Rogers, T. Roy, L. Du, Z. Shen, and N. I. Zheludev, “Plasmonic Super-oscillations and Sub-Diffraction Focusing,” in CLEO 2014 (OSA, Washington, D.C., 2014), p. FTu2K.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Vertical coupling in the plasmonic multi-level system. (a) Geometry of a plasmonic 2CMS, and (b) its full-wave simulation showing the oscillating plasmonic intensity between the 1st and 2nd levels. (c) Geometry of a plasmonic 4CMS in the AE scheme, and (c) its full-wave simulation showing the oscillating plasmonic intensity between the 1st and 4th levels, with low amount intensity in the 2nd and 3rd levels. (cross-sections of the intensities at the metal/dielectric interfaces are shown in the insets). Orange and red arrows show the propagation direction and Ag layers location.
Fig. 2
Fig. 2 COMSOL full-wave simulations of the intensity distribution for the case of (a) a grating milled down in to the metal layer as slits, which results in a symmetric excitation and lack of oscillations, and (b) a metal grating deposited on top of the metal layer, which breaks the symmetry of excitation and results in the clearly observed oscillations.
Fig. 3
Fig. 3 The measured plasmonic field intensity on the top level, as measured by the Near-field microscope, for the cases of (a) a 30nm Ag layer, and (b) 40nm Ag layer, both surrounded by BK7 dielectrics. The insets show the cross-section of the measured plasmon intensities and the expected oscillation periods of Λ ≅ 14.2μm for the 30nm case and Λ ≅ 25μm for the 40nm case are clearly observed.
Fig. 4
Fig. 4 Near-field measurements of the 4CMS. (a) Measured intensity at the first level, of the sample whose SEM cross-section is presented in (c), which yields an oscillation period of Λ ≅ 40nm. (b) NSOM measurements of the Gaussian plasmonic field at the first level, of the sample whose SEM cross-section is presented in (d), which yields an oscillation period larger than 80μm, thus it appears as a decaying Gaussian plasmon.
Fig. 5
Fig. 5 Near-field measurements of shaped plasmonic breathers. (a), (b) HG first order mode propagating on the 2CMS and 4CMS, respectively. (c), (d) Self-accelerating Airy and Weber plasmon breathers, respectively, propagating in the 2CMS. Pink curves represent the designed trajectories of acceleration. All beams are seen to maintain their wavefront properties despite propagating on different spatial layers.
Fig. 6
Fig. 6 Full wave simulations of AE in a 6CMS. (a) Simulation of the 7-layer structure described in the text. (b) Cross-section of the fields at the interfaces, showing clearly the AE behavior.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d d y [ A 1 A 2 ] = i ( β 1 κ 12 κ 21 β 2 ) [ A 1 A 2 ]
d d y [ A 1 A 2 A 3 A 4 ] = i ( β 1 κ 12 0 0 κ 21 β 2 κ 23 0 0 κ 32 β 3 κ 34 0 0 κ 43 β 4 ) [ A 1 A 2 A 3 A 4 ]

Metrics