Abstract

This work presents a low-cost, simple, convenient, advanced technology to prepare large-area defect-free subwavelength structures (SWSs). SWSs were obtained by a metal-induced one-step self-masking RIE process on a fused-silica surface, in which metal-fluoride (mainly ferrous-fluoride) nanodots were used to induce and gather stable fluorocarbon polymer etching inhibitors in the RIE polymers as masks. The SWS growth processes are visible with an increase in etching time and some exhibit prominent broadband antireflective properties from the visible to the near-infrared wavelength range. Transmission in the 600-900-nm range increased from approximately 93% for the polished fused silica to above 99% for the double-side SWSs on fused silica. A theoretical simulation by a finite-difference time-domain method agreed well with the experiments. Moreover, the surface of the SWSs exhibits excellent superhydrophilic properties.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Disordered antireflective subwavelength structures using Ag nanoparticles on fused silica windows

Peng Shang, Sheng Ming Xiong, Qi Ling Deng, Li Fang Shi, and Mian Zhang
Appl. Opt. 53(29) 6789-6796 (2014)

Broadband antireflection silicon carbide surface by self-assembled nanopatterned reactive-ion etching

Yiyu Ou, Imran Aijaz, Valdas Jokubavicius, Rositza Yakimova, Mikael Syväjärvi, and Haiyan Ou
Opt. Mater. Express 3(1) 86-94 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100(3), 031108 (2012).
    [Crossref]
  2. K. Forberich, G. Dennler, M. Scharber, C. Hingerl, K. Fromherz, and C. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
    [Crossref]
  3. T. Yanagishita, K. Nishio, and H. Masuda, “Antireflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2(2), 022001 (2009).
    [Crossref]
  4. G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol. 11(7), 6152–6156 (2011).
    [Crossref] [PubMed]
  5. D. S. Hobbs and B. D. Macleod, “High laser damage threshold surface relief micro-structures for anti-reflection applications,” Proc. SPIE 6720, 67200L (2007).
    [Crossref]
  6. C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
    [Crossref] [PubMed]
  7. J. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater. 1(1), 59–63 (2002).
    [Crossref] [PubMed]
  8. J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, and S. Lin, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
  9. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, and Z. Wang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21(46), 4731–4734 (2010).
  10. H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev. 10(2), 63–73 (2003).
    [Crossref]
  11. J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
  12. D. Hobbs, “Laser damage threshold measurements of anti-reflection microstructures operating in the near UV and mid-infrared,” Proc. SPIE 7842(1), 104 (2010).
  13. Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
    [Crossref]
  14. B. J. Kim and J. Kim, “Fabrication of GaAs subwavelength structure (SWS) for solar cell applications,” Opt. Express 19(10), A326 (2011).
  15. Y. Ou, I. Aijaz, V. Jokubavicius, R. Yakimova, M. Syväjärvi, and H. Ou, “Broadband antireflection silicon carbide surface by self-assembled nanopatterned reactive-ion etching,” Opt. Mater. Express 3(3), 86–94 (2013).
    [Crossref]
  16. P. Baroni, B. Päivänranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc-Rapid 5(1), 138 (2010).
  17. T. Yanagishita, T. Endo, K. Nishio, and H. Masuda, “Preparation of antireflection SiO2 structures based on nanoimprinting using anodic porous alumina molds,” Jpn. J. Appl. Phys. 49(6), 065202 (2010).
    [Crossref]
  18. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
    [Crossref] [PubMed]
  19. X. Ye, X. D. Jiang, J. Huang, L. X. Sun, F. Geng, Z. Yi, X. T. Zu, W. D. Wu, and W. G. Zheng, “Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching,” Opt. Lasers Eng. 78, 48–54 (2016).
    [Crossref]
  20. J. Son, M. Sakhuja, A. J. Danner, C. S. Bhatia, and H. Yang, “Large scale antireflective glass texturing using grid contacts in anodization methods,” Sol. Energy Mater. Sol. Cells 116, 9–13 (2013).
    [Crossref]
  21. K. Chen, C. Hsu, H. Lo, S. Chattopadhyay, C. Wu, J. Hwang, D. Das, and L. Chen, “Generally applicable self-masking technique for nanotips array fabrication,” Nanosci. Nanotechnol. 7(3), 129–134 (2004).
  22. M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tunnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 29(1), 13–20 (2008).
  23. L. Hongjie, H. Jin, W. Fengrui, Z. Xinda, Y. Xin, Z. Xiaoyan, S. Laixi, J. Xiaodong, S. Zhan, and Z. Wanguo, “Subsurface defects of fused silica optics and laser induced damage at 351 nm,” Opt. Express 21(10), 12204–12217 (2013).
    [Crossref] [PubMed]
  24. X. J. Feng and L. Jiang, “Design and creation of superwetting/antiwetting surfaces,” Adv. Mater. 8(23), 3063–3078 (2006).
    [Crossref]
  25. K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
    [Crossref] [PubMed]
  26. J. Barz, C. Oehr, and A. Lunk, “Analysis and modeling of gas-phase processes in a CHF3/Ar Discharge,” Plasma Process. Polym. 8(5), 409–423 (2011).
    [Crossref]
  27. D. Bose, M. Rao, T. Govindan, and M. Meyyappan, “Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma,” Plasma Sources Sci. Technol. 12(2), 225–234 (2003).
    [Crossref]
  28. Z. Cui, Micro-Nanofabrication: Technologies and Applications (Springer, 2005).
  29. E. Metwalli and C. Pantano, “Reactive ion etching of glasses: composition dependence,” Nucl. Instrum. Meth. B. 207(1), 21–27 (2003).
    [Crossref]
  30. H. Craighead, R. Howard, and D. Tennant, “Textured thin-film Si solar selective absorbers using reactive ion etching,” Appl. Phys. Lett. 37(7), 653–655 (1980).
    [Crossref]
  31. A. J. Van Roosmalen, “Review: dry etching of silicon oxide,” Vacuum 34(3), 429–436 (1984).
    [Crossref]
  32. G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76(19), 3405 (2007).
    [Crossref]
  33. S. P. Zimin, E. S. Gorlachev, I. I. Amirov, and H. Zogg, “Micromasking effect and nanostructure self-formation on the surface of lead chalcogenide epitaxial films on Si substrates during argon plasma treatment,” J. Phys. D Appl. Phys. 42(16), 165205 (2009).
    [Crossref]
  34. E. Hein, D. Fox, and H. Fouckhardt, “Self-masking controlled by metallic seed layer during glass dry-etching for optically scattering surfaces,” J. Appl. Phys. 107(3), 033301 (2010).
    [Crossref]
  35. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
    [Crossref]
  36. A. Asadollahbaik, S. A. Boden, M. D. Charlton, D. N. Payne, S. Cox, and D. M. Bagnall, “Reflectance properties of silicon moth-eyes in response to variations in angle of incidence, polarisation and azimuth orientation,” Opt. Express 22(2), A402 (2014).
  37. R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. Res. 28(8), 988–994 (1936).
    [Crossref]
  38. A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Phys. Chem. Chem. Phys. 40, 546–551 (1944).
  39. J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloid Surface A. 206(1), 41–46 (2002).
    [Crossref]
  40. J. Drelich, E. Chibowski, D. D. Meng, and K. Terpilowski, “Hydrophilic and superhydrophilic surfaces and materials,” Soft Matter 7(21), 9804–9828 (2011).
    [Crossref]
  41. X. Du and J. He, “Structurally colored surfaces with antireflective, self-cleaning, and antifogging properties,” J. Colloid Interface Sci. 381(1), 189–197 (2012).
    [Crossref] [PubMed]

2016 (1)

X. Ye, X. D. Jiang, J. Huang, L. X. Sun, F. Geng, Z. Yi, X. T. Zu, W. D. Wu, and W. G. Zheng, “Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching,” Opt. Lasers Eng. 78, 48–54 (2016).
[Crossref]

2014 (1)

2013 (3)

2012 (3)

X. Du and J. He, “Structurally colored surfaces with antireflective, self-cleaning, and antifogging properties,” J. Colloid Interface Sci. 381(1), 189–197 (2012).
[Crossref] [PubMed]

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100(3), 031108 (2012).
[Crossref]

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

2011 (4)

J. Barz, C. Oehr, and A. Lunk, “Analysis and modeling of gas-phase processes in a CHF3/Ar Discharge,” Plasma Process. Polym. 8(5), 409–423 (2011).
[Crossref]

G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol. 11(7), 6152–6156 (2011).
[Crossref] [PubMed]

J. Drelich, E. Chibowski, D. D. Meng, and K. Terpilowski, “Hydrophilic and superhydrophilic surfaces and materials,” Soft Matter 7(21), 9804–9828 (2011).
[Crossref]

B. J. Kim and J. Kim, “Fabrication of GaAs subwavelength structure (SWS) for solar cell applications,” Opt. Express 19(10), A326 (2011).

2010 (6)

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, and Z. Wang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21(46), 4731–4734 (2010).

D. Hobbs, “Laser damage threshold measurements of anti-reflection microstructures operating in the near UV and mid-infrared,” Proc. SPIE 7842(1), 104 (2010).

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

P. Baroni, B. Päivänranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc-Rapid 5(1), 138 (2010).

T. Yanagishita, T. Endo, K. Nishio, and H. Masuda, “Preparation of antireflection SiO2 structures based on nanoimprinting using anodic porous alumina molds,” Jpn. J. Appl. Phys. 49(6), 065202 (2010).
[Crossref]

E. Hein, D. Fox, and H. Fouckhardt, “Self-masking controlled by metallic seed layer during glass dry-etching for optically scattering surfaces,” J. Appl. Phys. 107(3), 033301 (2010).
[Crossref]

2009 (2)

S. P. Zimin, E. S. Gorlachev, I. I. Amirov, and H. Zogg, “Micromasking effect and nanostructure self-formation on the surface of lead chalcogenide epitaxial films on Si substrates during argon plasma treatment,” J. Phys. D Appl. Phys. 42(16), 165205 (2009).
[Crossref]

T. Yanagishita, K. Nishio, and H. Masuda, “Antireflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2(2), 022001 (2009).
[Crossref]

2008 (3)

K. Forberich, G. Dennler, M. Scharber, C. Hingerl, K. Fromherz, and C. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[Crossref]

M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tunnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 29(1), 13–20 (2008).

2007 (4)

G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76(19), 3405 (2007).
[Crossref]

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, and S. Lin, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

D. S. Hobbs and B. D. Macleod, “High laser damage threshold surface relief micro-structures for anti-reflection applications,” Proc. SPIE 6720, 67200L (2007).
[Crossref]

2006 (1)

X. J. Feng and L. Jiang, “Design and creation of superwetting/antiwetting surfaces,” Adv. Mater. 8(23), 3063–3078 (2006).
[Crossref]

2005 (1)

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[Crossref] [PubMed]

2004 (1)

K. Chen, C. Hsu, H. Lo, S. Chattopadhyay, C. Wu, J. Hwang, D. Das, and L. Chen, “Generally applicable self-masking technique for nanotips array fabrication,” Nanosci. Nanotechnol. 7(3), 129–134 (2004).

2003 (3)

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev. 10(2), 63–73 (2003).
[Crossref]

D. Bose, M. Rao, T. Govindan, and M. Meyyappan, “Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma,” Plasma Sources Sci. Technol. 12(2), 225–234 (2003).
[Crossref]

E. Metwalli and C. Pantano, “Reactive ion etching of glasses: composition dependence,” Nucl. Instrum. Meth. B. 207(1), 21–27 (2003).
[Crossref]

2002 (2)

J. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater. 1(1), 59–63 (2002).
[Crossref] [PubMed]

J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloid Surface A. 206(1), 41–46 (2002).
[Crossref]

1999 (1)

1984 (1)

A. J. Van Roosmalen, “Review: dry etching of silicon oxide,” Vacuum 34(3), 429–436 (1984).
[Crossref]

1980 (1)

H. Craighead, R. Howard, and D. Tennant, “Textured thin-film Si solar selective absorbers using reactive ion etching,” Appl. Phys. Lett. 37(7), 653–655 (1980).
[Crossref]

1944 (1)

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Phys. Chem. Chem. Phys. 40, 546–551 (1944).

1936 (1)

R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. Res. 28(8), 988–994 (1936).
[Crossref]

Aijaz, I.

Amirov, I. I.

S. P. Zimin, E. S. Gorlachev, I. I. Amirov, and H. Zogg, “Micromasking effect and nanostructure self-formation on the surface of lead chalcogenide epitaxial films on Si substrates during argon plasma treatment,” J. Phys. D Appl. Phys. 42(16), 165205 (2009).
[Crossref]

Angelikopoulos, P.

G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76(19), 3405 (2007).
[Crossref]

Asadollahbaik, A.

Bae, S. Y.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[Crossref] [PubMed]

Bagnall, D. M.

Barbastathis, G.

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Baroni, P.

P. Baroni, B. Päivänranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc-Rapid 5(1), 138 (2010).

Barz, J.

J. Barz, C. Oehr, and A. Lunk, “Analysis and modeling of gas-phase processes in a CHF3/Ar Discharge,” Plasma Process. Polym. 8(5), 409–423 (2011).
[Crossref]

Baxter, S.

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Phys. Chem. Chem. Phys. 40, 546–551 (1944).

Bhatia, C. S.

J. Son, M. Sakhuja, A. J. Danner, C. S. Bhatia, and H. Yang, “Large scale antireflective glass texturing using grid contacts in anodization methods,” Sol. Energy Mater. Sol. Cells 116, 9–13 (2013).
[Crossref]

Bico, J.

J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloid Surface A. 206(1), 41–46 (2002).
[Crossref]

Boden, S. A.

Bose, D.

D. Bose, M. Rao, T. Govindan, and M. Meyyappan, “Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma,” Plasma Sources Sci. Technol. 12(2), 225–234 (2003).
[Crossref]

Boulousis, G.

G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76(19), 3405 (2007).
[Crossref]

Brabec, C.

K. Forberich, G. Dennler, M. Scharber, C. Hingerl, K. Fromherz, and C. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

Cassie, A. B. D.

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Phys. Chem. Chem. Phys. 40, 546–551 (1944).

Chang, C. H.

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Charlton, M. D.

Chattopadhyay, S.

K. Chen, C. Hsu, H. Lo, S. Chattopadhyay, C. Wu, J. Hwang, D. Das, and L. Chen, “Generally applicable self-masking technique for nanotips array fabrication,” Nanosci. Nanotechnol. 7(3), 129–134 (2004).

Chen, K.

K. Chen, C. Hsu, H. Lo, S. Chattopadhyay, C. Wu, J. Hwang, D. Das, and L. Chen, “Generally applicable self-masking technique for nanotips array fabrication,” Nanosci. Nanotechnol. 7(3), 129–134 (2004).

Chen, L.

K. Chen, C. Hsu, H. Lo, S. Chattopadhyay, C. Wu, J. Hwang, D. Das, and L. Chen, “Generally applicable self-masking technique for nanotips array fabrication,” Nanosci. Nanotechnol. 7(3), 129–134 (2004).

Chen, M.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, and S. Lin, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Chibowski, E.

J. Drelich, E. Chibowski, D. D. Meng, and K. Terpilowski, “Hydrophilic and superhydrophilic surfaces and materials,” Soft Matter 7(21), 9804–9828 (2011).
[Crossref]

Choi, H. J.

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Cohen, R. E.

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Constantoudis, V.

G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76(19), 3405 (2007).
[Crossref]

Cox, S.

Craighead, H.

H. Craighead, R. Howard, and D. Tennant, “Textured thin-film Si solar selective absorbers using reactive ion etching,” Appl. Phys. Lett. 37(7), 653–655 (1980).
[Crossref]

Danner, A. J.

J. Son, M. Sakhuja, A. J. Danner, C. S. Bhatia, and H. Yang, “Large scale antireflective glass texturing using grid contacts in anodization methods,” Sol. Energy Mater. Sol. Cells 116, 9–13 (2013).
[Crossref]

Das, D.

K. Chen, C. Hsu, H. Lo, S. Chattopadhyay, C. Wu, J. Hwang, D. Das, and L. Chen, “Generally applicable self-masking technique for nanotips array fabrication,” Nanosci. Nanotechnol. 7(3), 129–134 (2004).

Dennler, G.

K. Forberich, G. Dennler, M. Scharber, C. Hingerl, K. Fromherz, and C. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

Dong, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, and Z. Wang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21(46), 4731–4734 (2010).

Drelich, J.

J. Drelich, E. Chibowski, D. D. Meng, and K. Terpilowski, “Hydrophilic and superhydrophilic surfaces and materials,” Soft Matter 7(21), 9804–9828 (2011).
[Crossref]

Du, X.

X. Du and J. He, “Structurally colored surfaces with antireflective, self-cleaning, and antifogging properties,” J. Colloid Interface Sci. 381(1), 189–197 (2012).
[Crossref] [PubMed]

Duelk, M.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100(3), 031108 (2012).
[Crossref]

Endo, T.

T. Yanagishita, T. Endo, K. Nishio, and H. Masuda, “Preparation of antireflection SiO2 structures based on nanoimprinting using anodic porous alumina molds,” Jpn. J. Appl. Phys. 49(6), 065202 (2010).
[Crossref]

Feng, X. J.

X. J. Feng and L. Jiang, “Design and creation of superwetting/antiwetting surfaces,” Adv. Mater. 8(23), 3063–3078 (2006).
[Crossref]

Fengrui, W.

Forberich, K.

K. Forberich, G. Dennler, M. Scharber, C. Hingerl, K. Fromherz, and C. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

Fouckhardt, H.

E. Hein, D. Fox, and H. Fouckhardt, “Self-masking controlled by metallic seed layer during glass dry-etching for optically scattering surfaces,” J. Appl. Phys. 107(3), 033301 (2010).
[Crossref]

Fox, D.

E. Hein, D. Fox, and H. Fouckhardt, “Self-masking controlled by metallic seed layer during glass dry-etching for optically scattering surfaces,” J. Appl. Phys. 107(3), 033301 (2010).
[Crossref]

Fromherz, K.

K. Forberich, G. Dennler, M. Scharber, C. Hingerl, K. Fromherz, and C. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

Fuchs, H. J.

M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tunnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 29(1), 13–20 (2008).

Geng, F.

X. Ye, X. D. Jiang, J. Huang, L. X. Sun, F. Geng, Z. Yi, X. T. Zu, W. D. Wu, and W. G. Zheng, “Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching,” Opt. Lasers Eng. 78, 48–54 (2016).
[Crossref]

Gogolides, E.

G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76(19), 3405 (2007).
[Crossref]

Gorlachev, E. S.

S. P. Zimin, E. S. Gorlachev, I. I. Amirov, and H. Zogg, “Micromasking effect and nanostructure self-formation on the surface of lead chalcogenide epitaxial films on Si substrates during argon plasma treatment,” J. Phys. D Appl. Phys. 42(16), 165205 (2009).
[Crossref]

Govindan, T.

D. Bose, M. Rao, T. Govindan, and M. Meyyappan, “Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma,” Plasma Sources Sci. Technol. 12(2), 225–234 (2003).
[Crossref]

Ha, J. H.

G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol. 11(7), 6152–6156 (2011).
[Crossref] [PubMed]

Hamamoto, K.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100(3), 031108 (2012).
[Crossref]

Hane, K.

He, J.

X. Du and J. He, “Structurally colored surfaces with antireflective, self-cleaning, and antifogging properties,” J. Colloid Interface Sci. 381(1), 189–197 (2012).
[Crossref] [PubMed]

Hein, E.

E. Hein, D. Fox, and H. Fouckhardt, “Self-masking controlled by metallic seed layer during glass dry-etching for optically scattering surfaces,” J. Appl. Phys. 107(3), 033301 (2010).
[Crossref]

Herzig, H.

P. Baroni, B. Päivänranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc-Rapid 5(1), 138 (2010).

Hiller, J.

J. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater. 1(1), 59–63 (2002).
[Crossref] [PubMed]

Hingerl, C.

K. Forberich, G. Dennler, M. Scharber, C. Hingerl, K. Fromherz, and C. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

Hobbs, D.

D. Hobbs, “Laser damage threshold measurements of anti-reflection microstructures operating in the near UV and mid-infrared,” Proc. SPIE 7842(1), 104 (2010).

Hobbs, D. S.

D. S. Hobbs and B. D. Macleod, “High laser damage threshold surface relief micro-structures for anti-reflection applications,” Proc. SPIE 6720, 67200L (2007).
[Crossref]

Hongjie, L.

Howard, R.

H. Craighead, R. Howard, and D. Tennant, “Textured thin-film Si solar selective absorbers using reactive ion etching,” Appl. Phys. Lett. 37(7), 653–655 (1980).
[Crossref]

Hsu, C.

K. Chen, C. Hsu, H. Lo, S. Chattopadhyay, C. Wu, J. Hwang, D. Das, and L. Chen, “Generally applicable self-masking technique for nanotips array fabrication,” Nanosci. Nanotechnol. 7(3), 129–134 (2004).

Huang, J.

X. Ye, X. D. Jiang, J. Huang, L. X. Sun, F. Geng, Z. Yi, X. T. Zu, W. D. Wu, and W. G. Zheng, “Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching,” Opt. Lasers Eng. 78, 48–54 (2016).
[Crossref]

Hwang, J.

K. Chen, C. Hsu, H. Lo, S. Chattopadhyay, C. Wu, J. Hwang, D. Das, and L. Chen, “Generally applicable self-masking technique for nanotips array fabrication,” Nanosci. Nanotechnol. 7(3), 129–134 (2004).

Jia, F.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, and Z. Wang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21(46), 4731–4734 (2010).

Jiang, L.

X. J. Feng and L. Jiang, “Design and creation of superwetting/antiwetting surfaces,” Adv. Mater. 8(23), 3063–3078 (2006).
[Crossref]

Jiang, X. D.

X. Ye, X. D. Jiang, J. Huang, L. X. Sun, F. Geng, Z. Yi, X. T. Zu, W. D. Wu, and W. G. Zheng, “Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching,” Opt. Lasers Eng. 78, 48–54 (2016).
[Crossref]

Jin, H.

Jokubavicius, V.

Kanamori, Y.

Kikuta, H.

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev. 10(2), 63–73 (2003).
[Crossref]

Kim, B. J.

Kim, J.

B. J. Kim and J. Kim, “Fabrication of GaAs subwavelength structure (SWS) for solar cell applications,” Opt. Express 19(10), A326 (2011).

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, and S. Lin, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Kley, E. B.

M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tunnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 29(1), 13–20 (2008).

Kokkoris, G.

G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76(19), 3405 (2007).
[Crossref]

Kuittinen, M.

P. Baroni, B. Päivänranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc-Rapid 5(1), 138 (2010).

Laixi, S.

Lee, C.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[Crossref] [PubMed]

Lee, Y. T.

G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol. 11(7), 6152–6156 (2011).
[Crossref] [PubMed]

Li, Y.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, and Z. Wang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21(46), 4731–4734 (2010).

Lin, S.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, and S. Lin, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Liu, W.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Lo, H.

K. Chen, C. Hsu, H. Lo, S. Chattopadhyay, C. Wu, J. Hwang, D. Das, and L. Chen, “Generally applicable self-masking technique for nanotips array fabrication,” Nanosci. Nanotechnol. 7(3), 129–134 (2004).

Lunk, A.

J. Barz, C. Oehr, and A. Lunk, “Analysis and modeling of gas-phase processes in a CHF3/Ar Discharge,” Plasma Process. Polym. 8(5), 409–423 (2011).
[Crossref]

Macleod, B. D.

D. S. Hobbs and B. D. Macleod, “High laser damage threshold surface relief micro-structures for anti-reflection applications,” Proc. SPIE 6720, 67200L (2007).
[Crossref]

Manohara, H.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[Crossref] [PubMed]

Masuda, H.

T. Yanagishita, T. Endo, K. Nishio, and H. Masuda, “Preparation of antireflection SiO2 structures based on nanoimprinting using anodic porous alumina molds,” Jpn. J. Appl. Phys. 49(6), 065202 (2010).
[Crossref]

T. Yanagishita, K. Nishio, and H. Masuda, “Antireflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2(2), 022001 (2009).
[Crossref]

McKinley, G. H.

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Mendelsohn, J. D.

J. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater. 1(1), 59–63 (2002).
[Crossref] [PubMed]

Meng, D. D.

J. Drelich, E. Chibowski, D. D. Meng, and K. Terpilowski, “Hydrophilic and superhydrophilic surfaces and materials,” Soft Matter 7(21), 9804–9828 (2011).
[Crossref]

Metwalli, E.

E. Metwalli and C. Pantano, “Reactive ion etching of glasses: composition dependence,” Nucl. Instrum. Meth. B. 207(1), 21–27 (2003).
[Crossref]

Meyyappan, M.

D. Bose, M. Rao, T. Govindan, and M. Meyyappan, “Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma,” Plasma Sources Sci. Technol. 12(2), 225–234 (2003).
[Crossref]

Mobasser, S.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[Crossref] [PubMed]

Mukai, K.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100(3), 031108 (2012).
[Crossref]

Nakagawa, W.

P. Baroni, B. Päivänranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc-Rapid 5(1), 138 (2010).

Navaretti, P.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100(3), 031108 (2012).
[Crossref]

Nishio, K.

T. Yanagishita, T. Endo, K. Nishio, and H. Masuda, “Preparation of antireflection SiO2 structures based on nanoimprinting using anodic porous alumina molds,” Jpn. J. Appl. Phys. 49(6), 065202 (2010).
[Crossref]

T. Yanagishita, K. Nishio, and H. Masuda, “Antireflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2(2), 022001 (2009).
[Crossref]

Oehr, C.

J. Barz, C. Oehr, and A. Lunk, “Analysis and modeling of gas-phase processes in a CHF3/Ar Discharge,” Plasma Process. Polym. 8(5), 409–423 (2011).
[Crossref]

Ou, H.

Ou, Y.

Päivänranta, B.

P. Baroni, B. Päivänranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc-Rapid 5(1), 138 (2010).

Pantano, C.

E. Metwalli and C. Pantano, “Reactive ion etching of glasses: composition dependence,” Nucl. Instrum. Meth. B. 207(1), 21–27 (2003).
[Crossref]

Park, G. C.

G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol. 11(7), 6152–6156 (2011).
[Crossref] [PubMed]

Park, K. C.

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Payne, D. N.

Quéré, D.

J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloid Surface A. 206(1), 41–46 (2002).
[Crossref]

Rao, M.

D. Bose, M. Rao, T. Govindan, and M. Meyyappan, “Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma,” Plasma Sources Sci. Technol. 12(2), 225–234 (2003).
[Crossref]

Roussey, M.

P. Baroni, B. Päivänranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc-Rapid 5(1), 138 (2010).

Rubner, M. F.

J. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater. 1(1), 59–63 (2002).
[Crossref] [PubMed]

Sakhuja, M.

J. Son, M. Sakhuja, A. J. Danner, C. S. Bhatia, and H. Yang, “Large scale antireflective glass texturing using grid contacts in anodization methods,” Sol. Energy Mater. Sol. Cells 116, 9–13 (2013).
[Crossref]

Sasaki, M.

Scharber, M.

K. Forberich, G. Dennler, M. Scharber, C. Hingerl, K. Fromherz, and C. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

Scharf, T.

P. Baroni, B. Päivänranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc-Rapid 5(1), 138 (2010).

Schubert, E.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, and S. Lin, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Schubert, M.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, and S. Lin, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Schulze, M.

M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tunnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 29(1), 13–20 (2008).

Smart, J.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Son, J.

J. Son, M. Sakhuja, A. J. Danner, C. S. Bhatia, and H. Yang, “Large scale antireflective glass texturing using grid contacts in anodization methods,” Sol. Energy Mater. Sol. Cells 116, 9–13 (2013).
[Crossref]

Song, Y. M.

G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol. 11(7), 6152–6156 (2011).
[Crossref] [PubMed]

Sun, L. X.

X. Ye, X. D. Jiang, J. Huang, L. X. Sun, F. Geng, Z. Yi, X. T. Zu, W. D. Wu, and W. G. Zheng, “Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching,” Opt. Lasers Eng. 78, 48–54 (2016).
[Crossref]

Syväjärvi, M.

Tennant, D.

H. Craighead, R. Howard, and D. Tennant, “Textured thin-film Si solar selective absorbers using reactive ion etching,” Appl. Phys. Lett. 37(7), 653–655 (1980).
[Crossref]

Terpilowski, K.

J. Drelich, E. Chibowski, D. D. Meng, and K. Terpilowski, “Hydrophilic and superhydrophilic surfaces and materials,” Soft Matter 7(21), 9804–9828 (2011).
[Crossref]

Thiele, U.

J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloid Surface A. 206(1), 41–46 (2002).
[Crossref]

Toyota, H.

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev. 10(2), 63–73 (2003).
[Crossref]

Tunnermann, A.

M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tunnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 29(1), 13–20 (2008).

Van Roosmalen, A. J.

A. J. Van Roosmalen, “Review: dry etching of silicon oxide,” Vacuum 34(3), 429–436 (1984).
[Crossref]

Velez, C.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100(3), 031108 (2012).
[Crossref]

Wang, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, and Z. Wang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21(46), 4731–4734 (2010).

Wanguo, Z.

Wenzel, R. N.

R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. Res. 28(8), 988–994 (1936).
[Crossref]

Wu, C.

K. Chen, C. Hsu, H. Lo, S. Chattopadhyay, C. Wu, J. Hwang, D. Das, and L. Chen, “Generally applicable self-masking technique for nanotips array fabrication,” Nanosci. Nanotechnol. 7(3), 129–134 (2004).

Wu, W. D.

X. Ye, X. D. Jiang, J. Huang, L. X. Sun, F. Geng, Z. Yi, X. T. Zu, W. D. Wu, and W. G. Zheng, “Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching,” Opt. Lasers Eng. 78, 48–54 (2016).
[Crossref]

Xi, J.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, and S. Lin, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Xiaodong, J.

Xiaoyan, Z.

Xin, Y.

Xinda, Z.

Yakimova, R.

Yanagishita, T.

T. Yanagishita, T. Endo, K. Nishio, and H. Masuda, “Preparation of antireflection SiO2 structures based on nanoimprinting using anodic porous alumina molds,” Jpn. J. Appl. Phys. 49(6), 065202 (2010).
[Crossref]

T. Yanagishita, K. Nishio, and H. Masuda, “Antireflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2(2), 022001 (2009).
[Crossref]

Yang, B.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Yang, H.

J. Son, M. Sakhuja, A. J. Danner, C. S. Bhatia, and H. Yang, “Large scale antireflective glass texturing using grid contacts in anodization methods,” Sol. Energy Mater. Sol. Cells 116, 9–13 (2013).
[Crossref]

Ye, X.

X. Ye, X. D. Jiang, J. Huang, L. X. Sun, F. Geng, Z. Yi, X. T. Zu, W. D. Wu, and W. G. Zheng, “Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching,” Opt. Lasers Eng. 78, 48–54 (2016).
[Crossref]

Yi, Z.

X. Ye, X. D. Jiang, J. Huang, L. X. Sun, F. Geng, Z. Yi, X. T. Zu, W. D. Wu, and W. G. Zheng, “Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching,” Opt. Lasers Eng. 78, 48–54 (2016).
[Crossref]

Yu, W.

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev. 10(2), 63–73 (2003).
[Crossref]

Zang, Z.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100(3), 031108 (2012).
[Crossref]

Zhan, S.

Zhang, J.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, and Z. Wang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21(46), 4731–4734 (2010).

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Zheng, W. G.

X. Ye, X. D. Jiang, J. Huang, L. X. Sun, F. Geng, Z. Yi, X. T. Zu, W. D. Wu, and W. G. Zheng, “Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching,” Opt. Lasers Eng. 78, 48–54 (2016).
[Crossref]

Zhu, S.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, and Z. Wang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21(46), 4731–4734 (2010).

Zimin, S. P.

S. P. Zimin, E. S. Gorlachev, I. I. Amirov, and H. Zogg, “Micromasking effect and nanostructure self-formation on the surface of lead chalcogenide epitaxial films on Si substrates during argon plasma treatment,” J. Phys. D Appl. Phys. 42(16), 165205 (2009).
[Crossref]

Zogg, H.

S. P. Zimin, E. S. Gorlachev, I. I. Amirov, and H. Zogg, “Micromasking effect and nanostructure self-formation on the surface of lead chalcogenide epitaxial films on Si substrates during argon plasma treatment,” J. Phys. D Appl. Phys. 42(16), 165205 (2009).
[Crossref]

Zu, X. T.

X. Ye, X. D. Jiang, J. Huang, L. X. Sun, F. Geng, Z. Yi, X. T. Zu, W. D. Wu, and W. G. Zheng, “Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching,” Opt. Lasers Eng. 78, 48–54 (2016).
[Crossref]

ACS Nano (1)

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Adv. Mater. (2)

X. J. Feng and L. Jiang, “Design and creation of superwetting/antiwetting surfaces,” Adv. Mater. 8(23), 3063–3078 (2006).
[Crossref]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, and Z. Wang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21(46), 4731–4734 (2010).

Appl. Phys. Express (1)

T. Yanagishita, K. Nishio, and H. Masuda, “Antireflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2(2), 022001 (2009).
[Crossref]

Appl. Phys. Lett. (3)

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100(3), 031108 (2012).
[Crossref]

H. Craighead, R. Howard, and D. Tennant, “Textured thin-film Si solar selective absorbers using reactive ion etching,” Appl. Phys. Lett. 37(7), 653–655 (1980).
[Crossref]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[Crossref]

Colloid Surface A. (1)

J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloid Surface A. 206(1), 41–46 (2002).
[Crossref]

Ind. Eng. Chem. Res. (1)

R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. Res. 28(8), 988–994 (1936).
[Crossref]

J. Appl. Phys. (1)

E. Hein, D. Fox, and H. Fouckhardt, “Self-masking controlled by metallic seed layer during glass dry-etching for optically scattering surfaces,” J. Appl. Phys. 107(3), 033301 (2010).
[Crossref]

J. Colloid Interface Sci. (1)

X. Du and J. He, “Structurally colored surfaces with antireflective, self-cleaning, and antifogging properties,” J. Colloid Interface Sci. 381(1), 189–197 (2012).
[Crossref] [PubMed]

J. Eur. Opt. Soc-Rapid (1)

P. Baroni, B. Päivänranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc-Rapid 5(1), 138 (2010).

J. Nanosci. Nanotechnol. (1)

G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol. 11(7), 6152–6156 (2011).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

S. P. Zimin, E. S. Gorlachev, I. I. Amirov, and H. Zogg, “Micromasking effect and nanostructure self-formation on the surface of lead chalcogenide epitaxial films on Si substrates during argon plasma treatment,” J. Phys. D Appl. Phys. 42(16), 165205 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Yanagishita, T. Endo, K. Nishio, and H. Masuda, “Preparation of antireflection SiO2 structures based on nanoimprinting using anodic porous alumina molds,” Jpn. J. Appl. Phys. 49(6), 065202 (2010).
[Crossref]

Nano Lett. (1)

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[Crossref] [PubMed]

Nano Today (1)

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Nanosci. Nanotechnol. (1)

K. Chen, C. Hsu, H. Lo, S. Chattopadhyay, C. Wu, J. Hwang, D. Das, and L. Chen, “Generally applicable self-masking technique for nanotips array fabrication,” Nanosci. Nanotechnol. 7(3), 129–134 (2004).

Nat. Mater. (1)

J. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater. 1(1), 59–63 (2002).
[Crossref] [PubMed]

Nat. Photonics (2)

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, and S. Lin, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Nucl. Instrum. Meth. B. (1)

E. Metwalli and C. Pantano, “Reactive ion etching of glasses: composition dependence,” Nucl. Instrum. Meth. B. 207(1), 21–27 (2003).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

X. Ye, X. D. Jiang, J. Huang, L. X. Sun, F. Geng, Z. Yi, X. T. Zu, W. D. Wu, and W. G. Zheng, “Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching,” Opt. Lasers Eng. 78, 48–54 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Rev. (1)

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev. 10(2), 63–73 (2003).
[Crossref]

Phys. Chem. Chem. Phys. (1)

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Phys. Chem. Chem. Phys. 40, 546–551 (1944).

Phys. Rev. B (1)

G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76(19), 3405 (2007).
[Crossref]

Plasma Process. Polym. (1)

J. Barz, C. Oehr, and A. Lunk, “Analysis and modeling of gas-phase processes in a CHF3/Ar Discharge,” Plasma Process. Polym. 8(5), 409–423 (2011).
[Crossref]

Plasma Sources Sci. Technol. (1)

D. Bose, M. Rao, T. Govindan, and M. Meyyappan, “Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma,” Plasma Sources Sci. Technol. 12(2), 225–234 (2003).
[Crossref]

Proc. SPIE (3)

D. Hobbs, “Laser damage threshold measurements of anti-reflection microstructures operating in the near UV and mid-infrared,” Proc. SPIE 7842(1), 104 (2010).

D. S. Hobbs and B. D. Macleod, “High laser damage threshold surface relief micro-structures for anti-reflection applications,” Proc. SPIE 6720, 67200L (2007).
[Crossref]

M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tunnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 29(1), 13–20 (2008).

Soft Matter (1)

J. Drelich, E. Chibowski, D. D. Meng, and K. Terpilowski, “Hydrophilic and superhydrophilic surfaces and materials,” Soft Matter 7(21), 9804–9828 (2011).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

J. Son, M. Sakhuja, A. J. Danner, C. S. Bhatia, and H. Yang, “Large scale antireflective glass texturing using grid contacts in anodization methods,” Sol. Energy Mater. Sol. Cells 116, 9–13 (2013).
[Crossref]

Thin Solid Films (1)

K. Forberich, G. Dennler, M. Scharber, C. Hingerl, K. Fromherz, and C. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

Vacuum (1)

A. J. Van Roosmalen, “Review: dry etching of silicon oxide,” Vacuum 34(3), 429–436 (1984).
[Crossref]

Other (1)

Z. Cui, Micro-Nanofabrication: Technologies and Applications (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic illustration of the SWS preparation process.
Fig. 2
Fig. 2 Morphology of fused-silica nanostructures (titled-top view, scale bar 500 nm) prepared using different etching conditions: (a) sample S1, (b) sample S2, (c) sample S3, (d) sample S4, (e) sample S5, (f) sample S6.
Fig. 3
Fig. 3 X-ray photoelectron spectroscopy and relative content (insert table) of samples using different etching conditions: (a) sample S1, (b) sample S2, (c) sample S3, (d) sample S4, (e) sample S5, (f) sample S6 (the more detailed XPS data are shown in Image 2).
Fig. 4
Fig. 4 (a) Iron spectrum of S2 condition, (b) relative content of metal fluoride of each sample.
Fig. 5
Fig. 5 (a) Morphology of fused-silica nanostructures, (b) statistical marks of morphology, (c) statistical results of morgraphy (scale bar 500 nm).
Fig. 6
Fig. 6 SEM images of the samples used in this work (scale bar 500 nm), parameters are shown in Table 2. Each column represents a different sample. (a) - (c) Collects top views of the surfaces, (d) - (f) are fractured cross-section views.
Fig. 7
Fig. 7 (a) (b) Transmittance and reflectance of each parameter in Table 1 S1-S7. (c) Transmittance of fused-silica double-sided SWS and bare fused silica. (d) Reflectance of fused-silica double-sided SWS and bare fused silica. (e) Sum of transmittance and reflectance of fused-silica double-sided SWSs and bare fused silica. Note the OH- absorption at ~1360 nm and the detector change at ~860 nm. (f) Side-view and tilted-view SEM image of fused-silica double-sided SWS (scale bar 500 nm). (g) Photograph of SWS under yellow light illumination. The left, which is indicated by the red arrow, is double-sided SWS, and the right is the polished fused silica. The size of these two substrates is 50 × 50 × 1 mm. Figure (f) was obtained by Wu and Ye.
Fig. 8
Fig. 8 (a) Transmittance of double-side SWSs in experiment (black line), the paraboloid simulation result agree well with the experiment; (b) Simulation results agree well with experiment result: (red line, tip cone), (blue line, truncated cone, (magenta line, cylinder).
Fig. 9
Fig. 9 Superhydrophilic SWS surfaces on the fused silica substrate. (a) Water drop profile on a bare fused silica substrate. (b) - (f) Water drop profile on an SWS surface. The volume of water droplets used was 3 μL.

Tables (2)

Tables Icon

Table 1 Experimental conditions for the self-masking RIE process (S6 and S7 are the same experimental parameters, but S7 has an 8-inch silicon wafer holder).

Tables Icon

Table 2 Experimental conditions for the self-masking RIE process

Metrics