Abstract

Rapid prototyping (RP) techniques allow the construction of complex and sophisticated physical models based on personal needs, and the applications of the produced objects can be greatly extended by functionalizing the raw materials (e.g., resins) with components showing electrical, optical and magnetic properties. Here, we demonstrate a simple method for the realization of a three-dimensional architecture through 3D printing of organic resin doped with inorganic upconversion (UC) nanoparticles by using stereolithography technique. In our process, the wet-chemistry derived NaYF4: RE (RE: rare earth) nanoparticles with red, green and blue UC emission were incorporated into a resin matrix. We printed out pre-designed 3D structures with high precision and examined the UC emission properties. In a proof-of-concept experiment, we demonstrate that the 3D printed objects have reliable optical anti-counterfeiting based on high concealment in daylight and multi-color UC emission excited by a near-infrared laser at 980 nm. We also show that the 3D part with UC emission can be used for ratiometric temperature sensing from 303.15 K to 463.15 K, making it possible to map the temperature distribution for studying the thermal diffusion process in complex objects.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-functional β-NaYF4: Yb3+, Er3+ nanoparticles for bioimaging and temperature sensing

Lili Huo, Jiajia Zhou, Ruozhen Wu, Junfei Ren, Shengjun Zhang, Junjie Zhang, and Shiqing Xu
Opt. Mater. Express 6(4) 1056-1064 (2016)

Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+: BaGd2(MoO4)4 phosphors

Ruoshan Lei, Degang Deng, Xin Liu, Feifei Huang, Huanping Wang, Shilong Zhao, and Shiqing Xu
Opt. Mater. Express 8(10) 3023-3035 (2018)

Near-infrared to short-wavelength upconversion temperature sensing in transparent bulk glass ceramics containing hexagonal NaGdF4: Yb3+/Ho3+ nanocrystals

XinYue Li, Shuo Yuan, Fangfang Hu, Siqi Lu, Daqin Chen, and Min Yin
Opt. Mater. Express 7(8) 3023-3033 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Kumar, S. Singh, and B. K. Gupta, “Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications,” Nanoscale 8(30), 14297–14340 (2016).
    [Crossref] [PubMed]
  2. D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
    [Crossref]
  3. B. E. Cohen, “Biological imaging: Beyond fluorescence,” Nature 467(7314), 407–408 (2010).
    [Crossref] [PubMed]
  4. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  5. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
    [Crossref] [PubMed]
  6. S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln(3)+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
    [Crossref] [PubMed]
  7. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
    [Crossref]
  8. C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
    [Crossref] [PubMed]
  9. S. Y. Kim, K. Woo, K. Lim, K. Lee, and H. S. Jang, “Highly bright multicolor tunable ultrasmall β-Na(Y,Gd)F(4):Ce,Tb,Eu/β-NaYF(4) core/shell nanocrystals,” Nanoscale 5(19), 9255–9263 (2013).
    [Crossref] [PubMed]
  10. X. Sang, W. Chen, P. Chen, X. Liu, and J. Qiu, “Transparent organic/inorganic nanocomposites for tunable full-color upconversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(35), 9089–9094 (2015).
    [Crossref]
  11. M. C. Tan, S. D. Patil, and R. E. Riman, “Transparent infrared-emitting CeF3:Yb-Er polymer nanocomposites for optical applications,” ACS Appl. Mater. Interfaces 2(7), 1884–1891 (2010).
    [Crossref] [PubMed]
  12. F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography,” Biomaterials 30(23-24), 3801–3809 (2009).
    [Crossref] [PubMed]
  13. N. P. Macdonald, G. L. Bunton, A. Y. Park, M. C. Breadmore, and N. L. Kilah, “3D Printed Micrometer-Scale Polymer Mounts for Single Crystal Analysis,” Anal. Chem. 89(8), 4405–4408 (2017).
    [Crossref] [PubMed]
  14. A. Koshelev, G. Calafiore, C. Piña-Hernandez, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications,” Opt. Lett. 41(15), 3423–3426 (2016).
    [Crossref] [PubMed]
  15. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
    [Crossref] [PubMed]
  16. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
    [Crossref] [PubMed]
  17. J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF(4) nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
    [Crossref] [PubMed]
  18. T. K. Anh, D. X. Loc, T. T. Huong, N. Vu, and L. Q. Minh, “Luminescent nanomaterials containing rare earth ions for security printing,” Int. J. Nanotechnol. 8(3/4/5), 335 (2011).
    [Crossref]
  19. B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
    [Crossref] [PubMed]
  20. B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388 (2013).
    [Crossref]
  21. J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
    [Crossref] [PubMed]
  22. Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
    [Crossref]
  23. J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
    [Crossref] [PubMed]
  24. M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, and F. Xu, “Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting,” Nanoscale 8(19), 10096–10104 (2016).
    [Crossref] [PubMed]
  25. M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
    [Crossref] [PubMed]
  26. W. Yao, Q. Tian, J. Liu, Z. Wu, S. Cui, J. Ding, Z. Dai, and W. Wu, “Large-scale synthesis and screen printing of upconversion hexagonal-phase NaYF4: Yb3+, Tm3+/Er3+/Eu3+ plates for security applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6327–6335 (2016).
    [Crossref]
  27. J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
    [Crossref] [PubMed]
  28. J. Zhong, D. Chen, Y. Peng, Y. Lu, X. Chen, X. Li, and Z. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
    [Crossref]
  29. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
    [Crossref]
  30. M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical-Transitions of Er-3+ Ions in Fluorozirconate Glass,” Phys. Rev. B 27(11), 6635–6648 (1983).
    [Crossref]
  31. E. Maurice, G. Monnom, D. B. Ostrowsky, and G. W. Baxter, “1.2-μm Transitions in Erbium-Doped Fibers: the Possibility of Quasi-Distributed Temperature Sensors,” Appl. Opt. 34(21), 4196–4199 (1995).
    [Crossref] [PubMed]
  32. E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, and G. W. Baxter, “Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors,” Appl. Opt. 34(34), 8019–8025 (1995).
    [Crossref] [PubMed]
  33. E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, and G. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19(13), 990–992 (1994).
    [Crossref] [PubMed]

2018 (1)

J. Zhong, D. Chen, Y. Peng, Y. Lu, X. Chen, X. Li, and Z. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

2017 (1)

N. P. Macdonald, G. L. Bunton, A. Y. Park, M. C. Breadmore, and N. L. Kilah, “3D Printed Micrometer-Scale Polymer Mounts for Single Crystal Analysis,” Anal. Chem. 89(8), 4405–4408 (2017).
[Crossref] [PubMed]

2016 (5)

A. Koshelev, G. Calafiore, C. Piña-Hernandez, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications,” Opt. Lett. 41(15), 3423–3426 (2016).
[Crossref] [PubMed]

P. Kumar, S. Singh, and B. K. Gupta, “Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications,” Nanoscale 8(30), 14297–14340 (2016).
[Crossref] [PubMed]

D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
[Crossref]

M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, and F. Xu, “Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting,” Nanoscale 8(19), 10096–10104 (2016).
[Crossref] [PubMed]

W. Yao, Q. Tian, J. Liu, Z. Wu, S. Cui, J. Ding, Z. Dai, and W. Wu, “Large-scale synthesis and screen printing of upconversion hexagonal-phase NaYF4: Yb3+, Tm3+/Er3+/Eu3+ plates for security applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6327–6335 (2016).
[Crossref]

2015 (2)

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

X. Sang, W. Chen, P. Chen, X. Liu, and J. Qiu, “Transparent organic/inorganic nanocomposites for tunable full-color upconversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(35), 9089–9094 (2015).
[Crossref]

2014 (3)

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF(4) nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

2013 (4)

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388 (2013).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

S. Y. Kim, K. Woo, K. Lim, K. Lee, and H. S. Jang, “Highly bright multicolor tunable ultrasmall β-Na(Y,Gd)F(4):Ce,Tb,Eu/β-NaYF(4) core/shell nanocrystals,” Nanoscale 5(19), 9255–9263 (2013).
[Crossref] [PubMed]

2012 (1)

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

2011 (2)

T. K. Anh, D. X. Loc, T. T. Huong, N. Vu, and L. Q. Minh, “Luminescent nanomaterials containing rare earth ions for security printing,” Int. J. Nanotechnol. 8(3/4/5), 335 (2011).
[Crossref]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

2010 (4)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
[Crossref] [PubMed]

M. C. Tan, S. D. Patil, and R. E. Riman, “Transparent infrared-emitting CeF3:Yb-Er polymer nanocomposites for optical applications,” ACS Appl. Mater. Interfaces 2(7), 1884–1891 (2010).
[Crossref] [PubMed]

B. E. Cohen, “Biological imaging: Beyond fluorescence,” Nature 467(7314), 407–408 (2010).
[Crossref] [PubMed]

2009 (2)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography,” Biomaterials 30(23-24), 3801–3809 (2009).
[Crossref] [PubMed]

2005 (1)

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln(3)+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
[Crossref]

1996 (1)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

1995 (2)

1994 (1)

1983 (1)

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical-Transitions of Er-3+ Ions in Fluorozirconate Glass,” Phys. Rev. B 27(11), 6635–6648 (1983).
[Crossref]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

Ågren, H.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF(4) nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Allen, F. I.

Anh, T. K.

T. K. Anh, D. X. Loc, T. T. Huong, N. Vu, and L. Q. Minh, “Luminescent nanomaterials containing rare earth ions for security printing,” Int. J. Nanotechnol. 8(3/4/5), 335 (2011).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Baxter, G.

Baxter, G. W.

Breadmore, M. C.

N. P. Macdonald, G. L. Bunton, A. Y. Park, M. C. Breadmore, and N. L. Kilah, “3D Printed Micrometer-Scale Polymer Mounts for Single Crystal Analysis,” Anal. Chem. 89(8), 4405–4408 (2017).
[Crossref] [PubMed]

Brown, R. N.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical-Transitions of Er-3+ Ions in Fluorozirconate Glass,” Phys. Rev. B 27(11), 6635–6648 (1983).
[Crossref]

Bunton, G. L.

N. P. Macdonald, G. L. Bunton, A. Y. Park, M. C. Breadmore, and N. L. Kilah, “3D Printed Micrometer-Scale Polymer Mounts for Single Crystal Analysis,” Anal. Chem. 89(8), 4405–4408 (2017).
[Crossref] [PubMed]

Cabrini, S.

Calafiore, G.

Chen, D.

J. Zhong, D. Chen, Y. Peng, Y. Lu, X. Chen, X. Li, and Z. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

Chen, D. Q.

D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
[Crossref]

Chen, G.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF(4) nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Chen, H.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Chen, P.

X. Sang, W. Chen, P. Chen, X. Liu, and J. Qiu, “Transparent organic/inorganic nanocomposites for tunable full-color upconversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(35), 9089–9094 (2015).
[Crossref]

Chen, W.

X. Sang, W. Chen, P. Chen, X. Liu, and J. Qiu, “Transparent organic/inorganic nanocomposites for tunable full-color upconversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(35), 9089–9094 (2015).
[Crossref]

Chen, X.

J. Zhong, D. Chen, Y. Peng, Y. Lu, X. Chen, X. Li, and Z. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Cohen, B. E.

B. E. Cohen, “Biological imaging: Beyond fluorescence,” Nature 467(7314), 407–408 (2010).
[Crossref] [PubMed]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
[Crossref]

Crawford, G. A.

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

Cross, W. M.

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

Cui, S.

W. Yao, Q. Tian, J. Liu, Z. Wu, S. Cui, J. Ding, Z. Dai, and W. Wu, “Large-scale synthesis and screen printing of upconversion hexagonal-phase NaYF4: Yb3+, Tm3+/Er3+/Eu3+ plates for security applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6327–6335 (2016).
[Crossref]

Dai, Z.

W. Yao, Q. Tian, J. Liu, Z. Wu, S. Cui, J. Ding, Z. Dai, and W. Wu, “Large-scale synthesis and screen printing of upconversion hexagonal-phase NaYF4: Yb3+, Tm3+/Er3+/Eu3+ plates for security applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6327–6335 (2016).
[Crossref]

Damasco, J. A.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF(4) nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Dawes, J. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

DeLacy, B. G.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Deng, R.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Dhuey, S.

Ding, J.

W. Yao, Q. Tian, J. Liu, Z. Wu, S. Cui, J. Ding, Z. Dai, and W. Wu, “Large-scale synthesis and screen printing of upconversion hexagonal-phase NaYF4: Yb3+, Tm3+/Er3+/Eu3+ plates for security applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6327–6335 (2016).
[Crossref]

Dong, Y.

M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, and F. Xu, “Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting,” Nanoscale 8(19), 10096–10104 (2016).
[Crossref] [PubMed]

Downing, E.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Drexhage, M. G.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical-Transitions of Er-3+ Ions in Fluorozirconate Glass,” Phys. Rev. B 27(11), 6635–6648 (1983).
[Crossref]

Duan, Z.

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

Dussardier, B.

Feijen, J.

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography,” Biomaterials 30(23-24), 3801–3809 (2009).
[Crossref] [PubMed]

Goldys, E. M.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Grijpma, D. W.

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography,” Biomaterials 30(23-24), 3801–3809 (2009).
[Crossref] [PubMed]

Gupta, B. K.

P. Kumar, S. Singh, and B. K. Gupta, “Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications,” Nanoscale 8(30), 14297–14340 (2016).
[Crossref] [PubMed]

B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
[Crossref] [PubMed]

Han, Y.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Haranath, D.

B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
[Crossref] [PubMed]

Hesselink, L.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Hong, M.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Hong, Y.

M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, and F. Xu, “Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting,” Nanoscale 8(19), 10096–10104 (2016).
[Crossref] [PubMed]

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

Hsu, C. W.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Huang, H.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF(4) nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Huang, P.

D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
[Crossref]

Huo, Y. J.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Huong, T. T.

T. K. Anh, D. X. Loc, T. T. Huong, N. Vu, and L. Q. Minh, “Luminescent nanomaterials containing rare earth ions for security printing,” Int. J. Nanotechnol. 8(3/4/5), 335 (2011).
[Crossref]

Jang, H. S.

S. Y. Kim, K. Woo, K. Lim, K. Lee, and H. S. Jang, “Highly bright multicolor tunable ultrasmall β-Na(Y,Gd)F(4):Ce,Tb,Eu/β-NaYF(4) core/shell nanocrystals,” Nanoscale 5(19), 9255–9263 (2013).
[Crossref] [PubMed]

Jeon, S.

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388 (2013).
[Crossref]

Ji, Z.

J. Zhong, D. Chen, Y. Peng, Y. Lu, X. Chen, X. Li, and Z. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

Jin, D.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Jin, D. Y.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Jin, G.

M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, and F. Xu, “Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting,” Nanoscale 8(19), 10096–10104 (2016).
[Crossref] [PubMed]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Kellar, J. J.

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

Kilah, N. L.

N. P. Macdonald, G. L. Bunton, A. Y. Park, M. C. Breadmore, and N. L. Kilah, “3D Printed Micrometer-Scale Polymer Mounts for Single Crystal Analysis,” Anal. Chem. 89(8), 4405–4408 (2017).
[Crossref] [PubMed]

Kim, J.-M.

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388 (2013).
[Crossref]

Kim, S. Y.

S. Y. Kim, K. Woo, K. Lim, K. Lee, and H. S. Jang, “Highly bright multicolor tunable ultrasmall β-Na(Y,Gd)F(4):Ce,Tb,Eu/β-NaYF(4) core/shell nanocrystals,” Nanoscale 5(19), 9255–9263 (2013).
[Crossref] [PubMed]

Koshelev, A.

Kumar, P.

P. Kumar, S. Singh, and B. K. Gupta, “Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications,” Nanoscale 8(30), 14297–14340 (2016).
[Crossref] [PubMed]

Lee, J.

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388 (2013).
[Crossref]

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388 (2013).
[Crossref]

Lee, K.

S. Y. Kim, K. Woo, K. Lim, K. Lee, and H. S. Jang, “Highly bright multicolor tunable ultrasmall β-Na(Y,Gd)F(4):Ce,Tb,Eu/β-NaYF(4) core/shell nanocrystals,” Nanoscale 5(19), 9255–9263 (2013).
[Crossref] [PubMed]

Leif, R. C.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Li, X.

J. Zhong, D. Chen, Y. Peng, Y. Lu, X. Chen, X. Li, and Z. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

Lim, C. S.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Lim, K.

S. Y. Kim, K. Woo, K. Lim, K. Lee, and H. S. Jang, “Highly bright multicolor tunable ultrasmall β-Na(Y,Gd)F(4):Ce,Tb,Eu/β-NaYF(4) core/shell nanocrystals,” Nanoscale 5(19), 9255–9263 (2013).
[Crossref] [PubMed]

Lin, M.

M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, and F. Xu, “Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting,” Nanoscale 8(19), 10096–10104 (2016).
[Crossref] [PubMed]

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

Liu, D. M.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Liu, J.

W. Yao, Q. Tian, J. Liu, Z. Wu, S. Cui, J. Ding, Z. Dai, and W. Wu, “Large-scale synthesis and screen printing of upconversion hexagonal-phase NaYF4: Yb3+, Tm3+/Er3+/Eu3+ plates for security applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6327–6335 (2016).
[Crossref]

Liu, X.

X. Sang, W. Chen, P. Chen, X. Liu, and J. Qiu, “Transparent organic/inorganic nanocomposites for tunable full-color upconversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(35), 9089–9094 (2015).
[Crossref]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Liu, Y.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Liu, Y. J.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Loc, D. X.

T. K. Anh, D. X. Loc, T. T. Huong, N. Vu, and L. Q. Minh, “Luminescent nanomaterials containing rare earth ions for security printing,” Int. J. Nanotechnol. 8(3/4/5), 335 (2011).
[Crossref]

Lovell, J. F.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF(4) nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Lu, J.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Lu, Y.

J. Zhong, D. Chen, Y. Peng, Y. Lu, X. Chen, X. Li, and Z. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Lu, Y. Q.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Lu, Z.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Lum, P.

Luu, Q.

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

Macdonald, N. P.

N. P. Macdonald, G. L. Bunton, A. Y. Park, M. C. Breadmore, and N. L. Kilah, “3D Printed Micrometer-Scale Polymer Mounts for Single Crystal Analysis,” Anal. Chem. 89(8), 4405–4408 (2017).
[Crossref] [PubMed]

Macfarlane, R.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Maurice, E.

McRae, C.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Meijerink, A.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

Melchels, F. P. W.

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography,” Biomaterials 30(23-24), 3801–3809 (2009).
[Crossref] [PubMed]

Meruga, J. M.

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

Minh, L. Q.

T. K. Anh, D. X. Loc, T. T. Huong, N. Vu, and L. Q. Minh, “Luminescent nanomaterials containing rare earth ions for security printing,” Int. J. Nanotechnol. 8(3/4/5), 335 (2011).
[Crossref]

Monnom, G.

Monro, T. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Munechika, K.

Ostrowsky, D. B.

Park, A. Y.

N. P. Macdonald, G. L. Bunton, A. Y. Park, M. C. Breadmore, and N. L. Kilah, “3D Printed Micrometer-Scale Polymer Mounts for Single Crystal Analysis,” Anal. Chem. 89(8), 4405–4408 (2017).
[Crossref] [PubMed]

Park, I. S.

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388 (2013).
[Crossref]

Patil, S. D.

M. C. Tan, S. D. Patil, and R. E. Riman, “Transparent infrared-emitting CeF3:Yb-Er polymer nanocomposites for optical applications,” ACS Appl. Mater. Interfaces 2(7), 1884–1891 (2010).
[Crossref] [PubMed]

Peng, Y.

J. Zhong, D. Chen, Y. Peng, Y. Lu, X. Chen, X. Li, and Z. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

Piña-Hernandez, C.

Piper, J. A.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Prasad, P. N.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF(4) nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Qiu, J.

X. Sang, W. Chen, P. Chen, X. Liu, and J. Qiu, “Transparent organic/inorganic nanocomposites for tunable full-color upconversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(35), 9089–9094 (2015).
[Crossref]

Qiu, W.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Raudsepp, M.

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln(3)+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

Riman, R. E.

M. C. Tan, S. D. Patil, and R. E. Riman, “Transparent infrared-emitting CeF3:Yb-Er polymer nanocomposites for optical applications,” ACS Appl. Mater. Interfaces 2(7), 1884–1891 (2010).
[Crossref] [PubMed]

Robinson, J. P.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Saini, S.

B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
[Crossref] [PubMed]

Saïssy, A.

Sang, X.

X. Sang, W. Chen, P. Chen, X. Liu, and J. Qiu, “Transparent organic/inorganic nanocomposites for tunable full-color upconversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(35), 9089–9094 (2015).
[Crossref]

Sassolini, S.

Schartner, E. P.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Shanker, V.

B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
[Crossref] [PubMed]

Shao, W.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF(4) nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Shapira, O.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Shen, J.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Shi, Y.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Shinn, M. D.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical-Transitions of Er-3+ Ions in Fluorozirconate Glass,” Phys. Rev. B 27(11), 6635–6648 (1983).
[Crossref]

Sibley, W. A.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical-Transitions of Er-3+ Ions in Fluorozirconate Glass,” Phys. Rev. B 27(11), 6635–6648 (1983).
[Crossref]

Singh, S.

P. Kumar, S. Singh, and B. K. Gupta, “Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications,” Nanoscale 8(30), 14297–14340 (2016).
[Crossref] [PubMed]

Singh, V. N.

B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
[Crossref] [PubMed]

Sivakumar, S.

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln(3)+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

Soljacic, M.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Song, W.

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF(4) nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Stanley May, P.

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

Sunna, A.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Tan, M. C.

M. C. Tan, S. D. Patil, and R. E. Riman, “Transparent infrared-emitting CeF3:Yb-Er polymer nanocomposites for optical applications,” ACS Appl. Mater. Interfaces 2(7), 1884–1891 (2010).
[Crossref] [PubMed]

Tian, Q.

W. Yao, Q. Tian, J. Liu, Z. Wu, S. Cui, J. Ding, Z. Dai, and W. Wu, “Large-scale synthesis and screen printing of upconversion hexagonal-phase NaYF4: Yb3+, Tm3+/Er3+/Eu3+ plates for security applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6327–6335 (2016).
[Crossref]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

van Veggel, F. C. J. M.

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln(3)+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

Vu, N.

T. K. Anh, D. X. Loc, T. T. Huong, N. Vu, and L. Q. Minh, “Luminescent nanomaterials containing rare earth ions for security printing,” Int. J. Nanotechnol. 8(3/4/5), 335 (2011).
[Crossref]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
[Crossref]

Wang, F.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Wang, J.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Wang, Q.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Wang, S.

M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, and F. Xu, “Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting,” Nanoscale 8(19), 10096–10104 (2016).
[Crossref] [PubMed]

Wang, X.

M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, and F. Xu, “Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting,” Nanoscale 8(19), 10096–10104 (2016).
[Crossref] [PubMed]

Wong, E.

Woo, K.

S. Y. Kim, K. Woo, K. Lim, K. Lee, and H. S. Jang, “Highly bright multicolor tunable ultrasmall β-Na(Y,Gd)F(4):Ce,Tb,Eu/β-NaYF(4) core/shell nanocrystals,” Nanoscale 5(19), 9255–9263 (2013).
[Crossref] [PubMed]

Wu, W.

W. Yao, Q. Tian, J. Liu, Z. Wu, S. Cui, J. Ding, Z. Dai, and W. Wu, “Large-scale synthesis and screen printing of upconversion hexagonal-phase NaYF4: Yb3+, Tm3+/Er3+/Eu3+ plates for security applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6327–6335 (2016).
[Crossref]

Wu, Z.

W. Yao, Q. Tian, J. Liu, Z. Wu, S. Cui, J. Ding, Z. Dai, and W. Wu, “Large-scale synthesis and screen printing of upconversion hexagonal-phase NaYF4: Yb3+, Tm3+/Er3+/Eu3+ plates for security applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6327–6335 (2016).
[Crossref]

Xi, P.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Xu, F.

M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, and F. Xu, “Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting,” Nanoscale 8(19), 10096–10104 (2016).
[Crossref] [PubMed]

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

Xu, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Xu, M.

D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
[Crossref]

Yang, X. S.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Yao, W.

W. Yao, Q. Tian, J. Liu, Z. Wu, S. Cui, J. Ding, Z. Dai, and W. Wu, “Large-scale synthesis and screen printing of upconversion hexagonal-phase NaYF4: Yb3+, Tm3+/Er3+/Eu3+ plates for security applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6327–6335 (2016).
[Crossref]

Yin, Y.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Yoon, B.

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388 (2013).
[Crossref]

You, M.

M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, and F. Xu, “Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting,” Nanoscale 8(19), 10096–10104 (2016).
[Crossref] [PubMed]

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

Zhang, C.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Zhang, G.

M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, and F. Xu, “Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting,” Nanoscale 8(19), 10096–10104 (2016).
[Crossref] [PubMed]

Zhang, L.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Zhang, R.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Zhao, J.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Zhao, J. B.

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Zhen, B.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Zhong, J.

J. Zhong, D. Chen, Y. Peng, Y. Lu, X. Chen, X. Li, and Z. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

Zhu, H.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Zvyagin, A. V.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

M. C. Tan, S. D. Patil, and R. E. Riman, “Transparent infrared-emitting CeF3:Yb-Er polymer nanocomposites for optical applications,” ACS Appl. Mater. Interfaces 2(7), 1884–1891 (2010).
[Crossref] [PubMed]

J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, “Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF(4) nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging,” ACS Appl. Mater. Interfaces 6(16), 13884–13893 (2014).
[Crossref] [PubMed]

Anal. Chem. (1)

N. P. Macdonald, G. L. Bunton, A. Y. Park, M. C. Breadmore, and N. L. Kilah, “3D Printed Micrometer-Scale Polymer Mounts for Single Crystal Analysis,” Anal. Chem. 89(8), 4405–4408 (2017).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomaterials (1)

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography,” Biomaterials 30(23-24), 3801–3809 (2009).
[Crossref] [PubMed]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Int. J. Nanotechnol. (1)

T. K. Anh, D. X. Loc, T. T. Huong, N. Vu, and L. Q. Minh, “Luminescent nanomaterials containing rare earth ions for security printing,” Int. J. Nanotechnol. 8(3/4/5), 335 (2011).
[Crossref]

J. Alloys Compd. (1)

J. Zhong, D. Chen, Y. Peng, Y. Lu, X. Chen, X. Li, and Z. Ji, “A review on nanostructured glass ceramics for promising application in optical thermometry,” J. Alloys Compd. 763, 34–48 (2018).
[Crossref]

J. Am. Chem. Soc. (1)

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln(3)+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

W. Yao, Q. Tian, J. Liu, Z. Wu, S. Cui, J. Ding, Z. Dai, and W. Wu, “Large-scale synthesis and screen printing of upconversion hexagonal-phase NaYF4: Yb3+, Tm3+/Er3+/Eu3+ plates for security applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6327–6335 (2016).
[Crossref]

B. Yoon, J. Lee, I. S. Park, S. Jeon, J. Lee, and J.-M. Kim, “Recent functional material based approaches to prevent and detect counterfeiting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2388 (2013).
[Crossref]

X. Sang, W. Chen, P. Chen, X. Liu, and J. Qiu, “Transparent organic/inorganic nanocomposites for tunable full-color upconversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(35), 9089–9094 (2015).
[Crossref]

Nanoscale (5)

S. Y. Kim, K. Woo, K. Lim, K. Lee, and H. S. Jang, “Highly bright multicolor tunable ultrasmall β-Na(Y,Gd)F(4):Ce,Tb,Eu/β-NaYF(4) core/shell nanocrystals,” Nanoscale 5(19), 9255–9263 (2013).
[Crossref] [PubMed]

P. Kumar, S. Singh, and B. K. Gupta, “Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications,” Nanoscale 8(30), 14297–14340 (2016).
[Crossref] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, and F. Xu, “Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting,” Nanoscale 8(19), 10096–10104 (2016).
[Crossref] [PubMed]

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

Nanotechnology (2)

J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology 23(39), 395201 (2012).
[Crossref] [PubMed]

B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–37 (2014).
[Crossref]

Nature (2)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

B. E. Cohen, “Biological imaging: Beyond fluorescence,” Nature 467(7314), 407–408 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

Phys. Rev. B (1)

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical-Transitions of Er-3+ Ions in Fluorozirconate Glass,” Phys. Rev. B 27(11), 6635–6648 (1983).
[Crossref]

Science (1)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Sens. Actuators B Chem. (1)

D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The process for the synthesis of UC nanoparticles. (b)-(d) Typical TEM images for nanoparticles NaYb0.99Er0.01F4, NaY0.8Yb0.19Er0.01F4 and NaY0.8Yb0.155Tm0.045F4. The corresponding size distributions are shown in the insets in (b)-(d). (e) The XRD patterns for the nanoparticles of NaY0.8Yb0.19Er0.01F4 and NaY0.8Yb0.155Tm0.045F4.
Fig. 2
Fig. 2 Schematic diagram of the slurry synthesis process, stereolithography and luminescence of inorganic-organic composites containing UC nanoparticles of NaYb0.99Er0.01F4, NaY0.8Yb0.19Er0.01F4 and NaY0.8Yb0.155Tm0.045F4. The nanoparticles were added into IPDI under constant mechanical stirring. The diluents, the photo-initiator 1173 and the photoresist were then added into the prepolymer to make slurry suitable for stereolithography. Testing samples were prepared with a 355 nm laser. Under irradiation of a 980 nm laser, these samples show bright UC emission with red, green and blue wavelengths.
Fig. 3
Fig. 3 UC luminescence spectra of resin samples, showing dominant emission peaks in red (NaYb0.99Er0.01F4), green (NaY0.8Yb0.19Er0.01F4) and blue (NaY0.8Yb0.155Tm0.045F4) spectral regions. The excitation wavelength is 980 nm.
Fig. 4
Fig. 4 Images of samples for the illustration of anti-counterfeiting photographed by a Canon EOS 750D camera with a 100 mm MACRO LENS. (a) The hollow ring containing 0.5 wt% UC nanoparticles of NaY0.8Yb0.19Er0.01F4 is colorless and transparent in daylight and shows green emission under the excitation by a 980 nm laser. (b) The hollow ring without UC nanoparticles is indistinguishable with the counterpart containing nanoparticles in daylight and has no green emission under the excitation.
Fig. 5
Fig. 5 Complex three-dimensional structures containing UC nanoparticles, showing visible UC emission under excitation of a 980 nm laser. (a) A hollow lamp shade containing NaYb0.99Er0.01F4 nanoparticles appears clear and transparent in daylight and gives red emission by excitation with a 980 nm laser. (b) A piece of rose containing NaY0.8Yb0.155Tm0.045F4 nanoparticles shows blue emission under excitation by a 980 nm laser. The two demonstrated structures are printed with resin slurry containing 0.5 wt% UC nanoparticles using laser scanning speed of 100 mm/s and laser power of 50 mW by stereolithography. The photos were obtained using a Canon EOS 750D camera with a 100 mm MACRO LENS.
Fig. 6
Fig. 6 TDA and DSC curves of the resin composite containing 0.5 wt% UC nanoparticles of NaY0.8Yb0.19Er0.01F4.
Fig. 7
Fig. 7 (a) Energy-level diagram of Yb3+/ Er3+ pair and the UC processes under 980 nm excitation. Dotted and twisting arrows indicate nonradiative relaxation, while the solid arrows, labeled I525 nm and I544 nm, represent the radiative transitions used to measure fluorescence intensity ratio. The temperature sensitivity of the NaYF4: Er3+, Yb3+ nanoparticles depends on the population of the closely spaced 2H11/2 and 4S3/2 energy states. (b) Partial UC spectra (500 nm – 600 nm) of resin composite containing 0.5 wt% UC nanoparticles of NaY0.8Yb0.19Er0.01F4 with temperature changing from 303.15 K to 463.15 K. (c) Fluorescent intensity ratio between I525 nm and I544 nm versus temperature of the composite. (d) A plot of logarithm of the intensity ratio between I525 nm and I544 nm versus the inverse of temperature (1/T). The sample was cooled to ambient temperature and heated again to check the reproducibility of temperature sensing. The solid lines are fits to the experimental data.

Metrics