Abstract

By directly incorporating a sub-wavelength amplifier chip into the spoof plasmonic resonator, the quality (Q) factor of the original passive resonator has been significantly increased by several orders of magnitude. The spoof plasmonic resonator is composed of a corrugated ring with a slit whose optimized offset angle φ is 45°, aiming to achieve a better Q-factor. By tuning the bias voltage applied to the amplifier chip that is placed across the slit, the Q factor has been increased from 9.8 to 21000 for the quadrupole mode when a plastic pipe filled with polar liquids is placed upon the resonator. Experiments at the microwave frequencies verify that the amplifier chip could greatly compensate the loss introduced by the polar liquids under investigation, resulting in an ultra-high-Q sensor for the detection of polar liquids.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Selective amplification of spoof localized surface plasmons

Qiao Yu Li, Xia Zhao, Hong Zhou Zhao, and Yong Jin Zhou
Appl. Opt. 58(36) 9797-9802 (2019)

Quarter-mode spoof plasmonic resonator for a microfluidic chemical sensor

Rong Lin Shao, Yong Jin Zhou, and Liu Yang
Appl. Opt. 57(28) 8472-8477 (2018)

Multiple Fano resonances in spoof localized surface plasmons

Zhen Liao, Bai Cao Pan, Xiaopeng Shen, and Tie Jun Cui
Opt. Express 22(13) 15710-15717 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Gregory and R. Clarke, “A review of RF and microwave techniques for dielectric measurements on polar liquids,” Trans. Dielectr. Electr. Insul. 13(4), 727–743 (2006).
    [Crossref]
  2. T. Chrétiennot, D. Dubuc, and K. Grenier, “A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solution,” IEEE T. Microw. Theory 61(2), 972–978 (2013).
    [Crossref]
  3. G. Gennarelli, S. Romeo, M. R. Scarf, and F. Soldovieri, “A microwave resonant sensor for concentration measurements of liquid solutions,” IEEE Sens. J. 13(5), 1857–1864 (2013).
    [Crossref]
  4. N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
    [Crossref] [PubMed]
  5. M. Schueler, C. Mandel, M. Puentes, and R. Jakoby, “Metamaterial inspired microwave sensors,” IEEE Microw. Mag. 13(2), 57–68 (2012).
    [Crossref]
  6. T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
    [Crossref] [PubMed]
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), pp. 49– 74
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  9. Z. Song, X. Li, J. Hao, S. Xiao, M. Qiu, Q. He, S. Ma, and L. Zhou, “Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping,” Opt. Express 21(15), 18178–18187 (2013).
    [Crossref] [PubMed]
  10. Y. Sonnefraud, A. L. Koh, D. W. Mccomb, and S. A. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev. 6(3), 277–295 (2012).
    [Crossref]
  11. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  12. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  13. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  14. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [Crossref] [PubMed]
  15. Z. Yu, Z. Gao, Z. Song, and Z. Wang, “Terahertz spoof plasmonic coaxial microcavity,” Appl. Opt. 53(6), 1118–1123 (2014).
    [Crossref] [PubMed]
  16. L. Ye, Y. Xiao, N. Liu, Z. Song, W. Zhang, and Q. H. Liu, “Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration,” Opt. Express 25(2), 898–906 (2017).
    [Crossref] [PubMed]
  17. A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
    [Crossref] [PubMed]
  18. X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
    [Crossref]
  19. Z. Gao, F. Gao, H. Xu, Y. Zhang, and B. Zhang, “Localized spoof surface plasmons in textured open metal surfaces,” Opt. Lett. 41(10), 2181–2184 (2016).
    [Crossref] [PubMed]
  20. H. W. Wu, H. J. Chen, H. Y. Fan, Y. Li, and X. W. Fang, “Trapped spoof surface plasmons with structured defects in textured closed surfaces,” Opt. Lett. 42(4), 791–794 (2017).
    [Crossref] [PubMed]
  21. Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
    [Crossref] [PubMed]
  22. Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
    [Crossref] [PubMed]
  23. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  24. R. Singh and N. I. Zheludev, “Superconductor photonics,” Nat. Photonics 8(9), 679–680 (2014).
    [Crossref]
  25. F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, and B. Zhang, “Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances,” Opt. Express 23(5), 6896–6902 (2015).
    [Crossref] [PubMed]
  26. B. J. Yang, Y. J. Zhou, and Q. X. Xiao, “Spoof localized surface plasmons in corrugated ring structures excited by microstrip line,” Opt. Express 23(16), 21434–21442 (2015).
    [Crossref] [PubMed]
  27. Y. J. Zhou, Q. X. Xiao, and B. J. Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
    [Crossref] [PubMed]
  28. W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
    [Crossref] [PubMed]
  29. I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive Coupling of Split Ring Resonators: A Path to THz Metamaterials with Ultrasharp Resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
    [Crossref] [PubMed]
  30. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
    [Crossref] [PubMed]
  31. N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
    [Crossref]
  32. D. Jahn, A. Soltani, J. C. Balzer, W. Withayachumnankul, and M. Koch, “Fabry-Pérot interferometer for sensing polar liquids at terahertz frequencies,” J. Appl. Phys. 121(20), 204502 (2017).
    [Crossref]
  33. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
    [Crossref] [PubMed]
  34. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
    [Crossref] [PubMed]
  35. D. Ye, K. Chang, L. Ran, and H. Xin, “Microwave gain medium with negative refractive index,” Nat. Commun. 5(1), 5841 (2014).
    [Crossref] [PubMed]
  36. M. H. Zarifi and M. Daneshmand, “Liquid sensing in aquatic environment using high quality planar microwave resonator,” Sensor Actuat. Biol. Chem. 225, 517–521 (2016).
  37. H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
    [Crossref]
  38. G. Veronis, Z. Yu, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 824 (2008).
  39. Y. Zhang, Y. J. Zhou, J. Cai, and J. H. Jiang, “Amplification of spoof localized surface plasmons on active plasmonic metamaterials,” J. Phys. D Appl. Phys. 51(29), 295304 (2018).
    [Crossref]

2018 (1)

Y. Zhang, Y. J. Zhou, J. Cai, and J. H. Jiang, “Amplification of spoof localized surface plasmons on active plasmonic metamaterials,” J. Phys. D Appl. Phys. 51(29), 295304 (2018).
[Crossref]

2017 (3)

2016 (4)

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

M. H. Zarifi and M. Daneshmand, “Liquid sensing in aquatic environment using high quality planar microwave resonator,” Sensor Actuat. Biol. Chem. 225, 517–521 (2016).

Z. Gao, F. Gao, H. Xu, Y. Zhang, and B. Zhang, “Localized spoof surface plasmons in textured open metal surfaces,” Opt. Lett. 41(10), 2181–2184 (2016).
[Crossref] [PubMed]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

2015 (4)

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, and B. Zhang, “Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances,” Opt. Express 23(5), 6896–6902 (2015).
[Crossref] [PubMed]

B. J. Yang, Y. J. Zhou, and Q. X. Xiao, “Spoof localized surface plasmons in corrugated ring structures excited by microstrip line,” Opt. Express 23(16), 21434–21442 (2015).
[Crossref] [PubMed]

Y. J. Zhou, Q. X. Xiao, and B. J. Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

2014 (6)

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive Coupling of Split Ring Resonators: A Path to THz Metamaterials with Ultrasharp Resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

R. Singh and N. I. Zheludev, “Superconductor photonics,” Nat. Photonics 8(9), 679–680 (2014).
[Crossref]

Z. Yu, Z. Gao, Z. Song, and Z. Wang, “Terahertz spoof plasmonic coaxial microcavity,” Appl. Opt. 53(6), 1118–1123 (2014).
[Crossref] [PubMed]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

D. Ye, K. Chang, L. Ran, and H. Xin, “Microwave gain medium with negative refractive index,” Nat. Commun. 5(1), 5841 (2014).
[Crossref] [PubMed]

2013 (4)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

T. Chrétiennot, D. Dubuc, and K. Grenier, “A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solution,” IEEE T. Microw. Theory 61(2), 972–978 (2013).
[Crossref]

G. Gennarelli, S. Romeo, M. R. Scarf, and F. Soldovieri, “A microwave resonant sensor for concentration measurements of liquid solutions,” IEEE Sens. J. 13(5), 1857–1864 (2013).
[Crossref]

Z. Song, X. Li, J. Hao, S. Xiao, M. Qiu, Q. He, S. Ma, and L. Zhou, “Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping,” Opt. Express 21(15), 18178–18187 (2013).
[Crossref] [PubMed]

2012 (6)

Y. Sonnefraud, A. L. Koh, D. W. Mccomb, and S. A. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev. 6(3), 277–295 (2012).
[Crossref]

M. Schueler, C. Mandel, M. Puentes, and R. Jakoby, “Metamaterial inspired microwave sensors,” IEEE Microw. Mag. 13(2), 57–68 (2012).
[Crossref]

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

2011 (2)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

2010 (3)

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

2008 (2)

G. Veronis, Z. Yu, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 824 (2008).

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

2006 (1)

A. Gregory and R. Clarke, “A review of RF and microwave techniques for dielectric measurements on polar liquids,” Trans. Dielectr. Electr. Insul. 13(4), 727–743 (2006).
[Crossref]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Al-Naib, I.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive Coupling of Split Ring Resonators: A Path to THz Metamaterials with Ultrasharp Resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Al-Naib, I. A.

Altug, H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Artar, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Balzer, J. C.

D. Jahn, A. Soltani, J. C. Balzer, W. Withayachumnankul, and M. Koch, “Fabry-Pérot interferometer for sensing polar liquids at terahertz frequencies,” J. Appl. Phys. 121(20), 204502 (2017).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

G. Veronis, Z. Yu, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 824 (2008).

Cai, J.

Y. Zhang, Y. J. Zhou, J. Cai, and J. H. Jiang, “Amplification of spoof localized surface plasmons on active plasmonic metamaterials,” J. Phys. D Appl. Phys. 51(29), 295304 (2018).
[Crossref]

Cao, W.

Cetin, A. E.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Chang, K.

D. Ye, K. Chang, L. Ran, and H. Xin, “Microwave gain medium with negative refractive index,” Nat. Commun. 5(1), 5841 (2014).
[Crossref] [PubMed]

Chen, C.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Chen, H. J.

Chen, L. H.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Chen, T.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Chrétiennot, T.

T. Chrétiennot, D. Dubuc, and K. Grenier, “A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solution,” IEEE T. Microw. Theory 61(2), 972–978 (2013).
[Crossref]

Christodoulides, D.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive Coupling of Split Ring Resonators: A Path to THz Metamaterials with Ultrasharp Resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Clarke, R.

A. Gregory and R. Clarke, “A review of RF and microwave techniques for dielectric measurements on polar liquids,” Trans. Dielectr. Electr. Insul. 13(4), 727–743 (2006).
[Crossref]

Connor, J. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Cui, T. J.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Daneshmand, M.

M. H. Zarifi and M. Daneshmand, “Liquid sensing in aquatic environment using high quality planar microwave resonator,” Sensor Actuat. Biol. Chem. 225, 517–521 (2016).

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Dubuc, D.

T. Chrétiennot, D. Dubuc, and K. Grenier, “A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solution,” IEEE T. Microw. Theory 61(2), 972–978 (2013).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Fan, H. Y.

Fan, S.

G. Veronis, Z. Yu, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 824 (2008).

Fang, X. W.

Gao, F.

Gao, Z.

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Gennarelli, G.

G. Gennarelli, S. Romeo, M. R. Scarf, and F. Soldovieri, “A microwave resonant sensor for concentration measurements of liquid solutions,” IEEE Sens. J. 13(5), 1857–1864 (2013).
[Crossref]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Gregory, A.

A. Gregory and R. Clarke, “A review of RF and microwave techniques for dielectric measurements on polar liquids,” Trans. Dielectr. Electr. Insul. 13(4), 727–743 (2006).
[Crossref]

Grenier, K.

T. Chrétiennot, D. Dubuc, and K. Grenier, “A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solution,” IEEE T. Microw. Theory 61(2), 972–978 (2013).
[Crossref]

Gu, C.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hamm, J. M.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Hao, J.

He, M.

He, Q.

Hebestreit, E.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive Coupling of Split Ring Resonators: A Path to THz Metamaterials with Ultrasharp Resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Hess, O.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Huang, M.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Jahn, D.

D. Jahn, A. Soltani, J. C. Balzer, W. Withayachumnankul, and M. Koch, “Fabry-Pérot interferometer for sensing polar liquids at terahertz frequencies,” J. Appl. Phys. 121(20), 204502 (2017).
[Crossref]

Jakoby, R.

M. Schueler, C. Mandel, M. Puentes, and R. Jakoby, “Metamaterial inspired microwave sensors,” IEEE Microw. Mag. 13(2), 57–68 (2012).
[Crossref]

Jiang, J. H.

Y. Zhang, Y. J. Zhou, J. Cai, and J. H. Jiang, “Amplification of spoof localized surface plasmons on active plasmonic metamaterials,” J. Phys. D Appl. Phys. 51(29), 295304 (2018).
[Crossref]

Khanikaev, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Koch, M.

D. Jahn, A. Soltani, J. C. Balzer, W. Withayachumnankul, and M. Koch, “Fabry-Pérot interferometer for sensing polar liquids at terahertz frequencies,” J. Appl. Phys. 121(20), 204502 (2017).
[Crossref]

Koh, A. L.

Y. Sonnefraud, A. L. Koh, D. W. Mccomb, and S. A. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev. 6(3), 277–295 (2012).
[Crossref]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Lederer, F.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive Coupling of Split Ring Resonators: A Path to THz Metamaterials with Ultrasharp Resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Li, L. M.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Li, S.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

Li, X.

Li, Y.

Li, Z.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Liao, Z.

Lin, X.

Liu, L.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Liu, N.

L. Ye, Y. Xiao, N. Liu, Z. Song, W. Zhang, and Q. H. Liu, “Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration,” Opt. Express 25(2), 898–906 (2017).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Liu, Q. H.

Liu, S.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Ma, S.

Maier, S. A.

Y. Sonnefraud, A. L. Koh, D. W. Mccomb, and S. A. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev. 6(3), 277–295 (2012).
[Crossref]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Mandel, C.

M. Schueler, C. Mandel, M. Puentes, and R. Jakoby, “Metamaterial inspired microwave sensors,” IEEE Microw. Mag. 13(2), 57–68 (2012).
[Crossref]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Martin-Moreno, L.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Mccomb, D. W.

Y. Sonnefraud, A. L. Koh, D. W. Mccomb, and S. A. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev. 6(3), 277–295 (2012).
[Crossref]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Morandotti, R.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive Coupling of Split Ring Resonators: A Path to THz Metamaterials with Ultrasharp Resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Moreno, E.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Mousavi, S. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Oulton, R. F.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Ozaki, T.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive Coupling of Split Ring Resonators: A Path to THz Metamaterials with Ultrasharp Resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Pan, B. C.

Pendry, J. B.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Pors, A.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Puentes, M.

M. Schueler, C. Mandel, M. Puentes, and R. Jakoby, “Metamaterial inspired microwave sensors,” IEEE Microw. Mag. 13(2), 57–68 (2012).
[Crossref]

Qiu, M.

Ran, L.

D. Ye, K. Chang, L. Ran, and H. Xin, “Microwave gain medium with negative refractive index,” Nat. Commun. 5(1), 5841 (2014).
[Crossref] [PubMed]

Rockstuhl, C.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive Coupling of Split Ring Resonators: A Path to THz Metamaterials with Ultrasharp Resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Romeo, S.

G. Gennarelli, S. Romeo, M. R. Scarf, and F. Soldovieri, “A microwave resonant sensor for concentration measurements of liquid solutions,” IEEE Sens. J. 13(5), 1857–1864 (2013).
[Crossref]

Scarf, M. R.

G. Gennarelli, S. Romeo, M. R. Scarf, and F. Soldovieri, “A microwave resonant sensor for concentration measurements of liquid solutions,” IEEE Sens. J. 13(5), 1857–1864 (2013).
[Crossref]

Schueler, M.

M. Schueler, C. Mandel, M. Puentes, and R. Jakoby, “Metamaterial inspired microwave sensors,” IEEE Microw. Mag. 13(2), 57–68 (2012).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Shen, X.

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Shen, X. P.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

Shi, X.

Shvets, G.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Singh, R.

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

R. Singh and N. I. Zheludev, “Superconductor photonics,” Nat. Photonics 8(9), 679–680 (2014).
[Crossref]

W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
[Crossref] [PubMed]

Soldovieri, F.

G. Gennarelli, S. Romeo, M. R. Scarf, and F. Soldovieri, “A microwave resonant sensor for concentration measurements of liquid solutions,” IEEE Sens. J. 13(5), 1857–1864 (2013).
[Crossref]

Soltani, A.

D. Jahn, A. Soltani, J. C. Balzer, W. Withayachumnankul, and M. Koch, “Fabry-Pérot interferometer for sensing polar liquids at terahertz frequencies,” J. Appl. Phys. 121(20), 204502 (2017).
[Crossref]

Song, Z.

Sonnefraud, Y.

Y. Sonnefraud, A. L. Koh, D. W. Mccomb, and S. A. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev. 6(3), 277–295 (2012).
[Crossref]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Sun, H.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

Taylor, A. J.

Tsakmakidis, K. L.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Veronis, G.

G. Veronis, Z. Yu, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 824 (2008).

Wang, Z.

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Withayachumnankul, W.

D. Jahn, A. Soltani, J. C. Balzer, W. Withayachumnankul, and M. Koch, “Fabry-Pérot interferometer for sensing polar liquids at terahertz frequencies,” J. Appl. Phys. 121(20), 204502 (2017).
[Crossref]

Wu, H. W.

Xiao, Q. X.

Y. J. Zhou, Q. X. Xiao, and B. J. Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

B. J. Yang, Y. J. Zhou, and Q. X. Xiao, “Spoof localized surface plasmons in corrugated ring structures excited by microstrip line,” Opt. Express 23(16), 21434–21442 (2015).
[Crossref] [PubMed]

Xiao, S.

Z. Song, X. Li, J. Hao, S. Xiao, M. Qiu, Q. He, S. Ma, and L. Zhou, “Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping,” Opt. Express 21(15), 18178–18187 (2013).
[Crossref] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Xiao, Y.

Xin, H.

D. Ye, K. Chang, L. Ran, and H. Xin, “Microwave gain medium with negative refractive index,” Nat. Commun. 5(1), 5841 (2014).
[Crossref] [PubMed]

Xu, B.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Xu, H.

Xu, J.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Xu, N.

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

Yang, B. J.

B. J. Yang, Y. J. Zhou, and Q. X. Xiao, “Spoof localized surface plasmons in corrugated ring structures excited by microstrip line,” Opt. Express 23(16), 21434–21442 (2015).
[Crossref] [PubMed]

Y. J. Zhou, Q. X. Xiao, and B. J. Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

Yang, Z.

Yanik, A. A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Ye, D.

D. Ye, K. Chang, L. Ran, and H. Xin, “Microwave gain medium with negative refractive index,” Nat. Commun. 5(1), 5841 (2014).
[Crossref] [PubMed]

Ye, L.

Yu, Z.

Z. Yu, Z. Gao, Z. Song, and Z. Wang, “Terahertz spoof plasmonic coaxial microcavity,” Appl. Opt. 53(6), 1118–1123 (2014).
[Crossref] [PubMed]

G. Veronis, Z. Yu, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 824 (2008).

Yuan, H. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Zarifi, M. H.

M. H. Zarifi and M. Daneshmand, “Liquid sensing in aquatic environment using high quality planar microwave resonator,” Sensor Actuat. Biol. Chem. 225, 517–521 (2016).

Zhang, B.

Zhang, H. C.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Zhang, W.

Zhang, Y.

Y. Zhang, Y. J. Zhou, J. Cai, and J. H. Jiang, “Amplification of spoof localized surface plasmons on active plasmonic metamaterials,” J. Phys. D Appl. Phys. 51(29), 295304 (2018).
[Crossref]

Z. Gao, F. Gao, H. Xu, Y. Zhang, and B. Zhang, “Localized spoof surface plasmons in textured open metal surfaces,” Opt. Lett. 41(10), 2181–2184 (2016).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

R. Singh and N. I. Zheludev, “Superconductor photonics,” Nat. Photonics 8(9), 679–680 (2014).
[Crossref]

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

Zhou, L.

Zhou, Y.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Zhou, Y. J.

Y. Zhang, Y. J. Zhou, J. Cai, and J. H. Jiang, “Amplification of spoof localized surface plasmons on active plasmonic metamaterials,” J. Phys. D Appl. Phys. 51(29), 295304 (2018).
[Crossref]

B. J. Yang, Y. J. Zhou, and Q. X. Xiao, “Spoof localized surface plasmons in corrugated ring structures excited by microstrip line,” Opt. Express 23(16), 21434–21442 (2015).
[Crossref] [PubMed]

Y. J. Zhou, Q. X. Xiao, and B. J. Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

G. Veronis, Z. Yu, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 824 (2008).

IEEE Microw. Mag. (1)

M. Schueler, C. Mandel, M. Puentes, and R. Jakoby, “Metamaterial inspired microwave sensors,” IEEE Microw. Mag. 13(2), 57–68 (2012).
[Crossref]

IEEE Sens. J. (1)

G. Gennarelli, S. Romeo, M. R. Scarf, and F. Soldovieri, “A microwave resonant sensor for concentration measurements of liquid solutions,” IEEE Sens. J. 13(5), 1857–1864 (2013).
[Crossref]

IEEE T. Microw. Theory (1)

T. Chrétiennot, D. Dubuc, and K. Grenier, “A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solution,” IEEE T. Microw. Theory 61(2), 972–978 (2013).
[Crossref]

J. Appl. Phys. (1)

D. Jahn, A. Soltani, J. C. Balzer, W. Withayachumnankul, and M. Koch, “Fabry-Pérot interferometer for sensing polar liquids at terahertz frequencies,” J. Appl. Phys. 121(20), 204502 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

Y. Zhang, Y. J. Zhou, J. Cai, and J. H. Jiang, “Amplification of spoof localized surface plasmons on active plasmonic metamaterials,” J. Phys. D Appl. Phys. 51(29), 295304 (2018).
[Crossref]

Laser Photonics Rev. (3)

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Y. Sonnefraud, A. L. Koh, D. W. Mccomb, and S. A. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev. 6(3), 277–295 (2012).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

Nano Lett. (1)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

D. Ye, K. Chang, L. Ran, and H. Xin, “Microwave gain medium with negative refractive index,” Nat. Commun. 5(1), 5841 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Singh and N. I. Zheludev, “Superconductor photonics,” Nat. Photonics 8(9), 679–680 (2014).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive Coupling of Split Ring Resonators: A Path to THz Metamaterials with Ultrasharp Resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. J. Zhou, Q. X. Xiao, and B. J. Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Science (3)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

Sensor Actuat. Biol. Chem. (1)

M. H. Zarifi and M. Daneshmand, “Liquid sensing in aquatic environment using high quality planar microwave resonator,” Sensor Actuat. Biol. Chem. 225, 517–521 (2016).

Sensors (Basel) (1)

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

Trans. Dielectr. Electr. Insul. (1)

A. Gregory and R. Clarke, “A review of RF and microwave techniques for dielectric measurements on polar liquids,” Trans. Dielectr. Electr. Insul. 13(4), 727–743 (2006).
[Crossref]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), pp. 49– 74

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The schematic configuration of the passive spoof plasmonic resonator with a slit. (b) The 3D structure view of the resonator. (c) The calculated reflection coefficients of single port resonator based on temporal coupled-mode theory. (d) The reflection coefficient of the passive spoof plasmonic resonator in (a) changing with the offset angle φ.
Fig. 2
Fig. 2 (a) The sample of the passive spoof plasmonic resonator with a slit at φ = 45°. (b) The measured reflection coefficients of the passive spoof plasmonic resonators with a slit at φ = 0° and φ = 45°. (c) The measured input impedance of the passive spoof plasmonic resonators with a slit at φ = 0° and φ = 45°.
Fig. 3
Fig. 3 (a) The 3D view of the setup where a plastic tube filled with DI water is placed upon the spoof plasmonic resonator. (b) The simulated reflection coefficients of the resonator loaded with a tube filled with water, comparing with the case when no tube is loaded. (c) The calculated reflection coefficients for different gain parameters 1/τg.
Fig. 4
Fig. 4 (a) The fabricated sample of the gain-assisted spoof plasmonic resonator. (b) The schematic diagram of amplifier chip with bias circuits. (c) The simulated and measured reflection coefficients of the resonator loaded with the amplifier chip, when the bias voltage is set to 0 V. (d) The measured 2D Ez-field distributions on the plane located 2 mm above the resonator.
Fig. 5
Fig. 5 (a) The measured reflection coefficients with different bias voltages for different resonant modes. (b) The measured reflection coefficients of mode M1 for different bias voltages. (c) The measured reflection coefficients of mode M3 for different bias voltages. (d) The Q factor changing with the bias voltages for modes M1 and M3.
Fig. 6
Fig. 6 (a) The definition of the measured complex input impedances. (b) The real part of the measured input impedance, where the vertical dashed lines correspond to the measured resonant frequencies of 0.7 GHz, 1.15 GHz, 1.58 GHz, and 2.08 GHz. (c) The imaginary part of the measured input impedance.
Fig. 7
Fig. 7 (a) The measurement setup where the tube is place upon the active spoof plasmonic resonator. (b) The measured reflection coefficients of M1 mode for different materials when the applied bias voltage is 0 V and 1.8 V (the optimized value). (c) and (d) The measured reflection coefficients of M3 mode for different materials when the bias voltage is 0 V and 2.0 V (the optimized value).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R= (ω ω 0 ) 2 + ( 1 τ 0 ) 2 (ω ω 0 ) 2 + ( 1 τ 0 + 1 τ e ) 2
R= (ω ω 0 ) 2 + ( 1 τ 0 1 τ g ) 2 (ω ω 0 ) 2 + ( 1 τ 0 + 1 τ e 1 τ g ) 2

Metrics