Abstract

The GaN-based light emitting diodes (LEDs) have a great potential for visible light communication (VLC) due to their ubiquitous application in general lighting, but the modulation bandwidth of conventional c-plane LEDs is limited by carrier recombination rate in InGaN quantum wells (QWs) due to the polarization-field-induced quantum confined Stark effect (QCSE). Furthermore, the high modulation bandwidth on c-plane sapphire substrates can only be achieved at high current densities. Here, blue LEDs with ultra-thin InGaN QWs (1nm) and GaN barriers (3nm) are grown on c-plane sapphire substrate to suppress QCSE and extend the cut-off frequency from 214 MHz for conventional LEDs to 536 MHz at a current density of 2.5 kA/cm2, which is comparable to devices grown on semi-polar substrates.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons

Shi-Chao Zhu, Zhi-Guo Yu, Li-Xia Zhao, Jun-Xi Wang, and Jin-Min Li
Opt. Express 23(11) 13752-13760 (2015)

Regularly patterned non-polar InGaN/GaN quantum-well nanorod light-emitting diode array

Charng-Gan Tu, Che-Hao Liao, Yu-Feng Yao, Horng-Shyang Chen, Chun-Han Lin, Chia-Ying Su, Pei-Ying Shih, Wei-Han Chen, Erwin Zhu, Yean-Woei Kiang, and C. C. Yang
Opt. Express 22(S7) A1799-A1809 (2014)

Development of high performance green c-plane III-nitride light-emitting diodes

Abdullah. I. Alhassan, Nathan. G. Young, Robert. M. Farrell, Christopher. Pynn, Feng. Wu, Ahmed. Y. Alyamani, Shuji Nakamura, Steven. P. DenBaars, and James. S. Speck
Opt. Express 26(5) 5591-5601 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi (Cambridge U., 2015).
  2. J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based green light-emitting diode, (LED) by use of n-type barrier, doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
    [Crossref]
  3. J. W. Shi, C. W. Lin, W. Chen, J. E. Bowers, J. K. Sheu, C. L. Lin, Y. L. Li, J. Vinogradov, and O. Ziemann, “Very high-speed GaN-based cyan light emitting diode on patterned sapphire substrate for 1 Gbps plastic optical fiber communication,” in OFC/NFOEC Technical Digest (2012), pp. 1–3.
  4. J.-M. Wun, C.-W. Lin, W. Chen, J. K. Sheu, C.-L. Lin, Y.-L. Li, J. E. Bowers, J.-W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
    [Crossref]
  5. C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with Gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
    [Crossref]
  6. L. Chien-Lan, H. Chong-Lung, C. Yung-Fu, W. Chi-Hung, and W. Meng-Chyi, “High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth,” IEEE Electron Device Lett. 35(5), 563–565 (2014).
    [Crossref]
  7. R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
    [Crossref]
  8. M. H. Kane, N. Dietz, I. T. Ferguson, T.-C. Lin, Y.-F. Yin, W.-Y. Lan, and J. Huang, “High optical bandwidth GaN based photonic-crystal light-emitting diodes,” in Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems (2016).
    [Crossref]
  9. Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
    [Crossref]
  10. K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs—(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron Dev. 24(7), 1001–1005 (1977).
    [Crossref]
  11. J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
    [Crossref]
  12. J. W. Shi, K. L. Chi, J. M. Wun, J. E. Bowers, Y. H. Shih, and J. K. Sheu, “III-Nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication,” IEEE Electron Device Lett. 37, 894–897 (2016).
  13. A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuchb, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92(11), 113514 (2008).
    [Crossref]
  14. D. V. Dinh, Z. Quan, B. Roycroft, P. J. Parbrook, and B. Corbett, “GHz bandwidth semipolar (112¯2) InGaN/GaN light-emitting diodes,” Opt. Lett. 41(24), 5752–5755 (2016).
    [Crossref] [PubMed]
  15. E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17(10), 7790–7799 (2009).
    [Crossref] [PubMed]
  16. A. Rashidi, M. Monavarian, A. Aragon, S. Okur, M. Nami, A. Rishinaramangalam, S. Mishkat-Ul-Masabih, and D. Feezell, “High-speed nonpolar InGaN/GaN LEDs for visible-light communication,” IEEE Photonics Technol. Lett. 29(4), 381–384 (2017).
    [Crossref]
  17. M. Monavarian, A. Rashidi, A. A. Aragon, S. H. Oh, A. K. Rishinaramangalam, S. P. DenBaars, and D. Feezell, “Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes,” Appl. Phys. Lett. 112(4), 041104 (2018).
    [Crossref]
  18. M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
    [Crossref]
  19. S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
    [Crossref]
  20. S. Zhu, S. Lin, J. Li, Z. Yu, H. Cao, C. Yang, J. Li, and L. Zhao, “Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs,” Appl. Phys. Lett. 111(17), 171105 (2017).
    [Crossref]
  21. A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
    [Crossref]
  22. G.-B. Lin, D.-Y. Kim, Q. Shan, J. Cho, E. F. Schubert, H. Shim, C. Sone, and J. K. Kim, “Effect of quantum barrier thickness in the multiple-quantum-well active region of GaInN/GaN light-emitting diodes,” IEEE Photonics J. 5(4), 1600207 (2013).
    [Crossref]
  23. C. K. Wang, Y. Z. Chiou, S. J. Chang, C. Y. Chang, T. H. Chiang, T. K. Lin, and X. Q. Li, “On the effect of quantum barrier thickness in the active region of nitride-based light emitting diodes,” Solid-State Electron. 99, 11–15 (2014).
    [Crossref]
  24. R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
    [Crossref]
  25. M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72(3), 036502 (2009).
    [Crossref]
  26. T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A 77(4), 1013–1025 (1998).
    [Crossref]
  27. D. Yevick and W. Streifer, “Radiative and nonradiative recombination law in lightly doped InGaAsP lasers,” Electron. Lett. 19(24), 1012 (1983).
    [Crossref]
  28. A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett. 96(10), 103504 (2010).
    [Crossref]
  29. S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
    [Crossref]
  30. J. T. Kobayashi, N. P. Kobayashi, X. Zhang, P. D. Dapkus, and D. H. Rich, “Structural and optical emission characteristics of InGaN thin layers and the implications for growing high-quality quantum wells by MOCVD,” J. Cryst. Growth 195(1-4), 252–257 (1998).
    [Crossref]

2018 (3)

M. Monavarian, A. Rashidi, A. A. Aragon, S. H. Oh, A. K. Rishinaramangalam, S. P. DenBaars, and D. Feezell, “Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes,” Appl. Phys. Lett. 112(4), 041104 (2018).
[Crossref]

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
[Crossref]

2017 (2)

A. Rashidi, M. Monavarian, A. Aragon, S. Okur, M. Nami, A. Rishinaramangalam, S. Mishkat-Ul-Masabih, and D. Feezell, “High-speed nonpolar InGaN/GaN LEDs for visible-light communication,” IEEE Photonics Technol. Lett. 29(4), 381–384 (2017).
[Crossref]

S. Zhu, S. Lin, J. Li, Z. Yu, H. Cao, C. Yang, J. Li, and L. Zhao, “Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs,” Appl. Phys. Lett. 111(17), 171105 (2017).
[Crossref]

2016 (4)

D. V. Dinh, Z. Quan, B. Roycroft, P. J. Parbrook, and B. Corbett, “GHz bandwidth semipolar (112¯2) InGaN/GaN light-emitting diodes,” Opt. Lett. 41(24), 5752–5755 (2016).
[Crossref] [PubMed]

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

J. W. Shi, K. L. Chi, J. M. Wun, J. E. Bowers, Y. H. Shih, and J. K. Sheu, “III-Nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication,” IEEE Electron Device Lett. 37, 894–897 (2016).

2014 (2)

L. Chien-Lan, H. Chong-Lung, C. Yung-Fu, W. Chi-Hung, and W. Meng-Chyi, “High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth,” IEEE Electron Device Lett. 35(5), 563–565 (2014).
[Crossref]

C. K. Wang, Y. Z. Chiou, S. J. Chang, C. Y. Chang, T. H. Chiang, T. K. Lin, and X. Q. Li, “On the effect of quantum barrier thickness in the active region of nitride-based light emitting diodes,” Solid-State Electron. 99, 11–15 (2014).
[Crossref]

2013 (4)

R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with Gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

G.-B. Lin, D.-Y. Kim, Q. Shan, J. Cho, E. F. Schubert, H. Shim, C. Sone, and J. K. Kim, “Effect of quantum barrier thickness in the multiple-quantum-well active region of GaInN/GaN light-emitting diodes,” IEEE Photonics J. 5(4), 1600207 (2013).
[Crossref]

2012 (1)

J.-M. Wun, C.-W. Lin, W. Chen, J. K. Sheu, C.-L. Lin, Y.-L. Li, J. E. Bowers, J.-W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

2010 (1)

A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett. 96(10), 103504 (2010).
[Crossref]

2009 (2)

2008 (2)

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
[Crossref]

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuchb, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92(11), 113514 (2008).
[Crossref]

2006 (1)

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based green light-emitting diode, (LED) by use of n-type barrier, doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

1998 (2)

T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A 77(4), 1013–1025 (1998).
[Crossref]

J. T. Kobayashi, N. P. Kobayashi, X. Zhang, P. D. Dapkus, and D. H. Rich, “Structural and optical emission characteristics of InGaN thin layers and the implications for growing high-quality quantum wells by MOCVD,” J. Cryst. Growth 195(1-4), 252–257 (1998).
[Crossref]

1997 (1)

S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
[Crossref]

1983 (1)

D. Yevick and W. Streifer, “Radiative and nonradiative recombination law in lightly doped InGaAsP lasers,” Electron. Lett. 19(24), 1012 (1983).
[Crossref]

1977 (1)

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs—(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron Dev. 24(7), 1001–1005 (1977).
[Crossref]

Akhter, M.

Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Albrecht, M.

T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A 77(4), 1013–1025 (1998).
[Crossref]

Allsopp, D. W. E.

R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
[Crossref]

Ambacher, O.

T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A 77(4), 1013–1025 (1998).
[Crossref]

Aragon, A.

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
[Crossref]

A. Rashidi, M. Monavarian, A. Aragon, S. Okur, M. Nami, A. Rishinaramangalam, S. Mishkat-Ul-Masabih, and D. Feezell, “High-speed nonpolar InGaN/GaN LEDs for visible-light communication,” IEEE Photonics Technol. Lett. 29(4), 381–384 (2017).
[Crossref]

Aragon, A. A.

M. Monavarian, A. Rashidi, A. A. Aragon, S. H. Oh, A. K. Rishinaramangalam, S. P. DenBaars, and D. Feezell, “Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes,” Appl. Phys. Lett. 112(4), 041104 (2018).
[Crossref]

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

Badcock, T. J.

R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
[Crossref]

Blenkhorn, W. E.

R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
[Crossref]

Born, E.

T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A 77(4), 1013–1025 (1998).
[Crossref]

Bowers, J. E.

J. W. Shi, K. L. Chi, J. M. Wun, J. E. Bowers, Y. H. Shih, and J. K. Sheu, “III-Nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication,” IEEE Electron Device Lett. 37, 894–897 (2016).

J.-M. Wun, C.-W. Lin, W. Chen, J. K. Sheu, C.-L. Lin, Y.-L. Li, J. E. Bowers, J.-W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Caliebe, M.

Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Cao, H.

S. Zhu, S. Lin, J. Li, Z. Yu, H. Cao, C. Yang, J. Li, and L. Zhao, “Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs,” Appl. Phys. Lett. 111(17), 171105 (2017).
[Crossref]

Chang, C. S.

S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
[Crossref]

Chang, C. Y.

C. K. Wang, Y. Z. Chiou, S. J. Chang, C. Y. Chang, T. H. Chiang, T. K. Lin, and X. Q. Li, “On the effect of quantum barrier thickness in the active region of nitride-based light emitting diodes,” Solid-State Electron. 99, 11–15 (2014).
[Crossref]

Chang, S. J.

C. K. Wang, Y. Z. Chiou, S. J. Chang, C. Y. Chang, T. H. Chiang, T. K. Lin, and X. Q. Li, “On the effect of quantum barrier thickness in the active region of nitride-based light emitting diodes,” Solid-State Electron. 99, 11–15 (2014).
[Crossref]

Chang, Y. F.

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with Gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

Chen, C. H.

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
[Crossref]

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based green light-emitting diode, (LED) by use of n-type barrier, doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Chen, W.

J.-M. Wun, C.-W. Lin, W. Chen, J. K. Sheu, C.-L. Lin, Y.-L. Li, J. E. Bowers, J.-W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Chi, K. L.

J. W. Shi, K. L. Chi, J. M. Wun, J. E. Bowers, Y. H. Shih, and J. K. Sheu, “III-Nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication,” IEEE Electron Device Lett. 37, 894–897 (2016).

Chiang, T. H.

C. K. Wang, Y. Z. Chiou, S. J. Chang, C. Y. Chang, T. H. Chiang, T. K. Lin, and X. Q. Li, “On the effect of quantum barrier thickness in the active region of nitride-based light emitting diodes,” Solid-State Electron. 99, 11–15 (2014).
[Crossref]

Chien-Lan, L.

L. Chien-Lan, H. Chong-Lung, C. Yung-Fu, W. Chi-Hung, and W. Meng-Chyi, “High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth,” IEEE Electron Device Lett. 35(5), 563–565 (2014).
[Crossref]

Chi-Hung, W.

L. Chien-Lan, H. Chong-Lung, C. Yung-Fu, W. Chi-Hung, and W. Meng-Chyi, “High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth,” IEEE Electron Device Lett. 35(5), 563–565 (2014).
[Crossref]

Chiou, Y. Z.

C. K. Wang, Y. Z. Chiou, S. J. Chang, C. Y. Chang, T. H. Chiang, T. K. Lin, and X. Q. Li, “On the effect of quantum barrier thickness in the active region of nitride-based light emitting diodes,” Solid-State Electron. 99, 11–15 (2014).
[Crossref]

Cho, J.

G.-B. Lin, D.-Y. Kim, Q. Shan, J. Cho, E. F. Schubert, H. Shim, C. Sone, and J. K. Kim, “Effect of quantum barrier thickness in the multiple-quantum-well active region of GaInN/GaN light-emitting diodes,” IEEE Photonics J. 5(4), 1600207 (2013).
[Crossref]

Chong-Lung, H.

L. Chien-Lan, H. Chong-Lung, C. Yung-Fu, W. Chi-Hung, and W. Meng-Chyi, “High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth,” IEEE Electron Device Lett. 35(5), 563–565 (2014).
[Crossref]

Christiansen, S.

T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A 77(4), 1013–1025 (1998).
[Crossref]

Chuang, S. L.

S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
[Crossref]

Chun, H.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Corbett, B.

Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

D. V. Dinh, Z. Quan, B. Roycroft, P. J. Parbrook, and B. Corbett, “GHz bandwidth semipolar (112¯2) InGaN/GaN light-emitting diodes,” Opt. Lett. 41(24), 5752–5755 (2016).
[Crossref] [PubMed]

Dapkus, P. D.

J. T. Kobayashi, N. P. Kobayashi, X. Zhang, P. D. Dapkus, and D. H. Rich, “Structural and optical emission characteristics of InGaN thin layers and the implications for growing high-quality quantum wells by MOCVD,” J. Cryst. Growth 195(1-4), 252–257 (1998).
[Crossref]

David, A.

A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett. 96(10), 103504 (2010).
[Crossref]

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuchb, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92(11), 113514 (2008).
[Crossref]

Dawson, M. D.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Dawson, P.

R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
[Crossref]

DenBaars, S. P.

M. Monavarian, A. Rashidi, A. A. Aragon, S. H. Oh, A. K. Rishinaramangalam, S. P. DenBaars, and D. Feezell, “Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes,” Appl. Phys. Lett. 112(4), 041104 (2018).
[Crossref]

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuchb, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92(11), 113514 (2008).
[Crossref]

Dietz, N.

M. H. Kane, N. Dietz, I. T. Ferguson, T.-C. Lin, Y.-F. Yin, W.-Y. Lan, and J. Huang, “High optical bandwidth GaN based photonic-crystal light-emitting diodes,” in Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems (2016).
[Crossref]

Dinh, D. V.

Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

D. V. Dinh, Z. Quan, B. Roycroft, P. J. Parbrook, and B. Corbett, “GHz bandwidth semipolar (112¯2) InGaN/GaN light-emitting diodes,” Opt. Lett. 41(24), 5752–5755 (2016).
[Crossref] [PubMed]

Faulkner, G.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Feezell, D.

M. Monavarian, A. Rashidi, A. A. Aragon, S. H. Oh, A. K. Rishinaramangalam, S. P. DenBaars, and D. Feezell, “Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes,” Appl. Phys. Lett. 112(4), 041104 (2018).
[Crossref]

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
[Crossref]

A. Rashidi, M. Monavarian, A. Aragon, S. Okur, M. Nami, A. Rishinaramangalam, S. Mishkat-Ul-Masabih, and D. Feezell, “High-speed nonpolar InGaN/GaN LEDs for visible-light communication,” IEEE Photonics Technol. Lett. 29(4), 381–384 (2017).
[Crossref]

Ferguson, I. T.

M. H. Kane, N. Dietz, I. T. Ferguson, T.-C. Lin, Y.-F. Yin, W.-Y. Lan, and J. Huang, “High optical bandwidth GaN based photonic-crystal light-emitting diodes,” in Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems (2016).
[Crossref]

Ferreira, R. X. G.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Foley, A.

Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Göbel, H.

T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A 77(4), 1013–1025 (1998).
[Crossref]

Grundmann, M. J.

A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett. 96(10), 103504 (2010).
[Crossref]

Gu, E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Ho, C. L.

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with Gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

Hopkins, M. A.

R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
[Crossref]

Höpler, R.

T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A 77(4), 1013–1025 (1998).
[Crossref]

Horiuchi, S.

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs—(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron Dev. 24(7), 1001–1005 (1977).
[Crossref]

Hu, E. L.

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuchb, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92(11), 113514 (2008).
[Crossref]

Huang, H. Y.

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based green light-emitting diode, (LED) by use of n-type barrier, doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Huang, J.

M. H. Kane, N. Dietz, I. T. Ferguson, T.-C. Lin, Y.-F. Yin, W.-Y. Lan, and J. Huang, “High optical bandwidth GaN based photonic-crystal light-emitting diodes,” in Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems (2016).
[Crossref]

Humphreys, C. J.

R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
[Crossref]

Ikeda, K.

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs—(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron Dev. 24(7), 1001–1005 (1977).
[Crossref]

Kane, M. H.

M. H. Kane, N. Dietz, I. T. Ferguson, T.-C. Lin, Y.-F. Yin, W.-Y. Lan, and J. Huang, “High optical bandwidth GaN based photonic-crystal light-emitting diodes,” in Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems (2016).
[Crossref]

Kappers, M. J.

R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
[Crossref]

Kelchner, K. M.

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Kelly, A. E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Kim, D.-Y.

G.-B. Lin, D.-Y. Kim, Q. Shan, J. Cho, E. F. Schubert, H. Shim, C. Sone, and J. K. Kim, “Effect of quantum barrier thickness in the multiple-quantum-well active region of GaInN/GaN light-emitting diodes,” IEEE Photonics J. 5(4), 1600207 (2013).
[Crossref]

Kim, J. K.

G.-B. Lin, D.-Y. Kim, Q. Shan, J. Cho, E. F. Schubert, H. Shim, C. Sone, and J. K. Kim, “Effect of quantum barrier thickness in the multiple-quantum-well active region of GaInN/GaN light-emitting diodes,” IEEE Photonics J. 5(4), 1600207 (2013).
[Crossref]

Kobayashi, J. T.

J. T. Kobayashi, N. P. Kobayashi, X. Zhang, P. D. Dapkus, and D. H. Rich, “Structural and optical emission characteristics of InGaN thin layers and the implications for growing high-quality quantum wells by MOCVD,” J. Cryst. Growth 195(1-4), 252–257 (1998).
[Crossref]

Kobayashi, N. P.

J. T. Kobayashi, N. P. Kobayashi, X. Zhang, P. D. Dapkus, and D. H. Rich, “Structural and optical emission characteristics of InGaN thin layers and the implications for growing high-quality quantum wells by MOCVD,” J. Cryst. Growth 195(1-4), 252–257 (1998).
[Crossref]

Kruglov, R.

J.-M. Wun, C.-W. Lin, W. Chen, J. K. Sheu, C.-L. Lin, Y.-L. Li, J. E. Bowers, J.-W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Kuritzky, L. Y.

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Lai, W. C.

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
[Crossref]

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based green light-emitting diode, (LED) by use of n-type barrier, doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Lakhani, A.

Lan, W.-Y.

M. H. Kane, N. Dietz, I. T. Ferguson, T.-C. Lin, Y.-F. Yin, W.-Y. Lan, and J. Huang, “High optical bandwidth GaN based photonic-crystal light-emitting diodes,” in Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems (2016).
[Crossref]

Lau, E. K.

Li, J.

S. Zhu, S. Lin, J. Li, Z. Yu, H. Cao, C. Yang, J. Li, and L. Zhao, “Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs,” Appl. Phys. Lett. 111(17), 171105 (2017).
[Crossref]

S. Zhu, S. Lin, J. Li, Z. Yu, H. Cao, C. Yang, J. Li, and L. Zhao, “Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs,” Appl. Phys. Lett. 111(17), 171105 (2017).
[Crossref]

Li, X. Q.

C. K. Wang, Y. Z. Chiou, S. J. Chang, C. Y. Chang, T. H. Chiang, T. K. Lin, and X. Q. Li, “On the effect of quantum barrier thickness in the active region of nitride-based light emitting diodes,” Solid-State Electron. 99, 11–15 (2014).
[Crossref]

Li, Y.-L.

J.-M. Wun, C.-W. Lin, W. Chen, J. K. Sheu, C.-L. Lin, Y.-L. Li, J. E. Bowers, J.-W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Liao, C. L.

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with Gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

Lin, C.-L.

J.-M. Wun, C.-W. Lin, W. Chen, J. K. Sheu, C.-L. Lin, Y.-L. Li, J. E. Bowers, J.-W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Lin, C.-W.

J.-M. Wun, C.-W. Lin, W. Chen, J. K. Sheu, C.-L. Lin, Y.-L. Li, J. E. Bowers, J.-W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Lin, G. R.

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
[Crossref]

Lin, G.-B.

G.-B. Lin, D.-Y. Kim, Q. Shan, J. Cho, E. F. Schubert, H. Shim, C. Sone, and J. K. Kim, “Effect of quantum barrier thickness in the multiple-quantum-well active region of GaInN/GaN light-emitting diodes,” IEEE Photonics J. 5(4), 1600207 (2013).
[Crossref]

Lin, S.

S. Zhu, S. Lin, J. Li, Z. Yu, H. Cao, C. Yang, J. Li, and L. Zhao, “Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs,” Appl. Phys. Lett. 111(17), 171105 (2017).
[Crossref]

Lin, T. K.

C. K. Wang, Y. Z. Chiou, S. J. Chang, C. Y. Chang, T. H. Chiang, T. K. Lin, and X. Q. Li, “On the effect of quantum barrier thickness in the active region of nitride-based light emitting diodes,” Solid-State Electron. 99, 11–15 (2014).
[Crossref]

Lin, T.-C.

M. H. Kane, N. Dietz, I. T. Ferguson, T.-C. Lin, Y.-F. Yin, W.-Y. Lan, and J. Huang, “High optical bandwidth GaN based photonic-crystal light-emitting diodes,” in Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems (2016).
[Crossref]

Maaskant, P. P.

Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Marcinkevicius, S.

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Massabuau, F. C. P.

R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
[Crossref]

Matioli, E.

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuchb, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92(11), 113514 (2008).
[Crossref]

McGroddy, K.

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuchb, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92(11), 113514 (2008).
[Crossref]

McKendry, J. J. D.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Meng-Chyi, W.

L. Chien-Lan, H. Chong-Lung, C. Yung-Fu, W. Chi-Hung, and W. Meng-Chyi, “High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth,” IEEE Electron Device Lett. 35(5), 563–565 (2014).
[Crossref]

Metzger, T.

T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A 77(4), 1013–1025 (1998).
[Crossref]

Mishkat-Ul-Masabih, S.

A. Rashidi, M. Monavarian, A. Aragon, S. Okur, M. Nami, A. Rishinaramangalam, S. Mishkat-Ul-Masabih, and D. Feezell, “High-speed nonpolar InGaN/GaN LEDs for visible-light communication,” IEEE Photonics Technol. Lett. 29(4), 381–384 (2017).
[Crossref]

Monavarian, M.

M. Monavarian, A. Rashidi, A. A. Aragon, S. H. Oh, A. K. Rishinaramangalam, S. P. DenBaars, and D. Feezell, “Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes,” Appl. Phys. Lett. 112(4), 041104 (2018).
[Crossref]

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
[Crossref]

A. Rashidi, M. Monavarian, A. Aragon, S. Okur, M. Nami, A. Rishinaramangalam, S. Mishkat-Ul-Masabih, and D. Feezell, “High-speed nonpolar InGaN/GaN LEDs for visible-light communication,” IEEE Photonics Technol. Lett. 29(4), 381–384 (2017).
[Crossref]

Moram, M. A.

M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72(3), 036502 (2009).
[Crossref]

Moran, B.

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuchb, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92(11), 113514 (2008).
[Crossref]

Nakamura, S.

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuchb, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92(11), 113514 (2008).
[Crossref]

Nami, M.

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

A. Rashidi, M. Monavarian, A. Aragon, S. Okur, M. Nami, A. Rishinaramangalam, S. Mishkat-Ul-Masabih, and D. Feezell, “High-speed nonpolar InGaN/GaN LEDs for visible-light communication,” IEEE Photonics Technol. Lett. 29(4), 381–384 (2017).
[Crossref]

O’Brien, D. C.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

O’Mahony, D.

Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Oh, S. H.

M. Monavarian, A. Rashidi, A. A. Aragon, S. H. Oh, A. K. Rishinaramangalam, S. P. DenBaars, and D. Feezell, “Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes,” Appl. Phys. Lett. 112(4), 041104 (2018).
[Crossref]

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

Okur, S.

A. Rashidi, M. Monavarian, A. Aragon, S. Okur, M. Nami, A. Rishinaramangalam, S. Mishkat-Ul-Masabih, and D. Feezell, “High-speed nonpolar InGaN/GaN LEDs for visible-light communication,” IEEE Photonics Technol. Lett. 29(4), 381–384 (2017).
[Crossref]

Oliver, R. A.

R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
[Crossref]

Parbrook, P. J.

D. V. Dinh, Z. Quan, B. Roycroft, P. J. Parbrook, and B. Corbett, “GHz bandwidth semipolar (112¯2) InGaN/GaN light-emitting diodes,” Opt. Lett. 41(24), 5752–5755 (2016).
[Crossref] [PubMed]

Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Penty, R. V.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Phillips, W. A.

R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
[Crossref]

Presa, S.

Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Quan, Z.

Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

D. V. Dinh, Z. Quan, B. Roycroft, P. J. Parbrook, and B. Corbett, “GHz bandwidth semipolar (112¯2) InGaN/GaN light-emitting diodes,” Opt. Lett. 41(24), 5752–5755 (2016).
[Crossref] [PubMed]

Rajbhandari, S.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Rashidi, A.

M. Monavarian, A. Rashidi, A. A. Aragon, S. H. Oh, A. K. Rishinaramangalam, S. P. DenBaars, and D. Feezell, “Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes,” Appl. Phys. Lett. 112(4), 041104 (2018).
[Crossref]

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
[Crossref]

A. Rashidi, M. Monavarian, A. Aragon, S. Okur, M. Nami, A. Rishinaramangalam, S. Mishkat-Ul-Masabih, and D. Feezell, “High-speed nonpolar InGaN/GaN LEDs for visible-light communication,” IEEE Photonics Technol. Lett. 29(4), 381–384 (2017).
[Crossref]

Rich, D. H.

J. T. Kobayashi, N. P. Kobayashi, X. Zhang, P. D. Dapkus, and D. H. Rich, “Structural and optical emission characteristics of InGaN thin layers and the implications for growing high-quality quantum wells by MOCVD,” J. Cryst. Growth 195(1-4), 252–257 (1998).
[Crossref]

Rishinaramangalam, A.

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
[Crossref]

A. Rashidi, M. Monavarian, A. Aragon, S. Okur, M. Nami, A. Rishinaramangalam, S. Mishkat-Ul-Masabih, and D. Feezell, “High-speed nonpolar InGaN/GaN LEDs for visible-light communication,” IEEE Photonics Technol. Lett. 29(4), 381–384 (2017).
[Crossref]

Rishinaramangalam, A. K.

M. Monavarian, A. Rashidi, A. A. Aragon, S. H. Oh, A. K. Rishinaramangalam, S. P. DenBaars, and D. Feezell, “Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes,” Appl. Phys. Lett. 112(4), 041104 (2018).
[Crossref]

Roycroft, B.

D. V. Dinh, Z. Quan, B. Roycroft, P. J. Parbrook, and B. Corbett, “GHz bandwidth semipolar (112¯2) InGaN/GaN light-emitting diodes,” Opt. Lett. 41(24), 5752–5755 (2016).
[Crossref] [PubMed]

Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Scholz, F.

Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Schubert, E. F.

G.-B. Lin, D.-Y. Kim, Q. Shan, J. Cho, E. F. Schubert, H. Shim, C. Sone, and J. K. Kim, “Effect of quantum barrier thickness in the multiple-quantum-well active region of GaInN/GaN light-emitting diodes,” IEEE Photonics J. 5(4), 1600207 (2013).
[Crossref]

Schuster, M.

T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A 77(4), 1013–1025 (1998).
[Crossref]

Shan, Q.

G.-B. Lin, D.-Y. Kim, Q. Shan, J. Cho, E. F. Schubert, H. Shim, C. Sone, and J. K. Kim, “Effect of quantum barrier thickness in the multiple-quantum-well active region of GaInN/GaN light-emitting diodes,” IEEE Photonics J. 5(4), 1600207 (2013).
[Crossref]

Sheu, J. K.

J. W. Shi, K. L. Chi, J. M. Wun, J. E. Bowers, Y. H. Shih, and J. K. Sheu, “III-Nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication,” IEEE Electron Device Lett. 37, 894–897 (2016).

J.-M. Wun, C.-W. Lin, W. Chen, J. K. Sheu, C.-L. Lin, Y.-L. Li, J. E. Bowers, J.-W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
[Crossref]

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based green light-emitting diode, (LED) by use of n-type barrier, doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Shi, J. W.

J. W. Shi, K. L. Chi, J. M. Wun, J. E. Bowers, Y. H. Shih, and J. K. Sheu, “III-Nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication,” IEEE Electron Device Lett. 37, 894–897 (2016).

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
[Crossref]

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based green light-emitting diode, (LED) by use of n-type barrier, doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Shi, J.-W.

J.-M. Wun, C.-W. Lin, W. Chen, J. K. Sheu, C.-L. Lin, Y.-L. Li, J. E. Bowers, J.-W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Shih, Y. H.

J. W. Shi, K. L. Chi, J. M. Wun, J. E. Bowers, Y. H. Shih, and J. K. Sheu, “III-Nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication,” IEEE Electron Device Lett. 37, 894–897 (2016).

Shim, H.

G.-B. Lin, D.-Y. Kim, Q. Shan, J. Cho, E. F. Schubert, H. Shim, C. Sone, and J. K. Kim, “Effect of quantum barrier thickness in the multiple-quantum-well active region of GaInN/GaN light-emitting diodes,” IEEE Photonics J. 5(4), 1600207 (2013).
[Crossref]

Sone, C.

G.-B. Lin, D.-Y. Kim, Q. Shan, J. Cho, E. F. Schubert, H. Shim, C. Sone, and J. K. Kim, “Effect of quantum barrier thickness in the multiple-quantum-well active region of GaInN/GaN light-emitting diodes,” IEEE Photonics J. 5(4), 1600207 (2013).
[Crossref]

Speck, J. S.

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Stömmer, R.

T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A 77(4), 1013–1025 (1998).
[Crossref]

Streifer, W.

D. Yevick and W. Streifer, “Radiative and nonradiative recombination law in lightly doped InGaAsP lasers,” Electron. Lett. 19(24), 1012 (1983).
[Crossref]

Strunk, H. P.

T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A 77(4), 1013–1025 (1998).
[Crossref]

Stutzmann, M.

T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A 77(4), 1013–1025 (1998).
[Crossref]

Susaki, W.

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs—(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron Dev. 24(7), 1001–1005 (1977).
[Crossref]

Tanaka, T.

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs—(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron Dev. 24(7), 1001–1005 (1977).
[Crossref]

Tartan, C. C.

R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
[Crossref]

Thrush, E. J.

R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
[Crossref]

Tucker, R. S.

Vickers, M. E.

M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72(3), 036502 (2009).
[Crossref]

Vinogradov, J.

J.-M. Wun, C.-W. Lin, W. Chen, J. K. Sheu, C.-L. Lin, Y.-L. Li, J. E. Bowers, J.-W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Wang, C. K.

C. K. Wang, Y. Z. Chiou, S. J. Chang, C. Y. Chang, T. H. Chiang, T. K. Lin, and X. Q. Li, “On the effect of quantum barrier thickness in the active region of nitride-based light emitting diodes,” Solid-State Electron. 99, 11–15 (2014).
[Crossref]

Watson, S.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Weisbuchb, C.

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuchb, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92(11), 113514 (2008).
[Crossref]

White, I. H.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Wu, M. C.

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with Gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17(10), 7790–7799 (2009).
[Crossref] [PubMed]

Wu, Y. S.

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based green light-emitting diode, (LED) by use of n-type barrier, doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Wun, J. M.

J. W. Shi, K. L. Chi, J. M. Wun, J. E. Bowers, Y. H. Shih, and J. K. Sheu, “III-Nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication,” IEEE Electron Device Lett. 37, 894–897 (2016).

Wun, J.-M.

J.-M. Wun, C.-W. Lin, W. Chen, J. K. Sheu, C.-L. Lin, Y.-L. Li, J. E. Bowers, J.-W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Xie, E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Yang, C.

S. Zhu, S. Lin, J. Li, Z. Yu, H. Cao, C. Yang, J. Li, and L. Zhao, “Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs,” Appl. Phys. Lett. 111(17), 171105 (2017).
[Crossref]

Yevick, D.

D. Yevick and W. Streifer, “Radiative and nonradiative recombination law in lightly doped InGaAsP lasers,” Electron. Lett. 19(24), 1012 (1983).
[Crossref]

Yin, Y.-F.

M. H. Kane, N. Dietz, I. T. Ferguson, T.-C. Lin, Y.-F. Yin, W.-Y. Lan, and J. Huang, “High optical bandwidth GaN based photonic-crystal light-emitting diodes,” in Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems (2016).
[Crossref]

Yu, Z.

S. Zhu, S. Lin, J. Li, Z. Yu, H. Cao, C. Yang, J. Li, and L. Zhao, “Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs,” Appl. Phys. Lett. 111(17), 171105 (2017).
[Crossref]

Yung-Fu, C.

L. Chien-Lan, H. Chong-Lung, C. Yung-Fu, W. Chi-Hung, and W. Meng-Chyi, “High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth,” IEEE Electron Device Lett. 35(5), 563–565 (2014).
[Crossref]

Zhang, X.

J. T. Kobayashi, N. P. Kobayashi, X. Zhang, P. D. Dapkus, and D. H. Rich, “Structural and optical emission characteristics of InGaN thin layers and the implications for growing high-quality quantum wells by MOCVD,” J. Cryst. Growth 195(1-4), 252–257 (1998).
[Crossref]

Zhao, L.

S. Zhu, S. Lin, J. Li, Z. Yu, H. Cao, C. Yang, J. Li, and L. Zhao, “Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs,” Appl. Phys. Lett. 111(17), 171105 (2017).
[Crossref]

Zhu, S.

S. Zhu, S. Lin, J. Li, Z. Yu, H. Cao, C. Yang, J. Li, and L. Zhao, “Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs,” Appl. Phys. Lett. 111(17), 171105 (2017).
[Crossref]

Ziemann, O.

J.-M. Wun, C.-W. Lin, W. Chen, J. K. Sheu, C.-L. Lin, Y.-L. Li, J. E. Bowers, J.-W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Appl. Phys. Lett. (7)

A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuchb, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett. 92(11), 113514 (2008).
[Crossref]

M. Monavarian, A. Rashidi, A. A. Aragon, S. H. Oh, A. K. Rishinaramangalam, S. P. DenBaars, and D. Feezell, “Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes,” Appl. Phys. Lett. 112(4), 041104 (2018).
[Crossref]

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

S. Zhu, S. Lin, J. Li, Z. Yu, H. Cao, C. Yang, J. Li, and L. Zhao, “Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs,” Appl. Phys. Lett. 111(17), 171105 (2017).
[Crossref]

R. A. Oliver, F. C. P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, “The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes,” Appl. Phys. Lett. 103(14), 141114 (2013).
[Crossref]

A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett. 96(10), 103504 (2010).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Electron. Lett. (1)

D. Yevick and W. Streifer, “Radiative and nonradiative recombination law in lightly doped InGaAsP lasers,” Electron. Lett. 19(24), 1012 (1983).
[Crossref]

IEEE Electron Device Lett. (5)

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
[Crossref]

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
[Crossref]

J. W. Shi, K. L. Chi, J. M. Wun, J. E. Bowers, Y. H. Shih, and J. K. Sheu, “III-Nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication,” IEEE Electron Device Lett. 37, 894–897 (2016).

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with Gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

L. Chien-Lan, H. Chong-Lung, C. Yung-Fu, W. Chi-Hung, and W. Meng-Chyi, “High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth,” IEEE Electron Device Lett. 35(5), 563–565 (2014).
[Crossref]

IEEE Photonics J. (3)

J.-M. Wun, C.-W. Lin, W. Chen, J. K. Sheu, C.-L. Lin, Y.-L. Li, J. E. Bowers, J.-W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

G.-B. Lin, D.-Y. Kim, Q. Shan, J. Cho, E. F. Schubert, H. Shim, C. Sone, and J. K. Kim, “Effect of quantum barrier thickness in the multiple-quantum-well active region of GaInN/GaN light-emitting diodes,” IEEE Photonics J. 5(4), 1600207 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (3)

A. Rashidi, M. Monavarian, A. Aragon, S. Okur, M. Nami, A. Rishinaramangalam, S. Mishkat-Ul-Masabih, and D. Feezell, “High-speed nonpolar InGaN/GaN LEDs for visible-light communication,” IEEE Photonics Technol. Lett. 29(4), 381–384 (2017).
[Crossref]

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based green light-emitting diode, (LED) by use of n-type barrier, doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

IEEE Trans. Electron Dev. (1)

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs—(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron Dev. 24(7), 1001–1005 (1977).
[Crossref]

J. Cryst. Growth (1)

J. T. Kobayashi, N. P. Kobayashi, X. Zhang, P. D. Dapkus, and D. H. Rich, “Structural and optical emission characteristics of InGaN thin layers and the implications for growing high-quality quantum wells by MOCVD,” J. Cryst. Growth 195(1-4), 252–257 (1998).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Philos. Mag. A (1)

T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A 77(4), 1013–1025 (1998).
[Crossref]

Rep. Prog. Phys. (1)

M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72(3), 036502 (2009).
[Crossref]

Semicond. Sci. Technol. (1)

S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
[Crossref]

Solid-State Electron. (1)

C. K. Wang, Y. Z. Chiou, S. J. Chang, C. Y. Chang, T. H. Chiang, T. K. Lin, and X. Q. Li, “On the effect of quantum barrier thickness in the active region of nitride-based light emitting diodes,” Solid-State Electron. 99, 11–15 (2014).
[Crossref]

Other (3)

M. H. Kane, N. Dietz, I. T. Ferguson, T.-C. Lin, Y.-F. Yin, W.-Y. Lan, and J. Huang, “High optical bandwidth GaN based photonic-crystal light-emitting diodes,” in Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems (2016).
[Crossref]

J. W. Shi, C. W. Lin, W. Chen, J. E. Bowers, J. K. Sheu, C. L. Lin, Y. L. Li, J. Vinogradov, and O. Ziemann, “Very high-speed GaN-based cyan light emitting diode on patterned sapphire substrate for 1 Gbps plastic optical fiber communication,” in OFC/NFOEC Technical Digest (2012), pp. 1–3.

S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi (Cambridge U., 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) HAADF-STEM cross-sectional images of S1 with 1 nm-thick QWs and 3 nm-thick barriers. (b) The room-temperature TRPL at the PL peak emission wavelength for the samples. The solid lines are the fitting of double-exponential decay on experimental data.
Fig. 2
Fig. 2 (a) L-j-V characteristics for S1 and S2. (b) The EQE measurement of the samples. (c) The EL spectrum for S1 and S2, where the applied current density is increased from 4 to 110 A/cm2. The inset in (c) is the peak wavelength changes with applied current density.
Fig. 3
Fig. 3 (a) The normalized power response of S1 and S2 at 2.5 kA/cm2 applied current density. The inset in (a) shows a schematic view of the ring-shaped contact layers, where the mesa diameter is reduced to achieve high current densities. (b) The cut-off frequency vs. applied current density.
Fig. 4
Fig. 4 (a) The differential carrier lifetime in terms of applied current density. (b) The differential radiative lifetime for the low-j range. (c) The calculated carrier density in the active region in terms of applied current density using the method introduced in [28].

Tables (1)

Tables Icon

Table 1 The Structure of the Active Region and Dislocation Density in the Samples

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ r = n R s p and R s p | F 1 | F 2 | 2 ,
n = 0 G τ Δ n d G ,

Metrics