Abstract

With much smaller footprints (approximately a few tens of meters), the data of a laser altimeter are promising for obtaining the sea level near offshore areas, where radar altimeters with larger footprints cannot operate. However, the current ocean surface detection methods for a photon-counting lidar cannot effectively eliminate the noise photons when measuring the sea surface, thereby introducing a ranging bias. In this paper, a new ocean surface detection method is derived based on the JONSWAP (Joint North Sea Wave Project) wave spectrum and LM (Levenberg-Marquardt) nonlinear least-squares fitting. Using the data photons that are captured by the NASA MABEL (Multiple Altimeter Beam Experimental Lidar) photon-counting lidar, the new method is tested and compared to the MABEL standard result. The new method achieved better profile detection of sea surfaces and successfully discarded the noise photons in a sub-layer below the sea surface from the MABEL standard result. By reconstructing the “accumulated waveform”, we found that the noise photons in the sub-layer produce small tails after the main waveform, which introduces an overestimated ranging bias of 9 cm. This difference of 9 cm is similar to the sea level bias of 10 cm that was obtained from the ICESat/GLAS laser altimeter data and the TOPEX/Poseidon radar altimeter data in an earlier study, which limited the use of laser altimeter data. According to the analysis in this paper, we can partially interpret what occurred for the ICESat/GLAS waveform tails when ICESat was measuring sea surfaces. The newly derived method can protect the MABEL and incoming ICESat-2 data photons from noise photon interference and ranging bias when measuring the sea surface.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical background noise rate over water surface for a photon-counting lidar and its application in land and sea cover classification

Zhiyu Zhang, Yue Ma, Nan Xu, Song Li, Jinyan Sun, and Xiao Hua Wang
Opt. Express 27(20) A1490-A1505 (2019)

Theoretical surface type classifier based on a waveform model of a satellite laser altimeter and its performance in the north of Greenland

Song Li, Wenhao Zhang, Yue Ma, Xiao Hua Wang, Fanlin Yang, and Dianpeng Su
Appl. Opt. 57(10) 2482-2489 (2018)

Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data

Sheng Nie, Cheng Wang, Xiaohuan Xi, Shezhou Luo, Guoyuan Li, Jinyan Tian, and Hongtao Wang
Opt. Express 26(10) A520-A540 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mission,” Geophys. Res. Lett. 32(21), S01 (2005).
    [Crossref]
  2. R. Kwok, G. F. Cunningham, G F. S. S. Manizade, and W. B. Krabill, “Arctic sea ice freeboard from IceBridge acquisitions in 2009: estimates and comparisons with ICESat,” J. Geophys. Res. Oceans 117(C2), 18 (2012).
  3. C. Hilbert and C. Schmullius, “Influence of surface topography on ICESat/GLAS forest height estimation and waveform shape,” Remote Sens. 4(8), 2210–2235 (2012).
    [Crossref]
  4. R. S. Lancaster, J. D. Spinhirne, and S. P. Palm, “Laser pulse reflectance of the ocean surface from the GLAS satellite lidar,” Geophys. Res. Lett. 32(22), 109–127 (2005).
    [Crossref]
  5. T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
    [Crossref]
  6. R. Kwok, G. F. Cunningham, J. Hoffmann, and T. Markus, “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ. 183, 13–25 (2016).
    [Crossref]
  7. R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental lidar (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
    [Crossref]
  8. J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3), 503–549 (2002).
    [Crossref]
  9. A. B. Milstein, L. A. Jiang, J. X. Luu, E. L. Hines, and K. I. Schultz, “Acquisition algorithm for direct-detection ladars with Geiger-mode avalanche photodiodes,” Appl. Opt. 47(2), 296–311 (2008).
    [Crossref] [PubMed]
  10. S. L. Farrell, K. M. Brunt, J. M. Ruth, J. M. Kuhn, L. N. Connor, and K. M. Walsh, “Sea-ice freeboard retrieval using digital photon-counting laser altimetry,” Ann. Glaciol. 56(69), 167–174 (2015).
    [Crossref]
  11. K. M. Brunt, T. A. Neumann, K. M. Walsh, and T. Markus, “Determination of local slope on the Greenland ice sheet using a multi beam photon-counting lidar in preparation for the ICESat-2 mission,” IEEE Geosci. Remote Sensing S. 11(5), 935–939 (2013).
    [Crossref]
  12. K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
    [Crossref]
  13. L. A. Magruder, A. L. Neuenschwander, D. Pederson, H. W. Leigh, J. Greenbaum, A. G. de Gorordo, D. D. Blankenship, S. D. Kempf, and D. A. Young, “Noise filtering and surface detection techniques for IceBridge photon counting lidar data over Antarctica,” in Proceedings of AGU Fall Meeting (AGU, 2012), pp. C21B–0584.
  14. X. Wang, C. Glennie, and Z. Pan, “An adaptive ellipsoid searching filter for airborne single-photon lidar,” IEEE Geosci. Remote Sensing S. 14(8), 1258–1262 (2017).
    [Crossref]
  15. J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Geosci. Remote Sensing 12(4), 726–730 (2014).
    [Crossref]
  16. M. Awadallah, L. Abbott, and S. Ghannam, “Segmentation of sparse noisy photon clouds using active contour models,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2014), pp. 6061–6065.
  17. U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE T. Geosci Remote 52(4), 2109–2125 (2014).
    [Crossref]
  18. A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
    [Crossref] [PubMed]
  19. A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
    [Crossref] [PubMed]
  20. A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
    [Crossref] [PubMed]
  21. M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple altimeter beam experimental lidar (MABEL),” J. Coast. Res. 76, 44–55 (2016).
    [Crossref]
  22. T. J. Urban and B. E. Schutz, “ICESat sea level comparisons,” Geophys. Res. Lett. 32(23), S10 (2005).
    [Crossref]
  23. B. G. Bills, A. A. Borsa, and R. L. Comstock, “MISR-based passive optical bathymetry from orbit with few-cm level of accuracy on the Salar de Uyuni, Bolivia,” Remote Sens. Environ. 107(1), 240–255 (2007).
    [Crossref]
  24. A. Arsen, J. Crétaux, M. Berge-Nguyen, and R. A. del Rio, “Remote sensing-derived bathymetry of lake Poopó,” Remote Sens. 6(1), 407–420 (2013).
    [Crossref]
  25. X. Wang, X. Cheng, Z. Li, H. Huang, Z. Niu, X. Li, and P. Gong, “Lake water footprint identification from time-series ICESat/GLAS data,” IEEE Geosci. Remote Sensing S. 9(3), 333–337 (2012).
    [Crossref]
  26. Y. Ma, S. Li, W. Zhang, Z. Zhang, H. Zhou, and M. Xin, “Waveform width of a satellite laser altimeter illuminating on the sea surface,” Appl. Opt. 56(22), 6130–6137 (2017).
    [Crossref] [PubMed]
  27. G. J. Komen, L. Cavakeri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. Janssen, Dynamics and Modeling of Ocean Waves (Cambridge University, 1994).
  28. Y. Ma, S. Li, W. Zhang, Z. Zhang, R. Liu, and X. H. Wang, “Theoretical ranging performance model and range walk error correction for photon-counting lidars with multiple detectors,” Opt. Express 26(12), 15924–15934 (2018).
    [Crossref] [PubMed]
  29. “ https://icesat.gsfc.nasa.gov/icesat2/data/mabel/data/browse/050_20130918_Ocean_CalVal_VA/index.html ,” (2014).
  30. F. Yang, D. Su, Y. Ma, C. Feng, A. Yang, and M. Wang, “Refraction correction of airborne lidar bathymetry based on sea surface profile and ray tracing,” IEEE Trans. Geosci. Remote 55(11), 6141–6149 (2017).
    [Crossref]
  31. K. Madsen, H. B. Nielsen, and O. Tingleff, Methods for Non-linear Least Squares Problems, 2nd ed. (Technical University of Denmark, 2004).
  32. R. Chester and T. Jickells, Marine geochemistry (Wiley-Blackwell, 2012).
  33. A. C. Brenner, H. J. Zwally, C. R. Bentley, B. M. Csathó, D. J. Harding, M. A. Hofton, J. Minster, L. Roberts, J. L. Saba, R. H. Thomas, and D. Yi, Derivation of Range and Range Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights, 5th ver. (NASA Goddard Space Flight Center, 2011).
  34. A. Butcher, L. Doria, J. Monroe, F. Retiere, B. Smith, and J. Walding, “A method for characterizing after-pulsing and dark noise of PMTs and SiPMs,” Nucl. Instrum. Meth. A 875, 87–91 (2017).
    [Crossref]
  35. B. M. Tsai and C. S. Gardner, “Remote sensing of sea state using laser altimeters,” Appl. Opt. 21(21), 3932–3940 (1982).
    [Crossref] [PubMed]
  36. J. E. Lee, GLAS Standard Data Products Specification-Level 1, 9th ver. (NASA Goddard Space Flight Center, USA 2011).

2018 (1)

2017 (6)

F. Yang, D. Su, Y. Ma, C. Feng, A. Yang, and M. Wang, “Refraction correction of airborne lidar bathymetry based on sea surface profile and ray tracing,” IEEE Trans. Geosci. Remote 55(11), 6141–6149 (2017).
[Crossref]

A. Butcher, L. Doria, J. Monroe, F. Retiere, B. Smith, and J. Walding, “A method for characterizing after-pulsing and dark noise of PMTs and SiPMs,” Nucl. Instrum. Meth. A 875, 87–91 (2017).
[Crossref]

Y. Ma, S. Li, W. Zhang, Z. Zhang, H. Zhou, and M. Xin, “Waveform width of a satellite laser altimeter illuminating on the sea surface,” Appl. Opt. 56(22), 6130–6137 (2017).
[Crossref] [PubMed]

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

X. Wang, C. Glennie, and Z. Pan, “An adaptive ellipsoid searching filter for airborne single-photon lidar,” IEEE Geosci. Remote Sensing S. 14(8), 1258–1262 (2017).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
[Crossref] [PubMed]

2016 (3)

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

R. Kwok, G. F. Cunningham, J. Hoffmann, and T. Markus, “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ. 183, 13–25 (2016).
[Crossref]

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple altimeter beam experimental lidar (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

2015 (2)

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
[Crossref] [PubMed]

S. L. Farrell, K. M. Brunt, J. M. Ruth, J. M. Kuhn, L. N. Connor, and K. M. Walsh, “Sea-ice freeboard retrieval using digital photon-counting laser altimetry,” Ann. Glaciol. 56(69), 167–174 (2015).
[Crossref]

2014 (3)

J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Geosci. Remote Sensing 12(4), 726–730 (2014).
[Crossref]

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE T. Geosci Remote 52(4), 2109–2125 (2014).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental lidar (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

2013 (3)

K. M. Brunt, T. A. Neumann, K. M. Walsh, and T. Markus, “Determination of local slope on the Greenland ice sheet using a multi beam photon-counting lidar in preparation for the ICESat-2 mission,” IEEE Geosci. Remote Sensing S. 11(5), 935–939 (2013).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

A. Arsen, J. Crétaux, M. Berge-Nguyen, and R. A. del Rio, “Remote sensing-derived bathymetry of lake Poopó,” Remote Sens. 6(1), 407–420 (2013).
[Crossref]

2012 (3)

X. Wang, X. Cheng, Z. Li, H. Huang, Z. Niu, X. Li, and P. Gong, “Lake water footprint identification from time-series ICESat/GLAS data,” IEEE Geosci. Remote Sensing S. 9(3), 333–337 (2012).
[Crossref]

R. Kwok, G. F. Cunningham, G F. S. S. Manizade, and W. B. Krabill, “Arctic sea ice freeboard from IceBridge acquisitions in 2009: estimates and comparisons with ICESat,” J. Geophys. Res. Oceans 117(C2), 18 (2012).

C. Hilbert and C. Schmullius, “Influence of surface topography on ICESat/GLAS forest height estimation and waveform shape,” Remote Sens. 4(8), 2210–2235 (2012).
[Crossref]

2008 (1)

2007 (1)

B. G. Bills, A. A. Borsa, and R. L. Comstock, “MISR-based passive optical bathymetry from orbit with few-cm level of accuracy on the Salar de Uyuni, Bolivia,” Remote Sens. Environ. 107(1), 240–255 (2007).
[Crossref]

2005 (3)

T. J. Urban and B. E. Schutz, “ICESat sea level comparisons,” Geophys. Res. Lett. 32(23), S10 (2005).
[Crossref]

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mission,” Geophys. Res. Lett. 32(21), S01 (2005).
[Crossref]

R. S. Lancaster, J. D. Spinhirne, and S. P. Palm, “Laser pulse reflectance of the ocean surface from the GLAS satellite lidar,” Geophys. Res. Lett. 32(22), 109–127 (2005).
[Crossref]

2002 (1)

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3), 503–549 (2002).
[Crossref]

1982 (1)

Abbott, L.

M. Awadallah, L. Abbott, and S. Ghannam, “Segmentation of sparse noisy photon clouds using active contour models,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2014), pp. 6061–6065.

Abdalati, W.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Amundson, J. M.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

Arsen, A.

A. Arsen, J. Crétaux, M. Berge-Nguyen, and R. A. del Rio, “Remote sensing-derived bathymetry of lake Poopó,” Remote Sens. 6(1), 407–420 (2013).
[Crossref]

Awadallah, M.

M. Awadallah, L. Abbott, and S. Ghannam, “Segmentation of sparse noisy photon clouds using active contour models,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2014), pp. 6061–6065.

Berge-Nguyen, M.

A. Arsen, J. Crétaux, M. Berge-Nguyen, and R. A. del Rio, “Remote sensing-derived bathymetry of lake Poopó,” Remote Sens. 6(1), 407–420 (2013).
[Crossref]

Bills, B. G.

B. G. Bills, A. A. Borsa, and R. L. Comstock, “MISR-based passive optical bathymetry from orbit with few-cm level of accuracy on the Salar de Uyuni, Bolivia,” Remote Sens. Environ. 107(1), 240–255 (2007).
[Crossref]

Blankenship, D. D.

L. A. Magruder, A. L. Neuenschwander, D. Pederson, H. W. Leigh, J. Greenbaum, A. G. de Gorordo, D. D. Blankenship, S. D. Kempf, and D. A. Young, “Noise filtering and surface detection techniques for IceBridge photon counting lidar data over Antarctica,” in Proceedings of AGU Fall Meeting (AGU, 2012), pp. C21B–0584.

Borsa, A. A.

B. G. Bills, A. A. Borsa, and R. L. Comstock, “MISR-based passive optical bathymetry from orbit with few-cm level of accuracy on the Salar de Uyuni, Bolivia,” Remote Sens. Environ. 107(1), 240–255 (2007).
[Crossref]

Brenner, A.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE T. Geosci Remote 52(4), 2109–2125 (2014).
[Crossref]

Brunt, K.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple altimeter beam experimental lidar (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

Brunt, K. M.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

S. L. Farrell, K. M. Brunt, J. M. Ruth, J. M. Kuhn, L. N. Connor, and K. M. Walsh, “Sea-ice freeboard retrieval using digital photon-counting laser altimetry,” Ann. Glaciol. 56(69), 167–174 (2015).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental lidar (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

K. M. Brunt, T. A. Neumann, K. M. Walsh, and T. Markus, “Determination of local slope on the Greenland ice sheet using a multi beam photon-counting lidar in preparation for the ICESat-2 mission,” IEEE Geosci. Remote Sensing S. 11(5), 935–939 (2013).
[Crossref]

Buller, G. S.

Butcher, A.

A. Butcher, L. Doria, J. Monroe, F. Retiere, B. Smith, and J. Walding, “A method for characterizing after-pulsing and dark noise of PMTs and SiPMs,” Nucl. Instrum. Meth. A 875, 87–91 (2017).
[Crossref]

Cheng, X.

X. Wang, X. Cheng, Z. Li, H. Huang, Z. Niu, X. Li, and P. Gong, “Lake water footprint identification from time-series ICESat/GLAS data,” IEEE Geosci. Remote Sensing S. 9(3), 333–337 (2012).
[Crossref]

Comstock, R. L.

B. G. Bills, A. A. Borsa, and R. L. Comstock, “MISR-based passive optical bathymetry from orbit with few-cm level of accuracy on the Salar de Uyuni, Bolivia,” Remote Sens. Environ. 107(1), 240–255 (2007).
[Crossref]

Connor, L. N.

S. L. Farrell, K. M. Brunt, J. M. Ruth, J. M. Kuhn, L. N. Connor, and K. M. Walsh, “Sea-ice freeboard retrieval using digital photon-counting laser altimetry,” Ann. Glaciol. 56(69), 167–174 (2015).
[Crossref]

Cook, W. B.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple altimeter beam experimental lidar (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental lidar (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

Crétaux, J.

A. Arsen, J. Crétaux, M. Berge-Nguyen, and R. A. del Rio, “Remote sensing-derived bathymetry of lake Poopó,” Remote Sens. 6(1), 407–420 (2013).
[Crossref]

Csatho, B.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Cunningham, G. F.

R. Kwok, G. F. Cunningham, J. Hoffmann, and T. Markus, “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ. 183, 13–25 (2016).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental lidar (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

R. Kwok, G. F. Cunningham, G F. S. S. Manizade, and W. B. Krabill, “Arctic sea ice freeboard from IceBridge acquisitions in 2009: estimates and comparisons with ICESat,” J. Geophys. Res. Oceans 117(C2), 18 (2012).

de Gorordo, A. G.

L. A. Magruder, A. L. Neuenschwander, D. Pederson, H. W. Leigh, J. Greenbaum, A. G. de Gorordo, D. D. Blankenship, S. D. Kempf, and D. A. Young, “Noise filtering and surface detection techniques for IceBridge photon counting lidar data over Antarctica,” in Proceedings of AGU Fall Meeting (AGU, 2012), pp. C21B–0584.

Degnan, J. J.

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3), 503–549 (2002).
[Crossref]

del Rio, R. A.

A. Arsen, J. Crétaux, M. Berge-Nguyen, and R. A. del Rio, “Remote sensing-derived bathymetry of lake Poopó,” Remote Sens. 6(1), 407–420 (2013).
[Crossref]

Della Frera, A.

DiMarzio, J. P.

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mission,” Geophys. Res. Lett. 32(21), S01 (2005).
[Crossref]

Doria, L.

A. Butcher, L. Doria, J. Monroe, F. Retiere, B. Smith, and J. Walding, “A method for characterizing after-pulsing and dark noise of PMTs and SiPMs,” Nucl. Instrum. Meth. A 875, 87–91 (2017).
[Crossref]

Farrell, S.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Farrell, S. L.

S. L. Farrell, K. M. Brunt, J. M. Ruth, J. M. Kuhn, L. N. Connor, and K. M. Walsh, “Sea-ice freeboard retrieval using digital photon-counting laser altimetry,” Ann. Glaciol. 56(69), 167–174 (2015).
[Crossref]

Feng, C.

F. Yang, D. Su, Y. Ma, C. Feng, A. Yang, and M. Wang, “Refraction correction of airborne lidar bathymetry based on sea surface profile and ray tracing,” IEEE Trans. Geosci. Remote 55(11), 6141–6149 (2017).
[Crossref]

Field, C.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE T. Geosci Remote 52(4), 2109–2125 (2014).
[Crossref]

Fricker, H.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Gardner, A.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Gardner, C. S.

Gemmell, N. R.

Ghannam, S.

M. Awadallah, L. Abbott, and S. Ghannam, “Segmentation of sparse noisy photon clouds using active contour models,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2014), pp. 6061–6065.

Glennie, C.

X. Wang, C. Glennie, and Z. Pan, “An adaptive ellipsoid searching filter for airborne single-photon lidar,” IEEE Geosci. Remote Sensing S. 14(8), 1258–1262 (2017).
[Crossref]

Gong, P.

X. Wang, X. Cheng, Z. Li, H. Huang, Z. Niu, X. Li, and P. Gong, “Lake water footprint identification from time-series ICESat/GLAS data,” IEEE Geosci. Remote Sensing S. 9(3), 333–337 (2012).
[Crossref]

Greenbaum, J.

L. A. Magruder, A. L. Neuenschwander, D. Pederson, H. W. Leigh, J. Greenbaum, A. G. de Gorordo, D. D. Blankenship, S. D. Kempf, and D. A. Young, “Noise filtering and surface detection techniques for IceBridge photon counting lidar data over Antarctica,” in Proceedings of AGU Fall Meeting (AGU, 2012), pp. C21B–0584.

Halimi, A.

Hancock, D.

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mission,” Geophys. Res. Lett. 32(21), S01 (2005).
[Crossref]

Hancock, D. W.

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental lidar (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

Harding, D.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Herzfeld, U. C.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE T. Geosci Remote 52(4), 2109–2125 (2014).
[Crossref]

Hilbert, C.

C. Hilbert and C. Schmullius, “Influence of surface topography on ICESat/GLAS forest height estimation and waveform shape,” Remote Sens. 4(8), 2210–2235 (2012).
[Crossref]

Hines, E. L.

Hoffmann, J.

R. Kwok, G. F. Cunningham, J. Hoffmann, and T. Markus, “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ. 183, 13–25 (2016).
[Crossref]

Huang, H.

X. Wang, X. Cheng, Z. Li, H. Huang, Z. Niu, X. Li, and P. Gong, “Lake water footprint identification from time-series ICESat/GLAS data,” IEEE Geosci. Remote Sensing S. 9(3), 333–337 (2012).
[Crossref]

Jasinski, M.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Jasinski, M. F.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple altimeter beam experimental lidar (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

Jiang, L. A.

Kavanaugh, J. L.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

Kempf, S. D.

L. A. Magruder, A. L. Neuenschwander, D. Pederson, H. W. Leigh, J. Greenbaum, A. G. de Gorordo, D. D. Blankenship, S. D. Kempf, and D. A. Young, “Noise filtering and surface detection techniques for IceBridge photon counting lidar data over Antarctica,” in Proceedings of AGU Fall Meeting (AGU, 2012), pp. C21B–0584.

Kerekes, J.

J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Geosci. Remote Sensing 12(4), 726–730 (2014).
[Crossref]

Krabill, W. B.

R. Kwok, G. F. Cunningham, G F. S. S. Manizade, and W. B. Krabill, “Arctic sea ice freeboard from IceBridge acquisitions in 2009: estimates and comparisons with ICESat,” J. Geophys. Res. Oceans 117(C2), 18 (2012).

Krichel, N. J.

Kuhn, J. M.

S. L. Farrell, K. M. Brunt, J. M. Ruth, J. M. Kuhn, L. N. Connor, and K. M. Walsh, “Sea-ice freeboard retrieval using digital photon-counting laser altimetry,” Ann. Glaciol. 56(69), 167–174 (2015).
[Crossref]

Kwok, R.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

R. Kwok, G. F. Cunningham, J. Hoffmann, and T. Markus, “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ. 183, 13–25 (2016).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental lidar (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

R. Kwok, G. F. Cunningham, G F. S. S. Manizade, and W. B. Krabill, “Arctic sea ice freeboard from IceBridge acquisitions in 2009: estimates and comparisons with ICESat,” J. Geophys. Res. Oceans 117(C2), 18 (2012).

Lamb, R. A.

Lancaster, R. S.

R. S. Lancaster, J. D. Spinhirne, and S. P. Palm, “Laser pulse reflectance of the ocean surface from the GLAS satellite lidar,” Geophys. Res. Lett. 32(22), 109–127 (2005).
[Crossref]

Leigh, H. W.

L. A. Magruder, A. L. Neuenschwander, D. Pederson, H. W. Leigh, J. Greenbaum, A. G. de Gorordo, D. D. Blankenship, S. D. Kempf, and D. A. Young, “Noise filtering and surface detection techniques for IceBridge photon counting lidar data over Antarctica,” in Proceedings of AGU Fall Meeting (AGU, 2012), pp. C21B–0584.

Li, S.

Li, X.

X. Wang, X. Cheng, Z. Li, H. Huang, Z. Niu, X. Li, and P. Gong, “Lake water footprint identification from time-series ICESat/GLAS data,” IEEE Geosci. Remote Sensing S. 9(3), 333–337 (2012).
[Crossref]

Li, Z.

X. Wang, X. Cheng, Z. Li, H. Huang, Z. Niu, X. Li, and P. Gong, “Lake water footprint identification from time-series ICESat/GLAS data,” IEEE Geosci. Remote Sensing S. 9(3), 333–337 (2012).
[Crossref]

Liu, R.

Lubin, D.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Luthcke, S.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Luu, J. X.

Ma, Y.

Maccarone, A.

Magruder, L.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Magruder, L. A.

L. A. Magruder, A. L. Neuenschwander, D. Pederson, H. W. Leigh, J. Greenbaum, A. G. de Gorordo, D. D. Blankenship, S. D. Kempf, and D. A. Young, “Noise filtering and surface detection techniques for IceBridge photon counting lidar data over Antarctica,” in Proceedings of AGU Fall Meeting (AGU, 2012), pp. C21B–0584.

Manizade, G F. S. S.

R. Kwok, G. F. Cunningham, G F. S. S. Manizade, and W. B. Krabill, “Arctic sea ice freeboard from IceBridge acquisitions in 2009: estimates and comparisons with ICESat,” J. Geophys. Res. Oceans 117(C2), 18 (2012).

Markus, T.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

R. Kwok, G. F. Cunningham, J. Hoffmann, and T. Markus, “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ. 183, 13–25 (2016).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE T. Geosci Remote 52(4), 2109–2125 (2014).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental lidar (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

K. M. Brunt, T. A. Neumann, K. M. Walsh, and T. Markus, “Determination of local slope on the Greenland ice sheet using a multi beam photon-counting lidar in preparation for the ICESat-2 mission,” IEEE Geosci. Remote Sensing S. 11(5), 935–939 (2013).
[Crossref]

Martino, A.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

McCarthy, A.

Mcdonald, B. W.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE T. Geosci Remote 52(4), 2109–2125 (2014).
[Crossref]

Milstein, A. B.

Moffat, J.

Monroe, J.

A. Butcher, L. Doria, J. Monroe, F. Retiere, B. Smith, and J. Walding, “A method for characterizing after-pulsing and dark noise of PMTs and SiPMs,” Nucl. Instrum. Meth. A 875, 87–91 (2017).
[Crossref]

Morison, J.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental lidar (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

Moussavi, M. S.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

Nelson, R.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Neuenschwander, A.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Neuenschwander, A. L.

L. A. Magruder, A. L. Neuenschwander, D. Pederson, H. W. Leigh, J. Greenbaum, A. G. de Gorordo, D. D. Blankenship, S. D. Kempf, and D. A. Young, “Noise filtering and surface detection techniques for IceBridge photon counting lidar data over Antarctica,” in Proceedings of AGU Fall Meeting (AGU, 2012), pp. C21B–0584.

Neumann, T.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Neumann, T. A.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental lidar (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE T. Geosci Remote 52(4), 2109–2125 (2014).
[Crossref]

K. M. Brunt, T. A. Neumann, K. M. Walsh, and T. Markus, “Determination of local slope on the Greenland ice sheet using a multi beam photon-counting lidar in preparation for the ICESat-2 mission,” IEEE Geosci. Remote Sensing S. 11(5), 935–939 (2013).
[Crossref]

Niu, Z.

X. Wang, X. Cheng, Z. Li, H. Huang, Z. Niu, X. Li, and P. Gong, “Lake water footprint identification from time-series ICESat/GLAS data,” IEEE Geosci. Remote Sensing S. 9(3), 333–337 (2012).
[Crossref]

Ondrusek, M.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple altimeter beam experimental lidar (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

Palm, S.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Palm, S. P.

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental lidar (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

R. S. Lancaster, J. D. Spinhirne, and S. P. Palm, “Laser pulse reflectance of the ocean surface from the GLAS satellite lidar,” Geophys. Res. Lett. 32(22), 109–127 (2005).
[Crossref]

Pan, Z.

X. Wang, C. Glennie, and Z. Pan, “An adaptive ellipsoid searching filter for airborne single-photon lidar,” IEEE Geosci. Remote Sensing S. 14(8), 1258–1262 (2017).
[Crossref]

Pawlikowska, A. M.

Pederson, D.

L. A. Magruder, A. L. Neuenschwander, D. Pederson, H. W. Leigh, J. Greenbaum, A. G. de Gorordo, D. D. Blankenship, S. D. Kempf, and D. A. Young, “Noise filtering and surface detection techniques for IceBridge photon counting lidar data over Antarctica,” in Proceedings of AGU Fall Meeting (AGU, 2012), pp. C21B–0584.

Petillot, Y.

Popescu, S.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Ren, X.

Retiere, F.

A. Butcher, L. Doria, J. Monroe, F. Retiere, B. Smith, and J. Walding, “A method for characterizing after-pulsing and dark noise of PMTs and SiPMs,” Nucl. Instrum. Meth. A 875, 87–91 (2017).
[Crossref]

Ruggeri, A.

Ruth, J. M.

S. L. Farrell, K. M. Brunt, J. M. Ruth, J. M. Kuhn, L. N. Connor, and K. M. Walsh, “Sea-ice freeboard retrieval using digital photon-counting laser altimetry,” Ann. Glaciol. 56(69), 167–174 (2015).
[Crossref]

Scarcella, C.

Schmullius, C.

C. Hilbert and C. Schmullius, “Influence of surface topography on ICESat/GLAS forest height estimation and waveform shape,” Remote Sens. 4(8), 2210–2235 (2012).
[Crossref]

Schultz, K. I.

Schutz, B. E.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mission,” Geophys. Res. Lett. 32(21), S01 (2005).
[Crossref]

T. J. Urban and B. E. Schutz, “ICESat sea level comparisons,” Geophys. Res. Lett. 32(23), S10 (2005).
[Crossref]

Shuman, C. A.

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mission,” Geophys. Res. Lett. 32(21), S01 (2005).
[Crossref]

Shumj, C.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Smith, B.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

A. Butcher, L. Doria, J. Monroe, F. Retiere, B. Smith, and J. Walding, “A method for characterizing after-pulsing and dark noise of PMTs and SiPMs,” Nucl. Instrum. Meth. A 875, 87–91 (2017).
[Crossref]

Spinhirne, J. D.

R. S. Lancaster, J. D. Spinhirne, and S. P. Palm, “Laser pulse reflectance of the ocean surface from the GLAS satellite lidar,” Geophys. Res. Lett. 32(22), 109–127 (2005).
[Crossref]

Stengel, E.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple altimeter beam experimental lidar (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

Stoll, J. D.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple altimeter beam experimental lidar (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

Su, D.

F. Yang, D. Su, Y. Ma, C. Feng, A. Yang, and M. Wang, “Refraction correction of airborne lidar bathymetry based on sea surface profile and ray tracing,” IEEE Trans. Geosci. Remote 55(11), 6141–6149 (2017).
[Crossref]

Tosi, A.

Tsai, B. M.

Urban, T. J.

T. J. Urban and B. E. Schutz, “ICESat sea level comparisons,” Geophys. Res. Lett. 32(23), S10 (2005).
[Crossref]

Walding, J.

A. Butcher, L. Doria, J. Monroe, F. Retiere, B. Smith, and J. Walding, “A method for characterizing after-pulsing and dark noise of PMTs and SiPMs,” Nucl. Instrum. Meth. A 875, 87–91 (2017).
[Crossref]

Wallace, A. M.

Wallin, B. F.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE T. Geosci Remote 52(4), 2109–2125 (2014).
[Crossref]

Walsh, K. M.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

S. L. Farrell, K. M. Brunt, J. M. Ruth, J. M. Kuhn, L. N. Connor, and K. M. Walsh, “Sea-ice freeboard retrieval using digital photon-counting laser altimetry,” Ann. Glaciol. 56(69), 167–174 (2015).
[Crossref]

K. M. Brunt, T. A. Neumann, K. M. Walsh, and T. Markus, “Determination of local slope on the Greenland ice sheet using a multi beam photon-counting lidar in preparation for the ICESat-2 mission,” IEEE Geosci. Remote Sensing S. 11(5), 935–939 (2013).
[Crossref]

Wang, M.

F. Yang, D. Su, Y. Ma, C. Feng, A. Yang, and M. Wang, “Refraction correction of airborne lidar bathymetry based on sea surface profile and ray tracing,” IEEE Trans. Geosci. Remote 55(11), 6141–6149 (2017).
[Crossref]

Wang, X.

X. Wang, C. Glennie, and Z. Pan, “An adaptive ellipsoid searching filter for airborne single-photon lidar,” IEEE Geosci. Remote Sensing S. 14(8), 1258–1262 (2017).
[Crossref]

X. Wang, X. Cheng, Z. Li, H. Huang, Z. Niu, X. Li, and P. Gong, “Lake water footprint identification from time-series ICESat/GLAS data,” IEEE Geosci. Remote Sensing S. 9(3), 333–337 (2012).
[Crossref]

Wang, X. H.

Warburton, R. E.

Xin, M.

Yang, A.

F. Yang, D. Su, Y. Ma, C. Feng, A. Yang, and M. Wang, “Refraction correction of airborne lidar bathymetry based on sea surface profile and ray tracing,” IEEE Trans. Geosci. Remote 55(11), 6141–6149 (2017).
[Crossref]

Yang, F.

F. Yang, D. Su, Y. Ma, C. Feng, A. Yang, and M. Wang, “Refraction correction of airborne lidar bathymetry based on sea surface profile and ray tracing,” IEEE Trans. Geosci. Remote 55(11), 6141–6149 (2017).
[Crossref]

Yang, Y.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Young, D. A.

L. A. Magruder, A. L. Neuenschwander, D. Pederson, H. W. Leigh, J. Greenbaum, A. G. de Gorordo, D. D. Blankenship, S. D. Kempf, and D. A. Young, “Noise filtering and surface detection techniques for IceBridge photon counting lidar data over Antarctica,” in Proceedings of AGU Fall Meeting (AGU, 2012), pp. C21B–0584.

Zhang, J.

J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Geosci. Remote Sensing 12(4), 726–730 (2014).
[Crossref]

Zhang, W.

Zhang, Z.

Zhou, H.

Zwally, H. J.

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mission,” Geophys. Res. Lett. 32(21), S01 (2005).
[Crossref]

Zwally, J.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Ann. Glaciol. (1)

S. L. Farrell, K. M. Brunt, J. M. Ruth, J. M. Kuhn, L. N. Connor, and K. M. Walsh, “Sea-ice freeboard retrieval using digital photon-counting laser altimetry,” Ann. Glaciol. 56(69), 167–174 (2015).
[Crossref]

Appl. Opt. (3)

Cryosphere (1)

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

Geophys. Res. Lett. (3)

T. J. Urban and B. E. Schutz, “ICESat sea level comparisons,” Geophys. Res. Lett. 32(23), S10 (2005).
[Crossref]

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mission,” Geophys. Res. Lett. 32(21), S01 (2005).
[Crossref]

R. S. Lancaster, J. D. Spinhirne, and S. P. Palm, “Laser pulse reflectance of the ocean surface from the GLAS satellite lidar,” Geophys. Res. Lett. 32(22), 109–127 (2005).
[Crossref]

IEEE Geosci. Remote Sensing (1)

J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Geosci. Remote Sensing 12(4), 726–730 (2014).
[Crossref]

IEEE Geosci. Remote Sensing S. (3)

K. M. Brunt, T. A. Neumann, K. M. Walsh, and T. Markus, “Determination of local slope on the Greenland ice sheet using a multi beam photon-counting lidar in preparation for the ICESat-2 mission,” IEEE Geosci. Remote Sensing S. 11(5), 935–939 (2013).
[Crossref]

X. Wang, C. Glennie, and Z. Pan, “An adaptive ellipsoid searching filter for airborne single-photon lidar,” IEEE Geosci. Remote Sensing S. 14(8), 1258–1262 (2017).
[Crossref]

X. Wang, X. Cheng, Z. Li, H. Huang, Z. Niu, X. Li, and P. Gong, “Lake water footprint identification from time-series ICESat/GLAS data,” IEEE Geosci. Remote Sensing S. 9(3), 333–337 (2012).
[Crossref]

IEEE T. Geosci Remote (1)

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission,” IEEE T. Geosci Remote 52(4), 2109–2125 (2014).
[Crossref]

IEEE Trans. Geosci. Remote (1)

F. Yang, D. Su, Y. Ma, C. Feng, A. Yang, and M. Wang, “Refraction correction of airborne lidar bathymetry based on sea surface profile and ray tracing,” IEEE Trans. Geosci. Remote 55(11), 6141–6149 (2017).
[Crossref]

J. Atmos. Ocean. Technol. (1)

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental lidar (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

J. Coast. Res. (1)

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple altimeter beam experimental lidar (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

J. Geodyn. (1)

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3), 503–549 (2002).
[Crossref]

J. Geophys. Res. Oceans (1)

R. Kwok, G. F. Cunningham, G F. S. S. Manizade, and W. B. Krabill, “Arctic sea ice freeboard from IceBridge acquisitions in 2009: estimates and comparisons with ICESat,” J. Geophys. Res. Oceans 117(C2), 18 (2012).

Nucl. Instrum. Meth. A (1)

A. Butcher, L. Doria, J. Monroe, F. Retiere, B. Smith, and J. Walding, “A method for characterizing after-pulsing and dark noise of PMTs and SiPMs,” Nucl. Instrum. Meth. A 875, 87–91 (2017).
[Crossref]

Opt. Express (4)

Remote Sens. (2)

A. Arsen, J. Crétaux, M. Berge-Nguyen, and R. A. del Rio, “Remote sensing-derived bathymetry of lake Poopó,” Remote Sens. 6(1), 407–420 (2013).
[Crossref]

C. Hilbert and C. Schmullius, “Influence of surface topography on ICESat/GLAS forest height estimation and waveform shape,” Remote Sens. 4(8), 2210–2235 (2012).
[Crossref]

Remote Sens. Environ. (3)

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shumj, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

R. Kwok, G. F. Cunningham, J. Hoffmann, and T. Markus, “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ. 183, 13–25 (2016).
[Crossref]

B. G. Bills, A. A. Borsa, and R. L. Comstock, “MISR-based passive optical bathymetry from orbit with few-cm level of accuracy on the Salar de Uyuni, Bolivia,” Remote Sens. Environ. 107(1), 240–255 (2007).
[Crossref]

Other (8)

M. Awadallah, L. Abbott, and S. Ghannam, “Segmentation of sparse noisy photon clouds using active contour models,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2014), pp. 6061–6065.

L. A. Magruder, A. L. Neuenschwander, D. Pederson, H. W. Leigh, J. Greenbaum, A. G. de Gorordo, D. D. Blankenship, S. D. Kempf, and D. A. Young, “Noise filtering and surface detection techniques for IceBridge photon counting lidar data over Antarctica,” in Proceedings of AGU Fall Meeting (AGU, 2012), pp. C21B–0584.

“ https://icesat.gsfc.nasa.gov/icesat2/data/mabel/data/browse/050_20130918_Ocean_CalVal_VA/index.html ,” (2014).

K. Madsen, H. B. Nielsen, and O. Tingleff, Methods for Non-linear Least Squares Problems, 2nd ed. (Technical University of Denmark, 2004).

R. Chester and T. Jickells, Marine geochemistry (Wiley-Blackwell, 2012).

A. C. Brenner, H. J. Zwally, C. R. Bentley, B. M. Csathó, D. J. Harding, M. A. Hofton, J. Minster, L. Roberts, J. L. Saba, R. H. Thomas, and D. Yi, Derivation of Range and Range Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights, 5th ver. (NASA Goddard Space Flight Center, 2011).

G. J. Komen, L. Cavakeri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. Janssen, Dynamics and Modeling of Ocean Waves (Cambridge University, 1994).

J. E. Lee, GLAS Standard Data Products Specification-Level 1, 9th ver. (NASA Goddard Space Flight Center, USA 2011).

Supplementary Material (1)

NameDescription
» Dataset 1       MABEL dataset

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Typical MABEL data photons, which were captured at 2:36 PM on 09/18/2013 (channel no. 44 at 1064 nm). The raw data photons, which consist of signal photons and noise photons, are illustrated using green filled circles and labeled “Raw data”; the signal photons of the MABEL standard result that correspond to the “high” flags with the best reliabilities are illustrated using blue filled circles and labeled “MABEL result”; and the signal photons that are extracted via the newly derived method are illustrated using red filled circles and labeled “Fitting result”.
Fig. 2
Fig. 2 Flight routes of the MABEL system (using red curves) on 09/18/2013 when the MABEL laser was illuminated on the sea surface near the east coast of Portsmouth, USA. These data photons were captured when intermittent clouds covered the ocean; hence, some of the data photons are contaminated by the cloud scattering effect.
Fig. 3
Fig. 3 Two typical along-track segments of the data set that was obtained at 2:36 PM on 09/18/2013 (channel no. 44 at 1064 nm). (a) The left figure corresponds to the relative along-track distance in the range from 1500 m to 2000 m; and (b) the right figure corresponds to the relative along-track distance in the range from 2000 m to 2500 m. The signal photons that are extracted via the MABEL method are labeled “MABEL results” and the signal photons extracted via the newly derived method are labeled “Fitting results”.
Fig. 4
Fig. 4 Accumulated elevation distributions or “accumulated waveforms” correspond to the signal photons in Figs. 3(a) and 3(b), respectively. (a) The left figure corresponds to the accumulated waveform in the range from 1500 m to 2000 m; and (b) the right figure corresponds to the accumulated waveform in the range from 2000 m to 2500 m. The accumulated waveforms of the new method (labeled as “Fitting waveform”) and the MABEL result (labeled as “MABEL waveform”) are shown as red and blue solid curves, respectively, and their corresponding centroids are shown as red and blue dashed lines, respectively.
Fig. 5
Fig. 5 Signal photons of the sea surface that is extracted by the new derived method (Zooming in from 3000 m to 5000 m in the along-track direction).
Fig. 6
Fig. 6 Typical ICESat/GLAS waveform of the sea surface. This waveform, which is shown as a blue solid curve, was captured on 03/04/2004 in the east Pacific and the corresponding centroid is shown as a blue dashed line.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

z ( x , y ) = i = 1 m ζ i cos [ ω i 2 g ( x cos α i + y sin α i ) + ε i ]
z ( d ) = i = 1 m ζ i cos ( ω i 2 g d + ε i ) + o f f
S ( ω ) = α g 2 ω 5 exp [ 5 4 ( ω ω p ) 4 ] γ exp [ ( ω ω p ) 2 σ 2 ω p 2 2 ]

Metrics