Abstract

We propose a matrix pencil method for designing one- or two- dimensional (1D or 2D) metalenses with randomly distributed meta-atoms. In contrast to the standard random synthesis algorithm that only randomizes the position of the meta-atoms, the proposed method designs both the position and phase of each meta-atom rigorously. Several all-dielectric random metalenses, in both 1D and 2D operating at 220 GHz, are presented by using our proposed algorithm. Minimum reduction of focusing efficiency can be achieved with respect to a standard metalens with periodically arranged meta-atoms. In contrast to previously reported random metalenses, our random metalenses achieve much higher efficiency, while staying polarization-independent. This synthesis method will pave a way for future random-metasurface-based device designs, which could have more degrees of freedom to information multiplexing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetic metasurfaces: physics and applications

Shulin Sun, Qiong He, Jiaming Hao, Shiyi Xiao, and Lei Zhou
Adv. Opt. Photon. 11(2) 380-479 (2019)

A high-efficiency dual-wavelength achromatic metalens based on Pancharatnam-Berry phase manipulation

Junyi Chen, Fanwei Zhang, Qiang Li, Jiepeng Wu, and Lijun Wu
Opt. Express 26(26) 34919-34927 (2018)

Efficient design of random metasurfaces

Hadiseh Nasari, Matthieu Dupré, and Boubacar Kanté
Opt. Lett. 43(23) 5829-5832 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  2. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
    [Crossref]
  3. S. Chang, X. Guo, and X. Ni, “Optical metasurfaces: progress and applications,” Annu. Rev. Mater. Res. 48(1), 279–302 (2018).
    [Crossref]
  4. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
    [Crossref]
  5. A. Monti, J. Soric, A. Alu, F. Bilotti, A. Toscano, and L. Vegni, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11(5), 1414–1417 (2015).
  6. H. Li, G. Wang, H. X. Xu, T. Cai, and J. Liang, “X-band phase-gradient metasurface for high-gain lens antenna application,” IEEE Trans. Antenn. Propag. 63(11), 5144–5149 (2015).
    [Crossref]
  7. F. H. Lin and Z. N. Chen, “Low-profile wideband metasurface antennas using characteristic mode analysis,” IEEE Trans. Antenn. Propag. 65(4), 1706–1713 (2017).
    [Crossref]
  8. W. E. I. Liu, Z. N. Chen, and X. Qing, “Compact wideband metasurface-based circularly polarized antenna for Ka-band phased array,” (IEEE, 2017) in Proceedings of Antennas and Propagation in Wireless Communications, 17-20.
  9. F. H. Lin and Z. N. Chen, “A method of suppressing higher order modes for improving radiation performance of metasurface multiport antennas using characteristic mode analysis,” IEEE Trans. Antenn. Propag. 66(4), 1894–1902 (2018).
    [Crossref]
  10. Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
    [Crossref]
  11. Y. Zhao, J. Gao, X. Cao, T. Liu, L. Xu, X. Liu, and L. Cong, “In-band RCS reduction of waveguide slot array using metasurface bars,” IEEE Trans. Antenn. Propag. 65(2), 943–947 (2017).
    [Crossref]
  12. Y. Zhao, X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
    [Crossref]
  13. D. F. Sievenpiper, “Nonlinear grounded metasurfaces for suppression of high-power pulsed RF currents,” IEEE Antennas Wirel. Propag. Lett. 10, 1516–1519 (2011).
    [Crossref]
  14. A. Li, S. Kim, Y. Luo, Y. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
    [Crossref]
  15. X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
    [Crossref] [PubMed]
  16. P. Y. Chen and A. Alu, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
    [Crossref]
  17. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref] [PubMed]
  18. S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, “Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface,” Opt. Express 22(11), 13403–13417 (2014).
    [Crossref] [PubMed]
  19. Z. H. Jiang and D. H. Werner, “Dispersion engineering of metasurfaces for dual-frequency quasi-three-dimensional cloaking of microwave radiators,” Opt. Express 24(9), 9629–9644 (2016).
    [Crossref] [PubMed]
  20. R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Creation of an arbitrary electromagnetic illusion using a planar ultrathin metasurface,” IEEE Photonics J. 9(4), 1–9 (2017).
    [Crossref]
  21. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
    [Crossref]
  22. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref] [PubMed]
  23. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
    [Crossref]
  24. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  25. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
    [Crossref] [PubMed]
  26. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
    [Crossref] [PubMed]
  27. Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
    [Crossref] [PubMed]
  28. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  29. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
    [Crossref] [PubMed]
  30. Y. F. Yu, A. Y. Zhu, R. Paníagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High–transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
    [Crossref]
  31. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]
  32. H. Yi, S. W. Qu, K. B. Ng, C. H. Chan, and X. Bai, “3–D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam,” IEEE Trans. Antenn. Propag. 64(2), 442–449 (2016).
    [Crossref]
  33. D. Isakov, C. J. Stevens, F. Castles, and P. S. Grant, “3D–printed high dielectric contrast gradient index flat lens for a directive antenna with reduced dimensions,” Advanced Materials Technologies 1(6), 1600072 (2016).
    [Crossref]
  34. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  35. S. J. Byrnes, A. Lenef, F. Aieta, and F. Capasso, “Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light,” Opt. Express 24(5), 5110–5124 (2016).
    [Crossref] [PubMed]
  36. L. Hsu, M. Dupré, A. Ndao, J. Yellowhair, and B. Kanté, “Local phase method for designing and optimizing metasurface devices,” Opt. Express 25(21), 24974–24982 (2017).
    [Crossref] [PubMed]
  37. M. Dupré, L. Hsu, and B. Kanté, “On the design of random metasurface based devices,” Sci. Rep. 8(1), 7162 (2018).
    [Crossref] [PubMed]
  38. M. Dupré, J. Park, and B. Kanté, “A random metasurface for an all polarization flat lens,” in Proceedings of CLEO: Science and InnovationsOSA, 2018), JTu5A–38.
  39. Y. Liu, Z. Nie, and Q. H. Liu, “Reducing the number of elements in a linear antenna array by the matrix pencil method,” IEEE Trans. Antenn. Propag. 56(9), 2955–2962 (2008).
    [Crossref]
  40. Y. Liu, Q. H. Liu, and Z. Nie, “Reducing the number of elements in the synthesis of shaped-beam patterns by the forward-backward matrix pencil method,” IEEE Trans. Antenn. Propag. 58(2), 604–608 (2010).
    [Crossref]
  41. T. K. Sarkar and O. Pereira, “Using the matrix pencil method to estimate the parameters by a sum of complex exponentials,” IEEE Antennas Propag. Mag. 37(1), 48–55 (1995).
    [Crossref]
  42. E. K. Miller and D. M. Goodman, “A pole-zero modeling approach to linear array synthesis I: the unconstrained solution,” Radio Sci. 18(1), 57–69 (1983).
    [Crossref]
  43. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 3rd edition, (John Wiley & Sons, 2012).

2018 (5)

S. Chang, X. Guo, and X. Ni, “Optical metasurfaces: progress and applications,” Annu. Rev. Mater. Res. 48(1), 279–302 (2018).
[Crossref]

F. H. Lin and Z. N. Chen, “A method of suppressing higher order modes for improving radiation performance of metasurface multiport antennas using characteristic mode analysis,” IEEE Trans. Antenn. Propag. 66(4), 1894–1902 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

M. Dupré, L. Hsu, and B. Kanté, “On the design of random metasurface based devices,” Sci. Rep. 8(1), 7162 (2018).
[Crossref] [PubMed]

2017 (6)

L. Hsu, M. Dupré, A. Ndao, J. Yellowhair, and B. Kanté, “Local phase method for designing and optimizing metasurface devices,” Opt. Express 25(21), 24974–24982 (2017).
[Crossref] [PubMed]

R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Creation of an arbitrary electromagnetic illusion using a planar ultrathin metasurface,” IEEE Photonics J. 9(4), 1–9 (2017).
[Crossref]

Y. Zhao, J. Gao, X. Cao, T. Liu, L. Xu, X. Liu, and L. Cong, “In-band RCS reduction of waveguide slot array using metasurface bars,” IEEE Trans. Antenn. Propag. 65(2), 943–947 (2017).
[Crossref]

A. Li, S. Kim, Y. Luo, Y. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

F. H. Lin and Z. N. Chen, “Low-profile wideband metasurface antennas using characteristic mode analysis,” IEEE Trans. Antenn. Propag. 65(4), 1706–1713 (2017).
[Crossref]

2016 (10)

Z. H. Jiang and D. H. Werner, “Dispersion engineering of metasurfaces for dual-frequency quasi-three-dimensional cloaking of microwave radiators,” Opt. Express 24(9), 9629–9644 (2016).
[Crossref] [PubMed]

Y. Zhao, X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

H. Yi, S. W. Qu, K. B. Ng, C. H. Chan, and X. Bai, “3–D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam,” IEEE Trans. Antenn. Propag. 64(2), 442–449 (2016).
[Crossref]

D. Isakov, C. J. Stevens, F. Castles, and P. S. Grant, “3D–printed high dielectric contrast gradient index flat lens for a directive antenna with reduced dimensions,” Advanced Materials Technologies 1(6), 1600072 (2016).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

S. J. Byrnes, A. Lenef, F. Aieta, and F. Capasso, “Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light,” Opt. Express 24(5), 5110–5124 (2016).
[Crossref] [PubMed]

2015 (6)

Y. F. Yu, A. Y. Zhu, R. Paníagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High–transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

A. Monti, J. Soric, A. Alu, F. Bilotti, A. Toscano, and L. Vegni, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11(5), 1414–1417 (2015).

H. Li, G. Wang, H. X. Xu, T. Cai, and J. Liang, “X-band phase-gradient metasurface for high-gain lens antenna application,” IEEE Trans. Antenn. Propag. 63(11), 5144–5149 (2015).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (2)

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

2012 (2)

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

2011 (3)

D. F. Sievenpiper, “Nonlinear grounded metasurfaces for suppression of high-power pulsed RF currents,” IEEE Antennas Wirel. Propag. Lett. 10, 1516–1519 (2011).
[Crossref]

P. Y. Chen and A. Alu, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (1)

Y. Liu, Q. H. Liu, and Z. Nie, “Reducing the number of elements in the synthesis of shaped-beam patterns by the forward-backward matrix pencil method,” IEEE Trans. Antenn. Propag. 58(2), 604–608 (2010).
[Crossref]

2008 (1)

Y. Liu, Z. Nie, and Q. H. Liu, “Reducing the number of elements in a linear antenna array by the matrix pencil method,” IEEE Trans. Antenn. Propag. 56(9), 2955–2962 (2008).
[Crossref]

1995 (1)

T. K. Sarkar and O. Pereira, “Using the matrix pencil method to estimate the parameters by a sum of complex exponentials,” IEEE Antennas Propag. Mag. 37(1), 48–55 (1995).
[Crossref]

1983 (1)

E. K. Miller and D. M. Goodman, “A pole-zero modeling approach to linear array synthesis I: the unconstrained solution,” Radio Sci. 18(1), 57–69 (1983).
[Crossref]

Aieta, F.

S. J. Byrnes, A. Lenef, F. Aieta, and F. Capasso, “Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light,” Opt. Express 24(5), 5110–5124 (2016).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alu, A.

A. Monti, J. Soric, A. Alu, F. Bilotti, A. Toscano, and L. Vegni, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11(5), 1414–1417 (2015).

P. Y. Chen and A. Alu, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Bai, X.

H. Yi, S. W. Qu, K. B. Ng, C. H. Chan, and X. Bai, “3–D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam,” IEEE Trans. Antenn. Propag. 64(2), 442–449 (2016).
[Crossref]

Belov, P. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Bilotti, F.

A. Monti, J. Soric, A. Alu, F. Bilotti, A. Toscano, and L. Vegni, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11(5), 1414–1417 (2015).

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Byrnes, S. J.

Cai, T.

H. Li, G. Wang, H. X. Xu, T. Cai, and J. Liang, “X-band phase-gradient metasurface for high-gain lens antenna application,” IEEE Trans. Antenn. Propag. 63(11), 5144–5149 (2015).
[Crossref]

Cao, X.

Y. Zhao, J. Gao, X. Cao, T. Liu, L. Xu, X. Liu, and L. Cong, “In-band RCS reduction of waveguide slot array using metasurface bars,” IEEE Trans. Antenn. Propag. 65(2), 943–947 (2017).
[Crossref]

Y. Zhao, X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Capasso, F.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

S. J. Byrnes, A. Lenef, F. Aieta, and F. Capasso, “Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light,” Opt. Express 24(5), 5110–5124 (2016).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Castles, F.

D. Isakov, C. J. Stevens, F. Castles, and P. S. Grant, “3D–printed high dielectric contrast gradient index flat lens for a directive antenna with reduced dimensions,” Advanced Materials Technologies 1(6), 1600072 (2016).
[Crossref]

Chan, C. H.

H. Yi, S. W. Qu, K. B. Ng, C. H. Chan, and X. Bai, “3–D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam,” IEEE Trans. Antenn. Propag. 64(2), 442–449 (2016).
[Crossref]

Chang, S.

S. Chang, X. Guo, and X. Ni, “Optical metasurfaces: progress and applications,” Annu. Rev. Mater. Res. 48(1), 279–302 (2018).
[Crossref]

Chen, B. H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Chen, M.-K.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Chen, P. Y.

P. Y. Chen and A. Alu, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[Crossref]

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, Y. H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Chen, Z. N.

F. H. Lin and Z. N. Chen, “A method of suppressing higher order modes for improving radiation performance of metasurface multiport antennas using characteristic mode analysis,” IEEE Trans. Antenn. Propag. 66(4), 1894–1902 (2018).
[Crossref]

F. H. Lin and Z. N. Chen, “Low-profile wideband metasurface antennas using characteristic mode analysis,” IEEE Trans. Antenn. Propag. 65(4), 1706–1713 (2017).
[Crossref]

W. E. I. Liu, Z. N. Chen, and X. Qing, “Compact wideband metasurface-based circularly polarized antenna for Ka-band phased array,” (IEEE, 2017) in Proceedings of Antennas and Propagation in Wireless Communications, 17-20.

Cong, L.

Y. Zhao, J. Gao, X. Cao, T. Liu, L. Xu, X. Liu, and L. Cong, “In-band RCS reduction of waveguide slot array using metasurface bars,” IEEE Trans. Antenn. Propag. 65(2), 943–947 (2017).
[Crossref]

Cui, T. J.

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Ding, X.

R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Creation of an arbitrary electromagnetic illusion using a planar ultrathin metasurface,” IEEE Photonics J. 9(4), 1–9 (2017).
[Crossref]

Dupré, M.

M. Dupré, L. Hsu, and B. Kanté, “On the design of random metasurface based devices,” Sci. Rep. 8(1), 7162 (2018).
[Crossref] [PubMed]

L. Hsu, M. Dupré, A. Ndao, J. Yellowhair, and B. Kanté, “Local phase method for designing and optimizing metasurface devices,” Opt. Express 25(21), 24974–24982 (2017).
[Crossref] [PubMed]

M. Dupré, J. Park, and B. Kanté, “A random metasurface for an all polarization flat lens,” in Proceedings of CLEO: Science and InnovationsOSA, 2018), JTu5A–38.

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Fan, K.

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Fu, Y. H.

Y. F. Yu, A. Y. Zhu, R. Paníagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High–transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, J.

Y. Zhao, J. Gao, X. Cao, T. Liu, L. Xu, X. Liu, and L. Cong, “In-band RCS reduction of waveguide slot array using metasurface bars,” IEEE Trans. Antenn. Propag. 65(2), 943–947 (2017).
[Crossref]

Y. Zhao, X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Glybovski, S. B.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Gong, S.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Gong, Z. S.

R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Creation of an arbitrary electromagnetic illusion using a planar ultrathin metasurface,” IEEE Photonics J. 9(4), 1–9 (2017).
[Crossref]

Goodman, D. M.

E. K. Miller and D. M. Goodman, “A pole-zero modeling approach to linear array synthesis I: the unconstrained solution,” Radio Sci. 18(1), 57–69 (1983).
[Crossref]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Grant, P. S.

D. Isakov, C. J. Stevens, F. Castles, and P. S. Grant, “3D–printed high dielectric contrast gradient index flat lens for a directive antenna with reduced dimensions,” Advanced Materials Technologies 1(6), 1600072 (2016).
[Crossref]

Guo, X.

S. Chang, X. Guo, and X. Ni, “Optical metasurfaces: progress and applications,” Annu. Rev. Mater. Res. 48(1), 279–302 (2018).
[Crossref]

Guo, Y. J.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Hao, Y.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Hsu, L.

Huang, T.-T.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Isakov, D.

D. Isakov, C. J. Stevens, F. Castles, and P. S. Grant, “3D–printed high dielectric contrast gradient index flat lens for a directive antenna with reduced dimensions,” Advanced Materials Technologies 1(6), 1600072 (2016).
[Crossref]

Ishii, S.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jia, Y.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Jiang, Z. H.

Kanté, B.

M. Dupré, L. Hsu, and B. Kanté, “On the design of random metasurface based devices,” Sci. Rep. 8(1), 7162 (2018).
[Crossref] [PubMed]

L. Hsu, M. Dupré, A. Ndao, J. Yellowhair, and B. Kanté, “Local phase method for designing and optimizing metasurface devices,” Opt. Express 25(21), 24974–24982 (2017).
[Crossref] [PubMed]

M. Dupré, J. Park, and B. Kanté, “A random metasurface for an all polarization flat lens,” in Proceedings of CLEO: Science and InnovationsOSA, 2018), JTu5A–38.

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kildishev, A. V.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Kim, S.

A. Li, S. Kim, Y. Luo, Y. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

Kivshar, Y. S.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Kuan, C.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Kuo, H. Y.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Kuznetsov, A. I.

Y. F. Yu, A. Y. Zhu, R. Paníagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High–transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Lai, Y.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Lenef, A.

Li, A.

A. Li, S. Kim, Y. Luo, Y. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Li, H.

H. Li, G. Wang, H. X. Xu, T. Cai, and J. Liang, “X-band phase-gradient metasurface for high-gain lens antenna application,” IEEE Trans. Antenn. Propag. 63(11), 5144–5149 (2015).
[Crossref]

Li, K.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Li, S.

Y. Zhao, X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Li, T.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Li, W.

Y. Zhao, X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Li, X.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Li, Y.

A. Li, S. Kim, Y. Luo, Y. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Liang, J.

H. Li, G. Wang, H. X. Xu, T. Cai, and J. Liang, “X-band phase-gradient metasurface for high-gain lens antenna application,” IEEE Trans. Antenn. Propag. 63(11), 5144–5149 (2015).
[Crossref]

Lin, F. H.

F. H. Lin and Z. N. Chen, “A method of suppressing higher order modes for improving radiation performance of metasurface multiport antennas using characteristic mode analysis,” IEEE Trans. Antenn. Propag. 66(4), 1894–1902 (2018).
[Crossref]

F. H. Lin and Z. N. Chen, “Low-profile wideband metasurface antennas using characteristic mode analysis,” IEEE Trans. Antenn. Propag. 65(4), 1706–1713 (2017).
[Crossref]

Lin, R.-M.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Liu, Q. H.

Y. Liu, Q. H. Liu, and Z. Nie, “Reducing the number of elements in the synthesis of shaped-beam patterns by the forward-backward matrix pencil method,” IEEE Trans. Antenn. Propag. 58(2), 604–608 (2010).
[Crossref]

Y. Liu, Z. Nie, and Q. H. Liu, “Reducing the number of elements in a linear antenna array by the matrix pencil method,” IEEE Trans. Antenn. Propag. 56(9), 2955–2962 (2008).
[Crossref]

Liu, S.

Liu, T.

Y. Zhao, J. Gao, X. Cao, T. Liu, L. Xu, X. Liu, and L. Cong, “In-band RCS reduction of waveguide slot array using metasurface bars,” IEEE Trans. Antenn. Propag. 65(2), 943–947 (2017).
[Crossref]

Y. Zhao, X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Liu, W. E. I.

W. E. I. Liu, Z. N. Chen, and X. Qing, “Compact wideband metasurface-based circularly polarized antenna for Ka-band phased array,” (IEEE, 2017) in Proceedings of Antennas and Propagation in Wireless Communications, 17-20.

Liu, X.

Y. Zhao, J. Gao, X. Cao, T. Liu, L. Xu, X. Liu, and L. Cong, “In-band RCS reduction of waveguide slot array using metasurface bars,” IEEE Trans. Antenn. Propag. 65(2), 943–947 (2017).
[Crossref]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Y. Liu, Q. H. Liu, and Z. Nie, “Reducing the number of elements in the synthesis of shaped-beam patterns by the forward-backward matrix pencil method,” IEEE Trans. Antenn. Propag. 58(2), 604–608 (2010).
[Crossref]

Y. Liu, Z. Nie, and Q. H. Liu, “Reducing the number of elements in a linear antenna array by the matrix pencil method,” IEEE Trans. Antenn. Propag. 56(9), 2955–2962 (2008).
[Crossref]

Long, J.

A. Li, S. Kim, Y. Luo, Y. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

Luk’yanchuk, B.

Y. F. Yu, A. Y. Zhu, R. Paníagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High–transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Luo, X.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Luo, Y.

A. Li, S. Kim, Y. Luo, Y. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

Ma, X.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Miller, E. K.

E. K. Miller and D. M. Goodman, “A pole-zero modeling approach to linear array synthesis I: the unconstrained solution,” Radio Sci. 18(1), 57–69 (1983).
[Crossref]

Monti, A.

A. Monti, J. Soric, A. Alu, F. Bilotti, A. Toscano, and L. Vegni, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11(5), 1414–1417 (2015).

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Ndao, A.

Ng, K. B.

H. Yi, S. W. Qu, K. B. Ng, C. H. Chan, and X. Bai, “3–D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam,” IEEE Trans. Antenn. Propag. 64(2), 442–449 (2016).
[Crossref]

Ni, X.

S. Chang, X. Guo, and X. Ni, “Optical metasurfaces: progress and applications,” Annu. Rev. Mater. Res. 48(1), 279–302 (2018).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Nie, Z.

Y. Liu, Q. H. Liu, and Z. Nie, “Reducing the number of elements in the synthesis of shaped-beam patterns by the forward-backward matrix pencil method,” IEEE Trans. Antenn. Propag. 58(2), 604–608 (2010).
[Crossref]

Y. Liu, Z. Nie, and Q. H. Liu, “Reducing the number of elements in a linear antenna array by the matrix pencil method,” IEEE Trans. Antenn. Propag. 56(9), 2955–2962 (2008).
[Crossref]

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Padilla, W. J.

Paníagua-Domínguez, R.

Y. F. Yu, A. Y. Zhu, R. Paníagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High–transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Park, J.

M. Dupré, J. Park, and B. Kanté, “A random metasurface for an all polarization flat lens,” in Proceedings of CLEO: Science and InnovationsOSA, 2018), JTu5A–38.

Pereira, O.

T. K. Sarkar and O. Pereira, “Using the matrix pencil method to estimate the parameters by a sum of complex exponentials,” IEEE Antennas Propag. Mag. 37(1), 48–55 (1995).
[Crossref]

Pu, M.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Qing, X.

W. E. I. Liu, Z. N. Chen, and X. Qing, “Compact wideband metasurface-based circularly polarized antenna for Ka-band phased array,” (IEEE, 2017) in Proceedings of Antennas and Propagation in Wireless Communications, 17-20.

Qu, S. W.

H. Yi, S. W. Qu, K. B. Ng, C. H. Chan, and X. Bai, “3–D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam,” IEEE Trans. Antenn. Propag. 64(2), 442–449 (2016).
[Crossref]

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Sarkar, T. K.

T. K. Sarkar and O. Pereira, “Using the matrix pencil method to estimate the parameters by a sum of complex exponentials,” IEEE Antennas Propag. Mag. 37(1), 48–55 (1995).
[Crossref]

Shadrivov, I. V.

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Sievenpiper, D. F.

A. Li, S. Kim, Y. Luo, Y. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

D. F. Sievenpiper, “Nonlinear grounded metasurfaces for suppression of high-power pulsed RF currents,” IEEE Antennas Wirel. Propag. Lett. 10, 1516–1519 (2011).
[Crossref]

Simovski, C. R.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Smith, D. R.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Soric, J.

A. Monti, J. Soric, A. Alu, F. Bilotti, A. Toscano, and L. Vegni, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11(5), 1414–1417 (2015).

Stevens, C. J.

D. Isakov, C. J. Stevens, F. Castles, and P. S. Grant, “3D–printed high dielectric contrast gradient index flat lens for a directive antenna with reduced dimensions,” Advanced Materials Technologies 1(6), 1600072 (2016).
[Crossref]

Su, V.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Toscano, A.

A. Monti, J. Soric, A. Alu, F. Bilotti, A. Toscano, and L. Vegni, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11(5), 1414–1417 (2015).

Tretyakov, S. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Tsai, D. P.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Vegni, L.

A. Monti, J. Soric, A. Alu, F. Bilotti, A. Toscano, and L. Vegni, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11(5), 1414–1417 (2015).

Wang, B. Z.

R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Creation of an arbitrary electromagnetic illusion using a planar ultrathin metasurface,” IEEE Photonics J. 9(4), 1–9 (2017).
[Crossref]

Wang, G.

H. Li, G. Wang, H. X. Xu, T. Cai, and J. Liang, “X-band phase-gradient metasurface for high-gain lens antenna application,” IEEE Trans. Antenn. Propag. 63(11), 5144–5149 (2015).
[Crossref]

Wang, J.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Wang, R.

R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Creation of an arbitrary electromagnetic illusion using a planar ultrathin metasurface,” IEEE Photonics J. 9(4), 1–9 (2017).
[Crossref]

Wang, S.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Wang, Y.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wang, Z.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Werner, D. H.

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wu, P. C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Xu, H. X.

H. Li, G. Wang, H. X. Xu, T. Cai, and J. Liang, “X-band phase-gradient metasurface for high-gain lens antenna application,” IEEE Trans. Antenn. Propag. 63(11), 5144–5149 (2015).
[Crossref]

S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, “Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface,” Opt. Express 22(11), 13403–13417 (2014).
[Crossref] [PubMed]

Xu, L.

Y. Zhao, J. Gao, X. Cao, T. Liu, L. Xu, X. Liu, and L. Cong, “In-band RCS reduction of waveguide slot array using metasurface bars,” IEEE Trans. Antenn. Propag. 65(2), 943–947 (2017).
[Crossref]

Yao, X.

Y. Zhao, X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Yellowhair, J.

Yi, H.

H. Yi, S. W. Qu, K. B. Ng, C. H. Chan, and X. Bai, “3–D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam,” IEEE Trans. Antenn. Propag. 64(2), 442–449 (2016).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, Y. F.

Y. F. Yu, A. Y. Zhu, R. Paníagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High–transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhang, H. C.

Zhang, S.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhang, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, J. Gao, X. Cao, T. Liu, L. Xu, X. Liu, and L. Cong, “In-band RCS reduction of waveguide slot array using metasurface bars,” IEEE Trans. Antenn. Propag. 65(2), 943–947 (2017).
[Crossref]

Y. Zhao, X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Zhao, Z.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Y. F. Yu, A. Y. Zhu, R. Paníagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High–transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Zhu, S.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Advanced Materials Technologies (1)

D. Isakov, C. J. Stevens, F. Castles, and P. S. Grant, “3D–printed high dielectric contrast gradient index flat lens for a directive antenna with reduced dimensions,” Advanced Materials Technologies 1(6), 1600072 (2016).
[Crossref]

Annu. Rev. Mater. Res. (1)

S. Chang, X. Guo, and X. Ni, “Optical metasurfaces: progress and applications,” Annu. Rev. Mater. Res. 48(1), 279–302 (2018).
[Crossref]

IEEE Antennas Propag. Mag. (2)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

T. K. Sarkar and O. Pereira, “Using the matrix pencil method to estimate the parameters by a sum of complex exponentials,” IEEE Antennas Propag. Mag. 37(1), 48–55 (1995).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

A. Monti, J. Soric, A. Alu, F. Bilotti, A. Toscano, and L. Vegni, “Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface,” IEEE Antennas Wirel. Propag. Lett. 11(5), 1414–1417 (2015).

D. F. Sievenpiper, “Nonlinear grounded metasurfaces for suppression of high-power pulsed RF currents,” IEEE Antennas Wirel. Propag. Lett. 10, 1516–1519 (2011).
[Crossref]

IEEE Photonics J. (1)

R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Creation of an arbitrary electromagnetic illusion using a planar ultrathin metasurface,” IEEE Photonics J. 9(4), 1–9 (2017).
[Crossref]

IEEE Trans. Antenn. Propag. (9)

H. Li, G. Wang, H. X. Xu, T. Cai, and J. Liang, “X-band phase-gradient metasurface for high-gain lens antenna application,” IEEE Trans. Antenn. Propag. 63(11), 5144–5149 (2015).
[Crossref]

F. H. Lin and Z. N. Chen, “Low-profile wideband metasurface antennas using characteristic mode analysis,” IEEE Trans. Antenn. Propag. 65(4), 1706–1713 (2017).
[Crossref]

F. H. Lin and Z. N. Chen, “A method of suppressing higher order modes for improving radiation performance of metasurface multiport antennas using characteristic mode analysis,” IEEE Trans. Antenn. Propag. 66(4), 1894–1902 (2018).
[Crossref]

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Y. Zhao, J. Gao, X. Cao, T. Liu, L. Xu, X. Liu, and L. Cong, “In-band RCS reduction of waveguide slot array using metasurface bars,” IEEE Trans. Antenn. Propag. 65(2), 943–947 (2017).
[Crossref]

Y. Zhao, X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Y. Liu, Z. Nie, and Q. H. Liu, “Reducing the number of elements in a linear antenna array by the matrix pencil method,” IEEE Trans. Antenn. Propag. 56(9), 2955–2962 (2008).
[Crossref]

Y. Liu, Q. H. Liu, and Z. Nie, “Reducing the number of elements in the synthesis of shaped-beam patterns by the forward-backward matrix pencil method,” IEEE Trans. Antenn. Propag. 58(2), 604–608 (2010).
[Crossref]

H. Yi, S. W. Qu, K. B. Ng, C. H. Chan, and X. Bai, “3–D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam,” IEEE Trans. Antenn. Propag. 64(2), 442–449 (2016).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

A. Li, S. Kim, Y. Luo, Y. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

Laser Photonics Rev. (1)

Y. F. Yu, A. Y. Zhu, R. Paníagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High–transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Light Sci. Appl. (1)

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Nat. Commun. (1)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (5)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Rep. (1)

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Phys. Rev. B (1)

P. Y. Chen and A. Alu, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[Crossref]

Radio Sci. (1)

E. K. Miller and D. M. Goodman, “A pole-zero modeling approach to linear array synthesis I: the unconstrained solution,” Radio Sci. 18(1), 57–69 (1983).
[Crossref]

Sci. Rep. (2)

M. Dupré, L. Hsu, and B. Kanté, “On the design of random metasurface based devices,” Sci. Rep. 8(1), 7162 (2018).
[Crossref] [PubMed]

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Science (4)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Other (3)

W. E. I. Liu, Z. N. Chen, and X. Qing, “Compact wideband metasurface-based circularly polarized antenna for Ka-band phased array,” (IEEE, 2017) in Proceedings of Antennas and Propagation in Wireless Communications, 17-20.

M. Dupré, J. Park, and B. Kanté, “A random metasurface for an all polarization flat lens,” in Proceedings of CLEO: Science and InnovationsOSA, 2018), JTu5A–38.

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 3rd edition, (John Wiley & Sons, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Accumulated phase differences and transmissions versus the radius of Si pillar at 220 GHz, inset is configuration of the unit cell, which is designed with low index dielectric slab (RT/duroid 5880: ε r = 2.2 , tan δ = 9 × 10 4 ) patterned with high index dielectric pillars (Si: ε r = 11.9 ), the antireflective layer on the top and bottom are RT/duroid 5880LZ( ε r = 1.96 , tan δ = 1.9 × 10 3 ).
Fig. 2
Fig. 2 Separate the full metasurface array into sections, each section is employed to sparse and reconstruct the far field, respectively. Q 0 , Q 1 , and Q 2 are the normalized array factor of each sections in periodic array, Q 0 , Q 1 , and Q 2 are the corresponding number of synthesized random metasurface meta-atoms with matrix pencil method, respectively.
Fig. 3
Fig. 3 Normalized array factor (AF) of the periodic and synthesized random metasurface antenna array with matrix pencil method directly and separately. The original periodic array is with 149 meta-atoms, the number of random meta-atoms are 111 and 89 when synthesized directly, and are 111 when synthesized separately.
Fig. 4
Fig. 4 Normalized excitation amplitude of the metasurface array antenna when obtain the random matrix with uniformly and separately sparse strategies, respectively.
Fig. 5
Fig. 5 Simulated power intensity of the periodic and random metasurface antenna array (a), the focusing efficiencies are 86.7% and 85.7% for periodic (b) and random (c) array, normalized intensity of the focusing field for (d) periodic and (e) random array with 111 meta- atoms when synthesized separately (f) random array with 86 meta-atoms when synthesized uniformly.
Fig. 6
Fig. 6 Simulated power intensity of the 2D periodic and random metasurface antenna array (a), the focusing efficiencies are 81.5% and 78.2% for periodic (a) and random (b) array, and the cross section power intensities at the focal plane with x and y polarizations (c).

Tables (3)

Tables Icon

Table 1 Focusing efficiencies of the second part (25 number of meta-atoms) of a series of random metalens different number of random meta-atoms ( Q 1 ) from the matrix pencil method

Tables Icon

Table 2 Focusing efficiencies of the second part (30 number of meta-atoms) of a series of random metalens different number of random meta-atoms ( Q 2 ) from the matrix pencil method

Tables Icon

Table 3 Focusing efficiencies of 10 kinds of random metalens with 111 number of meta-atoms obtained by full random algorithm, respectively

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

F ( θ ) = i = 1 M R i e j k d i cos θ
F ( cos 1 u ) = i = 1 M R i e j ω i u
Δ λ d max
f ( n ) = F ( cos 1 n Δ ) = i = 1 M R i z i n
[ Y ] = [ y ( 0 ) y ( 1 ) y ( M ) y ( 1 ) y ( 2 ) y ( M + 1 ) y ( M ) y ( M + 1 ) y ( 2 M ) ]
[ Y ] = [ U ] [ Σ ] [ V ] H
[ Y Q ] = [ U Q ] [ Σ Q ] [ V Q ] H
Q = min { q | i = = q + 1 M σ i 2 i = = 1 q σ i 2 < ε }
( [ Y Q , f ] z [ Y Q , l ] ) v = 0
d i = 1 j k Δ ln ( z i )
R i = ( [ Z ^ ] H [ Z ^ ] ) 1 [ Z ^ ] F M
F M = ( f ( M ) , , f ( M ) ) T
[ Z ^ ] = [ z ^ 1 M z ^ 2 M z ^ Q M z ^ 1 M + 1 z ^ 2 M + 1 z ^ Q M + 1 z ^ 1 M z ^ 1 M z ^ Q M ]
Normalized AF = 20 log { | F ( θ ) | | F max ( θ ) | }

Metrics