Abstract

GHz high repetition rate compact sources with femtosecond pulse durations and stable performance can enable a wide range of applications. In this paper, several high repetition rate ultrafast thulium fiber lasers with repetition rates varying between 532 MHz to 1.25 GHz are demonstrated with femtosecond pulse durations down to 426 fs. An approach of maintaining comparable pulse energies while scaling the repetition rates allows high-quality femtosecond mode-locking performance with low noise performance in thulium soliton lasers for the first time.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Gain-guided soliton: Scaling repetition rate of passively modelocked Yb-doped fiber lasers to 12.5 GHz

Wenlong Wang, Wei Lin, Huihui Cheng, Yi Zhou, Tian Qiao, Yicai Liu, Pengfei Ma, Shifeng Zhou, and Zhongmin Yang
Opt. Express 27(8) 10438-10448 (2019)

Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68  GHz fundamental repetition rate

Jiazheng Song, Hushan Wang, Xinning Huang, XiaoHong Hu, Ting Zhang, Yishan Wang, Yuanshan Liu, and Jianguo Zhang
Appl. Opt. 58(7) 1733-1738 (2019)

Compact, high repetition rate, 4.2 MW peak power, 1925 nm, thulium-doped fiber chirped-pulse amplification system with dissipative soliton seed laser

Zhengqi Ren, Qiang Fu, Lin Xu, Jonathan H. V. Price, Shaif-ul Alam, and David J. Richardson
Opt. Express 27(25) 36741-36749 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  2. J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
    [Crossref] [PubMed]
  3. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  4. G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20(6), 6631–6643 (2012).
    [Crossref] [PubMed]
  5. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
    [Crossref]
  6. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
    [Crossref] [PubMed]
  7. S. T. Cundiff, “Metrology: New Generation of combs,” Nature 450(7173), 1175–1176 (2007).
    [Crossref] [PubMed]
  8. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
    [Crossref] [PubMed]
  9. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [Crossref]
  10. H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
    [Crossref] [PubMed]
  11. H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
    [Crossref] [PubMed]
  12. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
    [Crossref]
  13. J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
    [Crossref] [PubMed]
  14. R. Thapa, D. Nguyen, J. Zong, and A. Chavez-Pirson, “All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber,” Opt. Lett. 39(6), 1418–1421 (2014).
    [Crossref] [PubMed]
  15. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49(29), 5577–5582 (2010).
    [Crossref] [PubMed]
  16. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
    [Crossref] [PubMed]
  17. Y. Zhou, W. Lin, H. Cheng, W. Wang, T. Qiao, Q. Qian, S. Xu, and Z. Yang, “Composite filtering effect in a SESAM mode-locked fiber laser with a 3.2-GHz fundamental repetition rate: switchable states from single soliton to pulse bunch,” Opt. Express 26(8), 10842–10857 (2018).
    [Crossref] [PubMed]
  18. A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14(1), 144–154 (1997).
    [Crossref]
  19. B. C. Collings, K. Bergman, and W. H. Knox, “Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser,” Opt. Lett. 23(2), 123–125 (1998).
    [Crossref] [PubMed]
  20. J. N. Kutz and B. Sandstede, “Theory of passive harmonic mode-locking using waveguide arrays,” Opt. Express 16(2), 636–650 (2008).
    [Crossref] [PubMed]
  21. A. E. Akosman, J. Zeng, P. D. Samolis, and M. Y. Sander, “Polarization Rotation Dynamics in Harmonically Mode-Locked Vector Soliton Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–7 (2018).
    [Crossref]
  22. M. Y. Sander, S. Frolov, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “10 GHz femtosecond pulse interleaver in planar waveguide technology,” Opt. Express 20(4), 4102–4113 (2012).
    [Crossref] [PubMed]
  23. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, “Interleaver Technology: Comparisons and Applications Requirements,” J. Lightwave Technol. 22(1), 281–289 (2004).
    [Crossref]
  24. C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
    [Crossref]
  25. H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively Mode-Locked Tm3+-Doped Fiber Laser With Gigahertz Fundamental Repetition Rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–6 (2018).
    [Crossref]
  26. H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, Y. Guo, S. Xu, and Z. Yang, “High-repetition-rate ultrafast fiber lasers,” Opt. Express 26(13), 16411–16421 (2018).
    [Crossref] [PubMed]
  27. H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
    [Crossref] [PubMed]
  28. Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 um mode-locked fiber lasers,” in Fiber Lasers IX: Technology, Systems, and Applications (International Society for Optics and Photonics, 2012), Vol. 8237, p. 82371N.
  29. P. W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz Repetition Rate Fundamentally Tm-Doped Mode-Locked Fiber Laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
    [Crossref]
  30. M. Pang, W. He, and P. St. J Russell, “Gigahertz-repetition-rate Tm-doped fiber laser passively mode-locked by optoacoustic effects in nanobore photonic crystal fiber,” Opt. Lett. 41(19), 4601–4604 (2016).
    [Crossref] [PubMed]
  31. Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
    [Crossref] [PubMed]
  32. H. Yu, X. Zheng, K. Yin, X. Cheng, and T. Jiang, “Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber,” Appl. Opt. 54(34), 10290–10294 (2015).
    [Crossref] [PubMed]
  33. C. Bao and C. Yang, “Harmonic mode-locking in a Tm-doped fiber laser: Characterization of its timing jitter and ultralong starting dynamics,” Opt. Commun. 356, 463–467 (2015).
    [Crossref]
  34. D. Pudo, H. Byun, J. Chen, J. Sickler, F. X. Kärtner, and E. P. Ippen, “Scaling of passively mode-locked soliton erbium waveguide lasers based on slow saturable absorbers,” Opt. Express 16(23), 19221–19231 (2008).
    [Crossref] [PubMed]

2018 (4)

Y. Zhou, W. Lin, H. Cheng, W. Wang, T. Qiao, Q. Qian, S. Xu, and Z. Yang, “Composite filtering effect in a SESAM mode-locked fiber laser with a 3.2-GHz fundamental repetition rate: switchable states from single soliton to pulse bunch,” Opt. Express 26(8), 10842–10857 (2018).
[Crossref] [PubMed]

A. E. Akosman, J. Zeng, P. D. Samolis, and M. Y. Sander, “Polarization Rotation Dynamics in Harmonically Mode-Locked Vector Soliton Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–7 (2018).
[Crossref]

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively Mode-Locked Tm3+-Doped Fiber Laser With Gigahertz Fundamental Repetition Rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–6 (2018).
[Crossref]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, Y. Guo, S. Xu, and Z. Yang, “High-repetition-rate ultrafast fiber lasers,” Opt. Express 26(13), 16411–16421 (2018).
[Crossref] [PubMed]

2017 (2)

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
[Crossref] [PubMed]

2016 (4)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
[Crossref]

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

P. W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz Repetition Rate Fundamentally Tm-Doped Mode-Locked Fiber Laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

M. Pang, W. He, and P. St. J Russell, “Gigahertz-repetition-rate Tm-doped fiber laser passively mode-locked by optoacoustic effects in nanobore photonic crystal fiber,” Opt. Lett. 41(19), 4601–4604 (2016).
[Crossref] [PubMed]

2015 (2)

H. Yu, X. Zheng, K. Yin, X. Cheng, and T. Jiang, “Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber,” Appl. Opt. 54(34), 10290–10294 (2015).
[Crossref] [PubMed]

C. Bao and C. Yang, “Harmonic mode-locking in a Tm-doped fiber laser: Characterization of its timing jitter and ultralong starting dynamics,” Opt. Commun. 356, 463–467 (2015).
[Crossref]

2014 (1)

2012 (4)

2011 (1)

2010 (1)

2008 (6)

J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
[Crossref] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

D. Pudo, H. Byun, J. Chen, J. Sickler, F. X. Kärtner, and E. P. Ippen, “Scaling of passively mode-locked soliton erbium waveguide lasers based on slow saturable absorbers,” Opt. Express 16(23), 19221–19231 (2008).
[Crossref] [PubMed]

J. N. Kutz and B. Sandstede, “Theory of passive harmonic mode-locking using waveguide arrays,” Opt. Express 16(2), 636–650 (2008).
[Crossref] [PubMed]

2007 (4)

S. T. Cundiff, “Metrology: New Generation of combs,” Nature 450(7173), 1175–1176 (2007).
[Crossref] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
[Crossref] [PubMed]

2005 (1)

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

2004 (1)

1998 (1)

1997 (1)

Akosman, A. E.

A. E. Akosman, J. Zeng, P. D. Samolis, and M. Y. Sander, “Polarization Rotation Dynamics in Harmonically Mode-Locked Vector Soliton Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–7 (2018).
[Crossref]

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Bao, C.

C. Bao and C. Yang, “Harmonic mode-locking in a Tm-doped fiber laser: Characterization of its timing jitter and ultralong starting dynamics,” Opt. Commun. 356, 463–467 (2015).
[Crossref]

Bender, C. F.

Benedick, A. J.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Bergman, K.

Botzer, B.

Braje, D. A.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

Byun, H.

Cao, S.

Chang, G.

Chavez-Pirson, A.

Chen, H.-W.

Chen, J.

Cheng, H.

Cheng, X.

Collings, B. C.

Cundiff, S. T.

S. T. Cundiff, “Metrology: New Generation of combs,” Nature 450(7173), 1175–1176 (2007).
[Crossref] [PubMed]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Damask, J. N.

Diddams, S. A.

Doerr, C. R.

Fendel, P.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Feng, G.

P. W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz Repetition Rate Fundamentally Tm-Doped Mode-Locked Fiber Laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

Fortier, T.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

Frolov, S.

Glenday, A. G.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Gray, S.

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
[Crossref]

Grudinin, A. B.

Guiziou, L.

Guo, Y.

Hänsch, T. W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Harvey, G.

He, W.

Hibino, Y.

Holzwarth, R.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Hsu, K.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Hu, L.

P. W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz Repetition Rate Fundamentally Tm-Doped Mode-Locked Fiber Laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

Huang, C.-B.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Inoue, Y.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Ippen, E. P.

Jablonski, M.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jiang, T.

Jiang, Z.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Kärtner, F. X.

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Kim, J.

Kirchner, M. S.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

Knox, W. H.

Kolodziejski, L. A.

Kotake, T.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Kuan, P. W.

P. W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz Repetition Rate Fundamentally Tm-Doped Mode-Locked Fiber Laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

Kutz, J. N.

Leaird, D. E.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Li, C.-H.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Li, H.

Li, J.

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

Li, K.

P. W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz Repetition Rate Fundamentally Tm-Doped Mode-Locked Fiber Laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

Li, X.

P. W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz Repetition Rate Fundamentally Tm-Doped Mode-Locked Fiber Laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

Lin, W.

Liu, F.

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

Liu, Y.

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

Luo, Z.

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively Mode-Locked Tm3+-Doped Fiber Laser With Gigahertz Fundamental Repetition Rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–6 (2018).
[Crossref]

Mahadevan, S.

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Martinez, A.

McFerran, J. J.

Mo, K.

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

Motamedi, A.

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Nenadovic, L.

Newbury, N. R.

Nguyen, D.

Osterman, S.

Pang, M.

Park, M. J.

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Perrott, M. H.

Petrich, G. S.

Phillips, D. F.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Pudo, D.

Qian, Q.

Qiao, T.

Quinlan, F.

Ramsey, L.

Redman, S.

Samolis, P. D.

A. E. Akosman, J. Zeng, P. D. Samolis, and M. Y. Sander, “Polarization Rotation Dynamics in Harmonically Mode-Locked Vector Soliton Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–7 (2018).
[Crossref]

Sander, M. Y.

Sandstede, B.

Sasselov, D.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Schlager, J. B.

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Set, S. Y.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Shen, H.

Shmulovich, J.

Sickler, J.

Sigurdsson, S.

St. J Russell, P.

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Suzuki, S.

Swann, W. C.

Szentgyorgyi, A.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Tanaka, D.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Terrien, R.

Thapa, R.

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Valley, G. C.

Walsworth, R. L.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Wang, W.

Wang, Y.

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

Weiner, A. M.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Wu, K.-Y.

Xie, P.

Xu, S.

Yaguchi, H.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Yamashita, S.

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Yang, C.

C. Bao and C. Yang, “Harmonic mode-locking in a Tm-doped fiber laser: Characterization of its timing jitter and ultralong starting dynamics,” Opt. Commun. 356, 463–467 (2015).
[Crossref]

Yang, Z.

Ycas, G. G.

Yin, K.

Yu, C.

P. W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz Repetition Rate Fundamentally Tm-Doped Mode-Locked Fiber Laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

Yu, H.

Zeng, J.

A. E. Akosman, J. Zeng, P. D. Samolis, and M. Y. Sander, “Polarization Rotation Dynamics in Harmonically Mode-Locked Vector Soliton Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–7 (2018).
[Crossref]

Zhang, L.

P. W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz Repetition Rate Fundamentally Tm-Doped Mode-Locked Fiber Laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

Zheng, X.

Zhou, Y.

Zong, J.

Appl. Opt. (2)

Eur. Phys. J. D (1)

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. E. Akosman, J. Zeng, P. D. Samolis, and M. Y. Sander, “Polarization Rotation Dynamics in Harmonically Mode-Locked Vector Soliton Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–7 (2018).
[Crossref]

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively Mode-Locked Tm3+-Doped Fiber Laser With Gigahertz Fundamental Repetition Rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–6 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

P. W. Kuan, K. Li, L. Zhang, X. Li, C. Yu, G. Feng, and L. Hu, “0.5-GHz Repetition Rate Fundamentally Tm-Doped Mode-Locked Fiber Laser,” IEEE Photonics Technol. Lett. 28(14), 1525–1528 (2016).
[Crossref]

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Nature (2)

S. T. Cundiff, “Metrology: New Generation of combs,” Nature 450(7173), 1175–1176 (2007).
[Crossref] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

C. Bao and C. Yang, “Harmonic mode-locking in a Tm-doped fiber laser: Characterization of its timing jitter and ultralong starting dynamics,” Opt. Commun. 356, 463–467 (2015).
[Crossref]

Opt. Express (12)

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
[Crossref] [PubMed]

J. N. Kutz and B. Sandstede, “Theory of passive harmonic mode-locking using waveguide arrays,” Opt. Express 16(2), 636–650 (2008).
[Crossref] [PubMed]

J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
[Crossref] [PubMed]

D. Pudo, H. Byun, J. Chen, J. Sickler, F. X. Kärtner, and E. P. Ippen, “Scaling of passively mode-locked soliton erbium waveguide lasers based on slow saturable absorbers,” Opt. Express 16(23), 19221–19231 (2008).
[Crossref] [PubMed]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

M. Y. Sander, S. Frolov, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “10 GHz femtosecond pulse interleaver in planar waveguide technology,” Opt. Express 20(4), 4102–4113 (2012).
[Crossref] [PubMed]

G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20(6), 6631–6643 (2012).
[Crossref] [PubMed]

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
[Crossref] [PubMed]

Y. Zhou, W. Lin, H. Cheng, W. Wang, T. Qiao, Q. Qian, S. Xu, and Z. Yang, “Composite filtering effect in a SESAM mode-locked fiber laser with a 3.2-GHz fundamental repetition rate: switchable states from single soliton to pulse bunch,” Opt. Express 26(8), 10842–10857 (2018).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, Y. Guo, S. Xu, and Z. Yang, “High-repetition-rate ultrafast fiber lasers,” Opt. Express 26(13), 16411–16421 (2018).
[Crossref] [PubMed]

Opt. Lett. (4)

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
[Crossref]

Sci. Rep. (1)

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

Science (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Other (1)

Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 um mode-locked fiber lasers,” in Fiber Lasers IX: Technology, Systems, and Applications (International Society for Optics and Photonics, 2012), Vol. 8237, p. 82371N.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Compact linear soliton laser fundamentally mode-locked with repetition rate between 532 MHz to 1.25 GHz based on the total cavity length. SBR: saturable Bragg reflector. (b) Image of 1.25 GHz laser with a 8.1 cm-long fiber cavity and a US quarter coin next to it for comparison.
Fig. 2
Fig. 2 (a) Mapping of the intracavity pulse energy with regards to the coupled pump power indicates that similar soliton energies are required to initiate mode-locking for fundamentally mode-locked ultrafast fiber lasers with repetition rates between 531.9 MHz and 1.25 GHz.
Fig. 3
Fig. 3 Tm fiber lasers at a repetition rate of (a) 531.9 MHz, (b) 704.3 MHz and (c) 974.4 MHz. First row: The optical spectrum is measured at the mode-locking threshold (solid line) and for the highest observed pulse energy (dashed line). Second row: RF spectrum of the fundamental repetition rate. The insets show the RF spectral traces for an 8 GHz span. Third row: Measured oscilloscope traces. Fourth row: Interferrometric autocorrelation traces of pulses correspond to a FWHM of 10.3 nm, 7.8 nm and 6.7 nm in the optical spectrum.
Fig. 4
Fig. 4 Characterization of pulse train with a repetition rate of 1.25 GHz. (a) The optical spectrum is measured at the mode-locking threshold (solid line) and for the highest observed pulse energy (dashed line). (b) RF spectrum of the fundamental repetition rate. The insets show the RF spectral traces for an 8 GHz span. (c) Measured oscilloscope traces. (d) The measured interferometric autocorrelation trace results in a pulse duration of 741 fs.
Fig. 5
Fig. 5 (a) Relative intensity noise (RIN) of mode-locked fiber laser with a repetition rate of 531.9 MHz (red dotted), 704.3 MHz (blue dashed) and 974 MHz (green dashed dot). RIN of 704.3 MHz laser without hump around 1 MHz is shown (navy short dashed, 704.3MHz*). (b) Integrated RIN of 0.13%, 0.15% and 0.18% respectively [1 kHz, 2 MHz]. The integrated RIN is reduced to 0.07% for a measurement with a pulse energy of 280 pJ labeled as 704.3 MHz*. (c) Single side-band (SSB) phase noise of lasers from 10 Hz to 2 MHz. (d) Integrated rms timing jitter of 32 fs, 25 fs and 16 fs [1 kHz, 2 MHz] respectively. (e) RIN of 1.25 GHz cavity. Integrated RIN of 0.19% [1 kHz, 2 MHz] (purple dashed line). (f) SSB phase noise of 1.25 GHz laser. Integrated rms timing jitter of 11fs [1 kHz, 2 MHz] (purple dashed line).

Metrics