Abstract

The light-tree based multicast service aggregation (LT-MSA) scheme provides a cost-efficient method to accommodate a large number of finer-grained multicast services in optical networks. However, when multiple multicast services that do not have exactly the same requesters are aggregated together, some fiber links will be allocated with redundant spectrum. This shortcoming causes high spectrum consumption and narrow application range. In elastic optical networks (EONs), leveraging node architecture that supports both optical multicasting and bandwidth-variable spectrum selection, we consider on-demand routing, modulation level and spectrum allocation (OD-RMSA) for the LT-MSA scheme. It improves resource utilization by allocating spectrum on each link according to the desired multicast services of downstream destination users of this link. We also define the maximum aggregating group (MAG) to eliminate node adjacent redundancy on each link. An Integer Linear Programing (ILP) model and a heuristic approach are developed to realize the OD-RMSA strategy. Simulations show that the OD-RMSA strategy can eliminate spectrum redundancy and greatly reduces transceiver consumption than the light-tree scheme. Moreover, it can also greatly reduce spectrum consumption than the conventional consistent routing, modulation level and spectrum allocation (C-RMSA) strategy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient Resource Allocation for All-Optical Multicasting Over Spectrum-Sliced Elastic Optical Networks

Long Gong, Xiang Zhou, Xiahe Liu, Wenwen Zhao, Wei Lu, and Zuqing Zhu
J. Opt. Commun. Netw. 5(8) 836-847 (2013)

Impairment-Aware Manycast Routing, Modulation Level, and Spectrum Assignment in Elastic Optical Networks

Mehdi Habibi and Hamzeh Beyranvand
J. Opt. Commun. Netw. 11(5) 179-189 (2019)

Routing, Modulation, and Spectrum Assignment in Programmable Networks Based on Optical White Boxes

Vahid Abedifar, Marija Furdek, Ajmal Muhammad, Mohammad Eshghi, and Lena Wosinska
J. Opt. Commun. Netw. 10(9) 723-735 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Muhammad, M. Fiorani, L. Wosinska, and J. Chen, “Joint optimization of resource allocation for elastic optical intra-datacenter network,” IEEE Commun. Lett. 20(9), 1760–1763 (2018).
    [Crossref]
  2. H. Yang, J. Zhang, Y. Zhao, Y. Ji, J. Wu, Y. Lin, J. Han, and Y. Lee, “Performance evaluation of multi-stratum resources integrated resilience for software defined inter-data center interconnect,” Opt. Express 23(10), 13384–13398 (2015).
    [Crossref] [PubMed]
  3. Y. Dong, S. Zhao, H. Ran, Y. Li, and Z. Zhu, “Routing and wavelength assignment in a satellite optical network based on ant colony optimization with the small window strategy,” J. Opt. Commun. Netw. 7(10), 995–1000 (2015).
    [Crossref]
  4. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
    [Crossref]
  5. I. B. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express 14(9), 3767–3775 (2006).
    [Crossref] [PubMed]
  6. Z. Zheng, X. Lv, F. Zhang, D. Wang, E. Sun, Y. Zhu, K. Zou, and Z. Chen, “Fiber nonlinearity mitigation in 32-Gbaud 16QAM nyquist-WDM systems,” J. Lightwave Technol. 34(9), 2182–2187 (2016).
    [Crossref]
  7. S. Sarmiento, J. A. Altabas, D. Izquierdo, I. Garces, S. Spadaro, and J. A. Lazaro, “Cost-effective DWDM ROADM design for flexible sustainable optical metro–access networks,” J. Opt. Commun. Netw. 9(12), 1116–1124 (2017).
    [Crossref]
  8. S. Mukherjee, F. Bronzino, S. Srinivasan, J. Chen, and D. Raychaudhuri, “Achieving scalable push multicast services using global name resolution,” in Proc. GLOBECOM (2016).
    [Crossref]
  9. G. N. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,” IEEE Netw. 17(1), 60–65 (2003).
    [Crossref]
  10. K. Walkowiak, R. Go’scie’n, M. Klinkowski, and M. Wo’zniak, “Optimization of multicast traffic in elastic optical networks with distance-adaptive transmission,” IEEE Commun. Lett. 18(12), 2117–2120 (2014).
    [Crossref]
  11. R. Lin, M. Zukerman, G. Shen, and W. Zhong, “Design of light-tree based optical inter-datacenter networks,” J. Opt. Commun. Netw. 5(12), 1443–1455 (2013).
    [Crossref]
  12. X. Li, L. Zhang, Y. Tang, and S. Huang, “Link importance incorporated failure probability measuring solution for multicast light-Trees in elastic optical networks,” Opt. Eng. 57(3), 036117 (2018).
    [Crossref]
  13. L. Yang, L. Gong, F. Zhou, B. Cousin, M. Moln’ar, and Z. Zhu, “Leveraging light forest with rateless network coding to design efficient all-optical multicast schemes for elastic optical networks,” J. Lightwave Technol. 33(18), 3945–3955 (2015).
    [Crossref]
  14. X. Li, L. Zhang, Y. Tang, J. Guo, and S. Huang, “Distributed sub-tree-based optical multicasting scheme in elastic optical data center networks,” IEEE Access 6(1), 6465–6478 (2018).
  15. Y. Zhu and J. P. Jue, “Multi-class flow aggregation for IPTV content delivery in IP over optical core networks,” J. Lightwave Technol. 27(12), 1891–1903 (2009).
    [Crossref]
  16. X. Huang, F. Farahmand, and J. P. Jue, “Multicast traffic grooming in wavelength-routed WDM mesh networks using dynamically changing light-trees,” J. Lightwave Technol. 23(10), 3178–3187 (2005).
    [Crossref]
  17. C. Xue, X. Li, Y. Tang, L. Zhang, T. Gao, B. Guo, and S. Huang, “Light-tree based multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ICOCN (2017).
    [Crossref]
  18. L. Zhang, X. Li, Y. Tang, T. Gao, B. Guo, and S. Huang, “Modulation-level-awared multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ACP (2017).
    [Crossref]
  19. X. Li, Y. Tang, J. Guo, T. Gao, B. Guo, and S. Huang, “A novel BV-WSS based flow aggregation (BV-WSS-FA) scheme for finer-grained services in elastic optical networks,” in Proc. ICOCN (2017).
    [Crossref]
  20. B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and spectrum allocation in elastic optical networks: a tutorial,” IEEE Comm. Surv. and Tutor. 17(3), 1776–1800 (2015).
    [Crossref]
  21. G. Zhang, M. D. Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Comm. Surv. and Tutor. 15(1), 65–87 (2013).
    [Crossref]
  22. N. Amaya, G. Zervas, and D. Simeonidou, “Architecture on demand for transparent optical networks,” in Proc. 13th IEEE ICTON (2011), pp. 1–4.
    [Crossref]
  23. N. Sambo, G. Meloni, G. Berrettini, F. Paolucci, A. Malacarne, A. Bogoni, F. Cugini, L. Potì, and P. Castoldi, “Demonstration of data and control plane for optical multicast at 100 and 200 Gb/s with and without frequency conversion,” J. Opt. Commun. Netw. 5(7), 667–676 (2013).
    [Crossref]
  24. B. C. Chatterjee, S. Ba, and E. Oki, “Fragmentation problems and management approaches in elastic optical networks: a survey,” IEEE Comm. Surv. and Tutor. 20(1), 183–210 (2018).
    [Crossref]
  25. B. C. Chatterjee, T. Sato, and E. Oki, “Recent research progress on spectrum management approaches in software-defined elastic optical networks,” Opt. Switching Networking 30, 93–104 (2018).
    [Crossref]

2018 (5)

A. Muhammad, M. Fiorani, L. Wosinska, and J. Chen, “Joint optimization of resource allocation for elastic optical intra-datacenter network,” IEEE Commun. Lett. 20(9), 1760–1763 (2018).
[Crossref]

X. Li, L. Zhang, Y. Tang, and S. Huang, “Link importance incorporated failure probability measuring solution for multicast light-Trees in elastic optical networks,” Opt. Eng. 57(3), 036117 (2018).
[Crossref]

X. Li, L. Zhang, Y. Tang, J. Guo, and S. Huang, “Distributed sub-tree-based optical multicasting scheme in elastic optical data center networks,” IEEE Access 6(1), 6465–6478 (2018).

B. C. Chatterjee, S. Ba, and E. Oki, “Fragmentation problems and management approaches in elastic optical networks: a survey,” IEEE Comm. Surv. and Tutor. 20(1), 183–210 (2018).
[Crossref]

B. C. Chatterjee, T. Sato, and E. Oki, “Recent research progress on spectrum management approaches in software-defined elastic optical networks,” Opt. Switching Networking 30, 93–104 (2018).
[Crossref]

2017 (1)

2016 (1)

2015 (4)

2014 (1)

K. Walkowiak, R. Go’scie’n, M. Klinkowski, and M. Wo’zniak, “Optimization of multicast traffic in elastic optical networks with distance-adaptive transmission,” IEEE Commun. Lett. 18(12), 2117–2120 (2014).
[Crossref]

2013 (3)

2009 (2)

Y. Zhu and J. P. Jue, “Multi-class flow aggregation for IPTV content delivery in IP over optical core networks,” J. Lightwave Technol. 27(12), 1891–1903 (2009).
[Crossref]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

2006 (1)

2005 (1)

2003 (1)

G. N. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,” IEEE Netw. 17(1), 60–65 (2003).
[Crossref]

Altabas, J. A.

Amaya, N.

N. Amaya, G. Zervas, and D. Simeonidou, “Architecture on demand for transparent optical networks,” in Proc. 13th IEEE ICTON (2011), pp. 1–4.
[Crossref]

Ba, S.

B. C. Chatterjee, S. Ba, and E. Oki, “Fragmentation problems and management approaches in elastic optical networks: a survey,” IEEE Comm. Surv. and Tutor. 20(1), 183–210 (2018).
[Crossref]

Berrettini, G.

Bogoni, A.

Bronzino, F.

S. Mukherjee, F. Bronzino, S. Srinivasan, J. Chen, and D. Raychaudhuri, “Achieving scalable push multicast services using global name resolution,” in Proc. GLOBECOM (2016).
[Crossref]

Castoldi, P.

Chatterjee, B. C.

B. C. Chatterjee, S. Ba, and E. Oki, “Fragmentation problems and management approaches in elastic optical networks: a survey,” IEEE Comm. Surv. and Tutor. 20(1), 183–210 (2018).
[Crossref]

B. C. Chatterjee, T. Sato, and E. Oki, “Recent research progress on spectrum management approaches in software-defined elastic optical networks,” Opt. Switching Networking 30, 93–104 (2018).
[Crossref]

B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and spectrum allocation in elastic optical networks: a tutorial,” IEEE Comm. Surv. and Tutor. 17(3), 1776–1800 (2015).
[Crossref]

Chen, J.

A. Muhammad, M. Fiorani, L. Wosinska, and J. Chen, “Joint optimization of resource allocation for elastic optical intra-datacenter network,” IEEE Commun. Lett. 20(9), 1760–1763 (2018).
[Crossref]

S. Mukherjee, F. Bronzino, S. Srinivasan, J. Chen, and D. Raychaudhuri, “Achieving scalable push multicast services using global name resolution,” in Proc. GLOBECOM (2016).
[Crossref]

Chen, Z.

Cousin, B.

Cugini, F.

Djordjevic, I. B.

Dong, Y.

Farahmand, F.

Fiorani, M.

A. Muhammad, M. Fiorani, L. Wosinska, and J. Chen, “Joint optimization of resource allocation for elastic optical intra-datacenter network,” IEEE Commun. Lett. 20(9), 1760–1763 (2018).
[Crossref]

Gao, T.

C. Xue, X. Li, Y. Tang, L. Zhang, T. Gao, B. Guo, and S. Huang, “Light-tree based multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ICOCN (2017).
[Crossref]

L. Zhang, X. Li, Y. Tang, T. Gao, B. Guo, and S. Huang, “Modulation-level-awared multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ACP (2017).
[Crossref]

X. Li, Y. Tang, J. Guo, T. Gao, B. Guo, and S. Huang, “A novel BV-WSS based flow aggregation (BV-WSS-FA) scheme for finer-grained services in elastic optical networks,” in Proc. ICOCN (2017).
[Crossref]

Garces, I.

Go’scie’n, R.

K. Walkowiak, R. Go’scie’n, M. Klinkowski, and M. Wo’zniak, “Optimization of multicast traffic in elastic optical networks with distance-adaptive transmission,” IEEE Commun. Lett. 18(12), 2117–2120 (2014).
[Crossref]

Gong, L.

Guo, B.

X. Li, Y. Tang, J. Guo, T. Gao, B. Guo, and S. Huang, “A novel BV-WSS based flow aggregation (BV-WSS-FA) scheme for finer-grained services in elastic optical networks,” in Proc. ICOCN (2017).
[Crossref]

L. Zhang, X. Li, Y. Tang, T. Gao, B. Guo, and S. Huang, “Modulation-level-awared multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ACP (2017).
[Crossref]

C. Xue, X. Li, Y. Tang, L. Zhang, T. Gao, B. Guo, and S. Huang, “Light-tree based multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ICOCN (2017).
[Crossref]

Guo, J.

X. Li, L. Zhang, Y. Tang, J. Guo, and S. Huang, “Distributed sub-tree-based optical multicasting scheme in elastic optical data center networks,” IEEE Access 6(1), 6465–6478 (2018).

X. Li, Y. Tang, J. Guo, T. Gao, B. Guo, and S. Huang, “A novel BV-WSS based flow aggregation (BV-WSS-FA) scheme for finer-grained services in elastic optical networks,” in Proc. ICOCN (2017).
[Crossref]

Han, J.

Huang, S.

X. Li, L. Zhang, Y. Tang, J. Guo, and S. Huang, “Distributed sub-tree-based optical multicasting scheme in elastic optical data center networks,” IEEE Access 6(1), 6465–6478 (2018).

X. Li, L. Zhang, Y. Tang, and S. Huang, “Link importance incorporated failure probability measuring solution for multicast light-Trees in elastic optical networks,” Opt. Eng. 57(3), 036117 (2018).
[Crossref]

X. Li, Y. Tang, J. Guo, T. Gao, B. Guo, and S. Huang, “A novel BV-WSS based flow aggregation (BV-WSS-FA) scheme for finer-grained services in elastic optical networks,” in Proc. ICOCN (2017).
[Crossref]

C. Xue, X. Li, Y. Tang, L. Zhang, T. Gao, B. Guo, and S. Huang, “Light-tree based multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ICOCN (2017).
[Crossref]

L. Zhang, X. Li, Y. Tang, T. Gao, B. Guo, and S. Huang, “Modulation-level-awared multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ACP (2017).
[Crossref]

Huang, X.

Izquierdo, D.

Ji, Y.

Jinno, M.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Jue, J. P.

Klinkowski, M.

K. Walkowiak, R. Go’scie’n, M. Klinkowski, and M. Wo’zniak, “Optimization of multicast traffic in elastic optical networks with distance-adaptive transmission,” IEEE Commun. Lett. 18(12), 2117–2120 (2014).
[Crossref]

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Lazaro, J. A.

Lee, Y.

Leenheer, M. D.

G. Zhang, M. D. Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Comm. Surv. and Tutor. 15(1), 65–87 (2013).
[Crossref]

Li, X.

X. Li, L. Zhang, Y. Tang, and S. Huang, “Link importance incorporated failure probability measuring solution for multicast light-Trees in elastic optical networks,” Opt. Eng. 57(3), 036117 (2018).
[Crossref]

X. Li, L. Zhang, Y. Tang, J. Guo, and S. Huang, “Distributed sub-tree-based optical multicasting scheme in elastic optical data center networks,” IEEE Access 6(1), 6465–6478 (2018).

X. Li, Y. Tang, J. Guo, T. Gao, B. Guo, and S. Huang, “A novel BV-WSS based flow aggregation (BV-WSS-FA) scheme for finer-grained services in elastic optical networks,” in Proc. ICOCN (2017).
[Crossref]

C. Xue, X. Li, Y. Tang, L. Zhang, T. Gao, B. Guo, and S. Huang, “Light-tree based multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ICOCN (2017).
[Crossref]

L. Zhang, X. Li, Y. Tang, T. Gao, B. Guo, and S. Huang, “Modulation-level-awared multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ACP (2017).
[Crossref]

Li, Y.

Lin, R.

Lin, Y.

Lv, X.

Malacarne, A.

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Meloni, G.

Moln’ar, M.

Morea, A.

G. Zhang, M. D. Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Comm. Surv. and Tutor. 15(1), 65–87 (2013).
[Crossref]

Muhammad, A.

A. Muhammad, M. Fiorani, L. Wosinska, and J. Chen, “Joint optimization of resource allocation for elastic optical intra-datacenter network,” IEEE Commun. Lett. 20(9), 1760–1763 (2018).
[Crossref]

Mukherjee, B.

G. Zhang, M. D. Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Comm. Surv. and Tutor. 15(1), 65–87 (2013).
[Crossref]

Mukherjee, S.

S. Mukherjee, F. Bronzino, S. Srinivasan, J. Chen, and D. Raychaudhuri, “Achieving scalable push multicast services using global name resolution,” in Proc. GLOBECOM (2016).
[Crossref]

Oki, E.

B. C. Chatterjee, T. Sato, and E. Oki, “Recent research progress on spectrum management approaches in software-defined elastic optical networks,” Opt. Switching Networking 30, 93–104 (2018).
[Crossref]

B. C. Chatterjee, S. Ba, and E. Oki, “Fragmentation problems and management approaches in elastic optical networks: a survey,” IEEE Comm. Surv. and Tutor. 20(1), 183–210 (2018).
[Crossref]

B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and spectrum allocation in elastic optical networks: a tutorial,” IEEE Comm. Surv. and Tutor. 17(3), 1776–1800 (2015).
[Crossref]

Paolucci, F.

Potì, L.

Ran, H.

Raychaudhuri, D.

S. Mukherjee, F. Bronzino, S. Srinivasan, J. Chen, and D. Raychaudhuri, “Achieving scalable push multicast services using global name resolution,” in Proc. GLOBECOM (2016).
[Crossref]

Rouskas, G. N.

G. N. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,” IEEE Netw. 17(1), 60–65 (2003).
[Crossref]

Sambo, N.

Sarma, N.

B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and spectrum allocation in elastic optical networks: a tutorial,” IEEE Comm. Surv. and Tutor. 17(3), 1776–1800 (2015).
[Crossref]

Sarmiento, S.

Sato, T.

B. C. Chatterjee, T. Sato, and E. Oki, “Recent research progress on spectrum management approaches in software-defined elastic optical networks,” Opt. Switching Networking 30, 93–104 (2018).
[Crossref]

Shen, G.

Simeonidou, D.

N. Amaya, G. Zervas, and D. Simeonidou, “Architecture on demand for transparent optical networks,” in Proc. 13th IEEE ICTON (2011), pp. 1–4.
[Crossref]

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Spadaro, S.

Srinivasan, S.

S. Mukherjee, F. Bronzino, S. Srinivasan, J. Chen, and D. Raychaudhuri, “Achieving scalable push multicast services using global name resolution,” in Proc. GLOBECOM (2016).
[Crossref]

Sun, E.

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Tang, Y.

X. Li, L. Zhang, Y. Tang, and S. Huang, “Link importance incorporated failure probability measuring solution for multicast light-Trees in elastic optical networks,” Opt. Eng. 57(3), 036117 (2018).
[Crossref]

X. Li, L. Zhang, Y. Tang, J. Guo, and S. Huang, “Distributed sub-tree-based optical multicasting scheme in elastic optical data center networks,” IEEE Access 6(1), 6465–6478 (2018).

L. Zhang, X. Li, Y. Tang, T. Gao, B. Guo, and S. Huang, “Modulation-level-awared multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ACP (2017).
[Crossref]

C. Xue, X. Li, Y. Tang, L. Zhang, T. Gao, B. Guo, and S. Huang, “Light-tree based multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ICOCN (2017).
[Crossref]

X. Li, Y. Tang, J. Guo, T. Gao, B. Guo, and S. Huang, “A novel BV-WSS based flow aggregation (BV-WSS-FA) scheme for finer-grained services in elastic optical networks,” in Proc. ICOCN (2017).
[Crossref]

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Vasic, B.

Walkowiak, K.

K. Walkowiak, R. Go’scie’n, M. Klinkowski, and M. Wo’zniak, “Optimization of multicast traffic in elastic optical networks with distance-adaptive transmission,” IEEE Commun. Lett. 18(12), 2117–2120 (2014).
[Crossref]

Wang, D.

Wo’zniak, M.

K. Walkowiak, R. Go’scie’n, M. Klinkowski, and M. Wo’zniak, “Optimization of multicast traffic in elastic optical networks with distance-adaptive transmission,” IEEE Commun. Lett. 18(12), 2117–2120 (2014).
[Crossref]

Wosinska, L.

A. Muhammad, M. Fiorani, L. Wosinska, and J. Chen, “Joint optimization of resource allocation for elastic optical intra-datacenter network,” IEEE Commun. Lett. 20(9), 1760–1763 (2018).
[Crossref]

Wu, J.

Xue, C.

C. Xue, X. Li, Y. Tang, L. Zhang, T. Gao, B. Guo, and S. Huang, “Light-tree based multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ICOCN (2017).
[Crossref]

Yang, H.

Yang, L.

Zervas, G.

N. Amaya, G. Zervas, and D. Simeonidou, “Architecture on demand for transparent optical networks,” in Proc. 13th IEEE ICTON (2011), pp. 1–4.
[Crossref]

Zhang, F.

Zhang, G.

G. Zhang, M. D. Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Comm. Surv. and Tutor. 15(1), 65–87 (2013).
[Crossref]

Zhang, J.

Zhang, L.

X. Li, L. Zhang, Y. Tang, and S. Huang, “Link importance incorporated failure probability measuring solution for multicast light-Trees in elastic optical networks,” Opt. Eng. 57(3), 036117 (2018).
[Crossref]

X. Li, L. Zhang, Y. Tang, J. Guo, and S. Huang, “Distributed sub-tree-based optical multicasting scheme in elastic optical data center networks,” IEEE Access 6(1), 6465–6478 (2018).

L. Zhang, X. Li, Y. Tang, T. Gao, B. Guo, and S. Huang, “Modulation-level-awared multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ACP (2017).
[Crossref]

C. Xue, X. Li, Y. Tang, L. Zhang, T. Gao, B. Guo, and S. Huang, “Light-tree based multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ICOCN (2017).
[Crossref]

Zhao, S.

Zhao, Y.

Zheng, Z.

Zhong, W.

Zhou, F.

Zhu, Y.

Zhu, Z.

Zou, K.

Zukerman, M.

IEEE Access (1)

X. Li, L. Zhang, Y. Tang, J. Guo, and S. Huang, “Distributed sub-tree-based optical multicasting scheme in elastic optical data center networks,” IEEE Access 6(1), 6465–6478 (2018).

IEEE Comm. Surv. and Tutor. (3)

B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and spectrum allocation in elastic optical networks: a tutorial,” IEEE Comm. Surv. and Tutor. 17(3), 1776–1800 (2015).
[Crossref]

G. Zhang, M. D. Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Comm. Surv. and Tutor. 15(1), 65–87 (2013).
[Crossref]

B. C. Chatterjee, S. Ba, and E. Oki, “Fragmentation problems and management approaches in elastic optical networks: a survey,” IEEE Comm. Surv. and Tutor. 20(1), 183–210 (2018).
[Crossref]

IEEE Commun. Lett. (2)

A. Muhammad, M. Fiorani, L. Wosinska, and J. Chen, “Joint optimization of resource allocation for elastic optical intra-datacenter network,” IEEE Commun. Lett. 20(9), 1760–1763 (2018).
[Crossref]

K. Walkowiak, R. Go’scie’n, M. Klinkowski, and M. Wo’zniak, “Optimization of multicast traffic in elastic optical networks with distance-adaptive transmission,” IEEE Commun. Lett. 18(12), 2117–2120 (2014).
[Crossref]

IEEE Commun. Mag. (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

IEEE Netw. (1)

G. N. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,” IEEE Netw. 17(1), 60–65 (2003).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (4)

Opt. Eng. (1)

X. Li, L. Zhang, Y. Tang, and S. Huang, “Link importance incorporated failure probability measuring solution for multicast light-Trees in elastic optical networks,” Opt. Eng. 57(3), 036117 (2018).
[Crossref]

Opt. Express (2)

Opt. Switching Networking (1)

B. C. Chatterjee, T. Sato, and E. Oki, “Recent research progress on spectrum management approaches in software-defined elastic optical networks,” Opt. Switching Networking 30, 93–104 (2018).
[Crossref]

Other (5)

N. Amaya, G. Zervas, and D. Simeonidou, “Architecture on demand for transparent optical networks,” in Proc. 13th IEEE ICTON (2011), pp. 1–4.
[Crossref]

S. Mukherjee, F. Bronzino, S. Srinivasan, J. Chen, and D. Raychaudhuri, “Achieving scalable push multicast services using global name resolution,” in Proc. GLOBECOM (2016).
[Crossref]

C. Xue, X. Li, Y. Tang, L. Zhang, T. Gao, B. Guo, and S. Huang, “Light-tree based multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ICOCN (2017).
[Crossref]

L. Zhang, X. Li, Y. Tang, T. Gao, B. Guo, and S. Huang, “Modulation-level-awared multicast flow aggregation scheme in elastic optical datacenter networks,” in Proc. ACP (2017).
[Crossref]

X. Li, Y. Tang, J. Guo, T. Gao, B. Guo, and S. Huang, “A novel BV-WSS based flow aggregation (BV-WSS-FA) scheme for finer-grained services in elastic optical networks,” in Proc. ICOCN (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 The FFT-based multicast O-OFDM signal synthesis, (a) intermediate frequency up/down conversion architecture, (b) direct up/down conversion architecture.
Fig. 2
Fig. 2 Multicast all-optical OFDM signal synthesis.
Fig. 3
Fig. 3 Elastic optical node architectures (a) broadcast-and-select, (b) spectrum routing, (c) switch and select with dynamic functionality, (d) AoD.
Fig. 4
Fig. 4 The LT-MSA scheme (a) the C-RMSA strategy, (b) the OD-RMSA strategy.
Fig. 5
Fig. 5 The OD-RMSA strategy (a) node adjacent redundancy, (b) light-tree for ms1 and ms2, (c) light-tree for ms3.
Fig. 6
Fig. 6 Relationship matrix (a) continuous spectrum, (b) discontinuous spectrum, (c) two MAGs.
Fig. 7
Fig. 7 Adjustable column set construction
Fig. 8
Fig. 8 Two feasible strategies for column adjustment
Fig. 9
Fig. 9 The CA algorithm for a relationship matrix.
Fig. 10
Fig. 10 Simulation topologies (a) n6e8, (b) NSFNet.
Fig. 11
Fig. 11 Transceiver consumption.
Fig. 12
Fig. 12 Spectrum consumption.
Fig. 13
Fig. 13 Light-Tree number.
Fig. 14
Fig. 14 Time consumption.
Fig. 15
Fig. 15 MAG number and multicast demand group number (a) ARN = 4, (b) ARN = 6, (c) ARN = 8.
Fig. 16
Fig. 16 Success multicast demand number (a) ARN = 4, (b) ARN = 6, (c) ARN = 8.
Fig. 17
Fig. 17 Transceiver consumption (a) ARN = 4, (b) ARN = 6, (c) ARN = 8.
Fig. 18
Fig. 18 Spectrum consumption (a) ARN = 4, (b) ARN = 6, (c) ARN = 8.

Tables (4)

Tables Icon

Algorithm 1 The MAG Algorithm

Tables Icon

Algorithm 2 The CA Algorithm

Tables Icon

Algorithm 3 Heuristic OD-RMSA Algorithm

Tables Icon

Table 1 All Used Multicast Demands in ILP Model.

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

min ( α * k T T S k + k T ( o , Ω , s ) M D ( i , j ) E f Λ W ( i , j ) , f ( o , Ω , s ) , k )
k T A k ( o , Ω , s ) = 1 , ( o , Ω , s ) M D
A k ( o , Ω , s ) h o k , ( o , Ω , s ) M D , k T
j : ( j , i ) E e ( j , i ) k , ( o , Ω , s ) = { 0 i = o A k ( o , Ω , s ) i Ω n k , i ( o , Ω , s ) o t h e r , ( o , Ω , s ) M D , k T
j : ( i , j ) E e ( i , j ) k , ( o , Ω , s ) { n k , i ( o , Ω , s ) o t h e r Δ * n k , i ( o , Ω , s ) o t h e r = 0 i Ω , ( o , Ω , s ) M D , k T
n k , i ( o , Ω , s ) = { A k ( o , Ω , s ) i = o A k ( o , Ω , s ) i Ω , ( o , Ω , s ) M D , k T
( ( o , Ω , s ) M D e ( i , j ) k , ( o , Ω , s ) / Δ ) P ( i , j ) k ( o , Ω , s ) M D e ( i , j ) k , ( o , Ω , s ) , ( i , j ) E , k T
j : ( j , i ) E P ( j , i ) k 1 , i ( V U ) , k T
( P ( j , i ) k + P ( i , j ) k ) 1 , ( i , j ) E , k T
( ( o , Ω , s ) M D n k , i ( o , Ω , s ) / Δ ) N i k ( o , Ω , s ) M D n k , i ( o , Ω , s ) , i ( V U ) , k T
h i k N i k , i ( V U ) , k T
h i k ( 1 j : ( j , i ) E P ( j , i ) k ) , i ( V U ) , k T
h i k ( N i k j : ( j , i ) E P ( j , i ) k ) , i ( V U ) , k T
d u k = N u k , u = U , k T
R o , u k h o k , o V , u U , k T
R o , u k d u k , o V , u U , k T
R o , u k ( h o k + d u k 1 ) , o V , u U , k T
T S k =( i V h i k + u U d u k ) , k T
j : ( i , j ) E Q ( i , j ) ( o , u ) , k j : ( j , i ) E Q ( j , i ) ( o , u ) , k = { R o , u k i = o R o , u k i = u 0 o t h e r s , o V , u U , k T
Q ( i , j ) ( o , u ) , k P ( i , j ) k , ( i , j ) E , o V , u U , k T
( i , j ) E Q ( i , j ) ( o , u ) , k * l ( i , j ) l k , o V , u U , k T
m M Z m k 1 , k T
m M R m * Z m k l k , k T
E ( i , j ) ( o , Ω , s ) , k Δ * e ( i , j ) ( o , Ω , s ) , k , ( i , j ) E , ( o , Ω , s ) M D , k T
E ( i , j ) ( o , Ω , s ) , k e ( i , j ) ( o , Ω , s ) , k , ( i , j ) E , ( o , Ω , s ) M D , k T
( j : ( j , i ) E E ( j , i ) ( o , Ω , s ) , k j : ( i , j ) E E ( i , j ) ( o , Ω , s ) , k ) = { | Ω | * A k ( o , Ω , s ) i = o 0 i = o t h e r A k ( o , Ω , s ) i Ω , ( o , Ω , s ) M D , k T
f Λ W ( i , j ) , f ( o , Ω , s ) , k m M ( Z m k * b s m * B ) , ( i , j ) E , ( o , Ω , s ) M D , k T
f Λ W ( i , j ) , f ( o , Ω , s ) , k Δ * e ( i , j ) k , ( o , Ω , s ) , ( i , j ) E , ( o , Ω , s ) M D , k T
f Λ W ( i , j ) , f ( o , Ω , s ) , k Δ * ( e ( i , j ) k , ( o , Ω , s ) 1 ) + m M ( Z m k * b s m * B ) , ( i , j ) E , ( o , Ω , s ) M D , k T
j : ( j , i ) E ( E ( j , i ) ( o , Ω , s ) , k * W ( j , i ) , f ( o , Ω , s ) , k ) = j : ( i , j ) E ( E ( i , j ) ( o , Ω , s ) , k * W ( i , j ) , f ( o , Ω , s ) , k ) , i V & & i o , f Λ , ( o , Ω , s ) M D , k T
j : ( j , i ) E E W ( j , i ) , f ( o , Ω , s ) , k = j : ( i , j ) E E W ( i , j ) , f ( o , Ω , s ) , k , i V & & i o , f Λ , ( o , Ω , s ) M D , k T
E W ( i , j ) , f ( o , Ω , s ) , k W ( i , j ) , f ( o , Ω , s ) , k * Δ , ( i , j ) E , f Λ , ( o , Ω , s ) M D , k T
E W ( i , j ) , f ( o , Ω , s ) , k E ( i , j ) ( o , Ω , s ) , k , ( i , j ) E , f Λ , ( o , Ω , s ) M D , k T
E W ( i , j ) , f ( o , Ω , s ) , k ( W ( i , j ) , f ( o , Ω , s ) , k 1 ) * Δ + E ( i , j ) ( o , Ω , s ) , k , ( i , j ) E , f Λ , ( o , Ω , s ) M D , k T
( 1 W ( i , j ) , f ( o , Ω , s ) , k + W ( i , j ) , ( f + 1 ) ( o , Ω , s ) , k ) × Δ f ' [ f + 2 , | Λ | ] W ( i , j ) , f ' ( o , Ω , s ) , k , ( i , j ) E , f Λ , ( o , Ω , s ) M D , k T
X ( i , j ) , f k = ( o , Ω , s ) M D W ( i , j ) , f ( o , Ω , s ) , k , ( i , j ) E , f Λ , k T
( 1 X ( i , j ) , f k + X ( i , j ) , ( f + 1 ) k ) × Δ f ' [ f + 2 , | Λ | ] X ( i , j ) , f ' k , ( i , j ) E , f Λ , k T
k T ( o , Ω , s ) M D W ( i , j ) , f ( o , Ω , s ) , k 1 ( i , j ) E , f Λ
k T ( o , Ω , s ) M D f Λ W ( i , j ) , f ( o , Ω , s ) , k | Λ | ( i , j ) E
min ( α * k T T S k + k T ( i , j ) E f Λ X ( i , j ) , f k )
K m ( o , Ω , s ) , k Z m k , m M , ( o , Ω , s ) M D , k T
K m ( o , Ω , s ) , k A k ( o , Ω , s ) , m M , ( o , Ω , s ) M D , k T
K m ( o , Ω , s ) , k ( Z m k + A k ( o , Ω , s ) 1 ) , m M , ( o , Ω , s ) M D , k T
f Λ X ( i , j ) , f k ( o , Ω , s ) M D m M ( K m ( o , Ω , s ) , k * b s m * B ) , ( i , j ) E , k T
f Λ X ( i , j ) , f k Δ * P ( i , j ) k , ( i , j ) E , k T
f Λ X ( i , j ) , f k Δ * ( P ( i , j ) k 1 ) + ( o , Ω , s ) M D m M ( K m ( o , Ω , s ) , k * b s m * B ) , ( i , j ) E , k T
[ X ± S n t β / 2 ( n 1 ) ]

Metrics