Abstract

A waveguide Young interferometer is presented with simultaneous detection of complex refractive index of a liquid sample. The real part of the refractive index change (refraction) is detected by tracing phase shifts of the interferogram generated by a sensing and reference waveguide. The imaginary part of the refractive index (absorption) is determined by the attenuation of the transmitted signal at certain wavelength. Furthermore, nano-filters are fabricated atop the sensing waveguide, which enables size-exclusion filtering of species to the evanescent field. It shows capability of distinguishing small and large particles from 100 nm to 500 nm in diameter, which is further confirmed by fluorescent excitation experiments. The present sensor could find broad application in optical characterization of complex turbid media with regard to their complex refractive index.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polymeric dual-slab waveguide interferometer for biochemical sensing applications

Meng Wang, Sanna Uusitalo, Christina Liedert, Jussi Hiltunen, Leena Hakalahti, and Risto Myllylä
Appl. Opt. 51(12) 1886-1893 (2012)

Polymeric slot waveguide interferometer for sensor applications

Marianne Hiltunen, Jussi Hiltunen, Petri Stenberg, Sanna Aikio, Lauri Kurki, Pasi Vahimaa, and Pentti Karioja
Opt. Express 22(6) 7229-7237 (2014)

Size-selective detection in integrated optical interferometric biosensors

Harmen K.P. Mulder, Aurel Ymeti, Vinod Subramaniam, and Johannes S. Kanger
Opt. Express 20(19) 20934-20950 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
    [Crossref] [PubMed]
  2. K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides - a review,” Sensors 8, 711–738 (2008).
    [Crossref] [PubMed]
  3. V. J. Cadarso, A. Llobera, M. Puyol, and H. Schift, “Integrated photonic nanofences: Combining subwavelength waveguides with an enhanced evanescent field for sensing applications,” ACS Nano 10, 778–785 (2016).
    [Crossref]
  4. S. C. A. H. Olmstrom, T. O. D. D. H. S. Tievater, D. M. A. K. Ozak, M. A. W. P. Ruessner, N. A. T. Yndall, W. I. S. R. Abinovich, R. A. N. M. C. G. Ill, and J. A. B. K. Hurgin, “Trace gas Raman spectroscopy using functionalized waveguides,” Optica 3, 891 (2016).
  5. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30, 1273 (2005).
    [Crossref] [PubMed]
  6. C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
    [Crossref] [PubMed]
  7. L. Stern, A. Naiman, G. Keinan, N. Mazurski, M. Grajower, and U. Levy, “Ultra-precise optical to radio frequency based chip-scale refractive index and temperature sensor,” Optica 4, 1 (2017).
    [Crossref]
  8. S. Aikio, J. Hiltunen, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Karioja, “Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method,” Opt. Express 24, 2527 (2016).
    [Crossref] [PubMed]
  9. M. Hofmann, Y. Xiao, S. Sherman, U. Gleissner, T. Schmidt, and H. Zappe, “Asymmetric Mach-Zehnder inter-ferometers without an interaction window in polymer foils for refractive index sensing,” Appl. Opt. 55, 1124 (2016).
    [Crossref] [PubMed]
  10. V. J. Cadarso, N. Chidambaram, L. Jacot-Descombes, and H. Schift, “High-aspect-ratio nanoimprint process chains,” Microsyst. Nanoeng. 3, 17017 (2017).
    [Crossref]
  11. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
    [Crossref]
  12. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30, 3344 (2005).
    [Crossref]
  13. C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
    [Crossref]
  14. Y. Xiao, S. A. Mendez, M. Hofmann, M. Gauch, H. Ehlers, D. Ristau, C. Mueller, and H. Zappe, “Sensitivity enhancement of polymeric Mach-Zehnder interferometers by use of thin high-index films,” Sens. Actuat. A Phys. 265, 181–186 (2017).
    [Crossref]
  15. M. Hiltunen, J. Hiltunen, P. Stenberg, J. Petäjä, E. Heinonen, P. Vahimaa, and P. Karioja, “Polymeric slot waveguide at visible wavelength,” Opt. Lett. 37, 4449 (2012).
    [Crossref] [PubMed]
  16. N. Nilius, T. M. Wallis, and W. Ho, “Influence of a Heterogeneous Al 2 O 3 Surface on the Electronic Properties of Single Pd Atoms,” Opt. Express 25, 2–5 (2003).
  17. L. Ahmadi, M. Hiltunen, P. Stenberg, J. Hiltunen, S. Aikio, M. Roussey, J. Saarinen, and S. Honkanen, “Hybrid layered polymer slot waveguide Young interferometer,” Opt. Express 24, 10275 (2016).
    [Crossref] [PubMed]
  18. M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, P. Vahimaa, and P. Karioja, “Polymeric slot waveguide interferometer for sensor applications,” Opt. Express 22, 7229 (2014).
    [Crossref] [PubMed]
  19. M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllylä, “Highly sensitive biosensor based on UV-imprinted layered polymeric-inorganic composite waveguides,” Opt. Express 20, 20309 (2012).
    [Crossref] [PubMed]
  20. P. G. Hermannsson, K. T. Sørensen, C. Vannahme, C. L. Smith, J. J. Klein, M.-M. Russew, G. Grützner, and A. Kristensen, “All-polymer photonic crystal slab sensor,” Opt. Express 23, 16529 (2015).
    [Crossref] [PubMed]
  21. M. Häyrinen, M. Roussey, A. Säynätjoki, M. Kuittinen, and S. Honkanen, “Titanium dioxide slot waveguides for visible wavelengths,” Appl. Opt. 54, 2653 (2015).
    [Crossref] [PubMed]
  22. C. Zhou, M. Keshavarz Hedayati, X. Zhu, F. Nielsen, U. Levy, and A. Kristensen, “Optofluidic Sensor for Inline Hemolysis Detection on Whole Blood,” ACS Sensors 3, 784–791 (2018).
    [Crossref] [PubMed]
  23. B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen. 9, 481–490 (2004).
    [Crossref] [PubMed]
  24. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
    [Crossref]
  25. D. R. Lide, CRC Handbook of Chemistry and Physics, eBook. p. 3485 (2003).
  26. K. Sørensen, C. Ingvorsen, L. Nielsen, and A. Kristensen, “Effects of water-absorption and thermal drift on a polymeric photonic crystal slab sensor,” Opt. Express 26, 5416–5422 (2018).
    [Crossref] [PubMed]
  27. C. Stamm, R. Dangel, and W. Lukosz, “Biosensing with the integrated-optical difference interferometer: dual-wavelength operation,” Opt. Commun. 153, 347–359 (1998).
    [Crossref]
  28. G. R. J. T. Riggs, Y. U. E. W. Ang, C. H. P. R. Eardon, M. A. F. Ischer, G. A. J. O. E. Vans, and T. H. F. K. Rauss, “Chirped guided-mode resonance biosensor,” Optica 4, 1–6 (2017).
  29. W. Lukosz, C. Stamm, H. Moser, R. Ryf, and J. Dübendorfer, “Difference interferometer with new phase-measurement method as integrated-optical refractometer, humidity sensor and biosensor,” Sens. Actuat. B Chem. 39, 316–323 (1997).
    [Crossref]
  30. A. Brandenburg, “Differential refractometry by an integrated-optical Young interferometer,” Sensors Actuat. B Chem. 39, 266–271 (1997).
    [Crossref]
  31. M. Wang, S. Uusitalo, C. Liedert, J. Hiltunen, L. Hakalahti, and R. Myllylä, “Polymeric dual-slab waveguide interferometer for biochemical sensing applications,” Appl. Opt. 51, 1886 (2012).
    [Crossref] [PubMed]
  32. D. J. Rowe, D. Smith, and J. S. Wilkinson, “Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared,” Sci. Rep. 7, 1–9 (2017).
    [Crossref]
  33. A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. R. Mousavi Pour, “Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions,” Appl. Opt. 53, 5398 (2014).
    [Crossref] [PubMed]
  34. W. M. b. M. Yunus, “Refractive index of dye solution,” Appl. Opt. 28, 4268 (1989).
    [Crossref]
  35. B. Jaskorzynska, Y. Song, and M. Qiu, “Tradeoff between mode confinement, loss, and cross-talk, for dielectric and metal slot waveguides,” Photon. Lett. Pol. 1, 172–174 (2009).
  36. S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends Biotechnol. 34, 7–25 (2016).
    [Crossref]
  37. G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. Derosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications,” Sensors (Switzerland) 15, 30011–30031 (2015).
    [Crossref]

2018 (2)

C. Zhou, M. Keshavarz Hedayati, X. Zhu, F. Nielsen, U. Levy, and A. Kristensen, “Optofluidic Sensor for Inline Hemolysis Detection on Whole Blood,” ACS Sensors 3, 784–791 (2018).
[Crossref] [PubMed]

K. Sørensen, C. Ingvorsen, L. Nielsen, and A. Kristensen, “Effects of water-absorption and thermal drift on a polymeric photonic crystal slab sensor,” Opt. Express 26, 5416–5422 (2018).
[Crossref] [PubMed]

2017 (5)

G. R. J. T. Riggs, Y. U. E. W. Ang, C. H. P. R. Eardon, M. A. F. Ischer, G. A. J. O. E. Vans, and T. H. F. K. Rauss, “Chirped guided-mode resonance biosensor,” Optica 4, 1–6 (2017).

D. J. Rowe, D. Smith, and J. S. Wilkinson, “Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared,” Sci. Rep. 7, 1–9 (2017).
[Crossref]

L. Stern, A. Naiman, G. Keinan, N. Mazurski, M. Grajower, and U. Levy, “Ultra-precise optical to radio frequency based chip-scale refractive index and temperature sensor,” Optica 4, 1 (2017).
[Crossref]

V. J. Cadarso, N. Chidambaram, L. Jacot-Descombes, and H. Schift, “High-aspect-ratio nanoimprint process chains,” Microsyst. Nanoeng. 3, 17017 (2017).
[Crossref]

Y. Xiao, S. A. Mendez, M. Hofmann, M. Gauch, H. Ehlers, D. Ristau, C. Mueller, and H. Zappe, “Sensitivity enhancement of polymeric Mach-Zehnder interferometers by use of thin high-index films,” Sens. Actuat. A Phys. 265, 181–186 (2017).
[Crossref]

2016 (6)

2015 (3)

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. Derosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications,” Sensors (Switzerland) 15, 30011–30031 (2015).
[Crossref]

P. G. Hermannsson, K. T. Sørensen, C. Vannahme, C. L. Smith, J. J. Klein, M.-M. Russew, G. Grützner, and A. Kristensen, “All-polymer photonic crystal slab sensor,” Opt. Express 23, 16529 (2015).
[Crossref] [PubMed]

M. Häyrinen, M. Roussey, A. Säynätjoki, M. Kuittinen, and S. Honkanen, “Titanium dioxide slot waveguides for visible wavelengths,” Appl. Opt. 54, 2653 (2015).
[Crossref] [PubMed]

2014 (3)

2012 (3)

2010 (1)

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

2009 (1)

B. Jaskorzynska, Y. Song, and M. Qiu, “Tradeoff between mode confinement, loss, and cross-talk, for dielectric and metal slot waveguides,” Photon. Lett. Pol. 1, 172–174 (2009).

2008 (1)

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides - a review,” Sensors 8, 711–738 (2008).
[Crossref] [PubMed]

2007 (1)

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

2006 (1)

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[Crossref]

2005 (2)

2004 (1)

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen. 9, 481–490 (2004).
[Crossref] [PubMed]

2003 (2)

N. Nilius, T. M. Wallis, and W. Ho, “Influence of a Heterogeneous Al 2 O 3 Surface on the Electronic Properties of Single Pd Atoms,” Opt. Express 25, 2–5 (2003).

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

1998 (1)

C. Stamm, R. Dangel, and W. Lukosz, “Biosensing with the integrated-optical difference interferometer: dual-wavelength operation,” Opt. Commun. 153, 347–359 (1998).
[Crossref]

1997 (2)

W. Lukosz, C. Stamm, H. Moser, R. Ryf, and J. Dübendorfer, “Difference interferometer with new phase-measurement method as integrated-optical refractometer, humidity sensor and biosensor,” Sens. Actuat. B Chem. 39, 316–323 (1997).
[Crossref]

A. Brandenburg, “Differential refractometry by an integrated-optical Young interferometer,” Sensors Actuat. B Chem. 39, 266–271 (1997).
[Crossref]

1989 (1)

Abinovich, W. I. S. R.

Ahmadi, A.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. Derosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications,” Sensors (Switzerland) 15, 30011–30031 (2015).
[Crossref]

Ahmadi, L.

Aikio, S.

Alocilja, E.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. Derosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications,” Sensors (Switzerland) 15, 30011–30031 (2015).
[Crossref]

Althani, A.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. Derosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications,” Sensors (Switzerland) 15, 30011–30031 (2015).
[Crossref]

Ang, Y. U. E. W.

Aziz, H.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. Derosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications,” Sensors (Switzerland) 15, 30011–30031 (2015).
[Crossref]

Baird, C.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen. 9, 481–490 (2004).
[Crossref] [PubMed]

Bañuls Polo, M. J.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Barrios, C. A.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Bavali, A.

Bier, F. F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Brandenburg, A.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

A. Brandenburg, “Differential refractometry by an integrated-optical Young interferometer,” Sensors Actuat. B Chem. 39, 266–271 (1997).
[Crossref]

Cadarso, V. J.

V. J. Cadarso, N. Chidambaram, L. Jacot-Descombes, and H. Schift, “High-aspect-ratio nanoimprint process chains,” Microsyst. Nanoeng. 3, 17017 (2017).
[Crossref]

V. J. Cadarso, A. Llobera, M. Puyol, and H. Schift, “Integrated photonic nanofences: Combining subwavelength waveguides with an enhanced evanescent field for sensing applications,” ACS Nano 10, 778–785 (2016).
[Crossref]

Carlborg, C. F.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Chao, C. Y.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[Crossref]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

Charlton, M.

Chidambaram, N.

V. J. Cadarso, N. Chidambaram, L. Jacot-Descombes, and H. Schift, “High-aspect-ratio nanoimprint process chains,” Microsyst. Nanoeng. 3, 17017 (2017).
[Crossref]

Cunningham, B. T.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen. 9, 481–490 (2004).
[Crossref] [PubMed]

Dangel, R.

C. Stamm, R. Dangel, and W. Lukosz, “Biosensing with the integrated-optical difference interferometer: dual-wavelength operation,” Opt. Commun. 153, 347–359 (1998).
[Crossref]

Derosa, M.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. Derosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications,” Sensors (Switzerland) 15, 30011–30031 (2015).
[Crossref]

Dortu, F.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Dübendorfer, J.

W. Lukosz, C. Stamm, H. Moser, R. Ryf, and J. Dübendorfer, “Difference interferometer with new phase-measurement method as integrated-optical refractometer, humidity sensor and biosensor,” Sens. Actuat. B Chem. 39, 316–323 (1997).
[Crossref]

Eardon, C. H. P. R.

Ehlers, H.

Y. Xiao, S. A. Mendez, M. Hofmann, M. Gauch, H. Ehlers, D. Ristau, C. Mueller, and H. Zappe, “Sensitivity enhancement of polymeric Mach-Zehnder interferometers by use of thin high-index films,” Sens. Actuat. A Phys. 265, 181–186 (2017).
[Crossref]

Ehrentreich-Förster, E.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Fine, E.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen. 9, 481–490 (2004).
[Crossref] [PubMed]

Fung, W.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[Crossref]

Gauch, M.

Y. Xiao, S. A. Mendez, M. Hofmann, M. Gauch, H. Ehlers, D. Ristau, C. Mueller, and H. Zappe, “Sensitivity enhancement of polymeric Mach-Zehnder interferometers by use of thin high-index films,” Sens. Actuat. A Phys. 265, 181–186 (2017).
[Crossref]

Genick, C.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen. 9, 481–490 (2004).
[Crossref] [PubMed]

Gerstenmaier, J.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen. 9, 481–490 (2004).
[Crossref] [PubMed]

Gleissner, U.

Grajower, M.

Grützner, G.

Guo, L. J.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[Crossref]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

Gylfason, K. B.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Hakalahti, L.

Häyrinen, M.

Heinonen, E.

Hermannsson, P. G.

Hiitola-Keinänen, J.

Hiltunen, J.

Hiltunen, M.

Ho, W.

N. Nilius, T. M. Wallis, and W. Ho, “Influence of a Heterogeneous Al 2 O 3 Surface on the Electronic Properties of Single Pd Atoms,” Opt. Express 25, 2–5 (2003).

Hoffmann, C.

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides - a review,” Sensors 8, 711–738 (2008).
[Crossref] [PubMed]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

Hofmann, M.

Y. Xiao, S. A. Mendez, M. Hofmann, M. Gauch, H. Ehlers, D. Ristau, C. Mueller, and H. Zappe, “Sensitivity enhancement of polymeric Mach-Zehnder interferometers by use of thin high-index films,” Sens. Actuat. A Phys. 265, 181–186 (2017).
[Crossref]

M. Hofmann, Y. Xiao, S. Sherman, U. Gleissner, T. Schmidt, and H. Zappe, “Asymmetric Mach-Zehnder inter-ferometers without an interaction window in polymer foils for refractive index sensing,” Appl. Opt. 55, 1124 (2016).
[Crossref] [PubMed]

Honkanen, S.

Hoorfar, M.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. Derosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications,” Sensors (Switzerland) 15, 30011–30031 (2015).
[Crossref]

Hurgin, J. A. B. K.

Ill, R. A. N. M. C. G.

Ingvorsen, C.

Ischer, M. A. F.

Jacot-Descombes, L.

V. J. Cadarso, N. Chidambaram, L. Jacot-Descombes, and H. Schift, “High-aspect-ratio nanoimprint process chains,” Microsyst. Nanoeng. 3, 17017 (2017).
[Crossref]

Jaskorzynska, B.

B. Jaskorzynska, Y. Song, and M. Qiu, “Tradeoff between mode confinement, loss, and cross-talk, for dielectric and metal slot waveguides,” Photon. Lett. Pol. 1, 172–174 (2009).

Karioja, P.

Kazmierczak, A.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Kehl, F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Keinan, G.

Keshavarz Hedayati, M.

C. Zhou, M. Keshavarz Hedayati, X. Zhu, F. Nielsen, U. Levy, and A. Kristensen, “Optofluidic Sensor for Inline Hemolysis Detection on Whole Blood,” ACS Sensors 3, 784–791 (2018).
[Crossref] [PubMed]

Klein, J. J.

Kontturi, V.

Kozma, P.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Kresbach, G. M.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Kristensen, A.

Ksendzov, A.

Kuittinen, M.

Kurki, L.

Laing, L.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen. 9, 481–490 (2004).
[Crossref] [PubMed]

Lee, S. Y.

S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends Biotechnol. 34, 7–25 (2016).
[Crossref]

Levy, U.

C. Zhou, M. Keshavarz Hedayati, X. Zhu, F. Nielsen, U. Levy, and A. Kristensen, “Optofluidic Sensor for Inline Hemolysis Detection on Whole Blood,” ACS Sensors 3, 784–791 (2018).
[Crossref] [PubMed]

L. Stern, A. Naiman, G. Keinan, N. Mazurski, M. Grajower, and U. Levy, “Ultra-precise optical to radio frequency based chip-scale refractive index and temperature sensor,” Optica 4, 1 (2017).
[Crossref]

Li, P.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen. 9, 481–490 (2004).
[Crossref] [PubMed]

Lide, D. R.

D. R. Lide, CRC Handbook of Chemistry and Physics, eBook. p. 3485 (2003).

Liedert, C.

Lin, B.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen. 9, 481–490 (2004).
[Crossref] [PubMed]

Lin, Y.

Llobera, A.

V. J. Cadarso, A. Llobera, M. Puyol, and H. Schift, “Integrated photonic nanofences: Combining subwavelength waveguides with an enhanced evanescent field for sensing applications,” ACS Nano 10, 778–785 (2016).
[Crossref]

Luka, G.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. Derosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications,” Sensors (Switzerland) 15, 30011–30031 (2015).
[Crossref]

Lukosz, W.

C. Stamm, R. Dangel, and W. Lukosz, “Biosensing with the integrated-optical difference interferometer: dual-wavelength operation,” Opt. Commun. 153, 347–359 (1998).
[Crossref]

W. Lukosz, C. Stamm, H. Moser, R. Ryf, and J. Dübendorfer, “Difference interferometer with new phase-measurement method as integrated-optical refractometer, humidity sensor and biosensor,” Sens. Actuat. B Chem. 39, 316–323 (1997).
[Crossref]

Malki, A.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. Derosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications,” Sensors (Switzerland) 15, 30011–30031 (2015).
[Crossref]

Mansuripur, M.

Maquieira Catala, A.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Mazurski, N.

Mendez, S. A.

Y. Xiao, S. A. Mendez, M. Hofmann, M. Gauch, H. Ehlers, D. Ristau, C. Mueller, and H. Zappe, “Sensitivity enhancement of polymeric Mach-Zehnder interferometers by use of thin high-index films,” Sens. Actuat. A Phys. 265, 181–186 (2017).
[Crossref]

Meyrueis, P.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

Moh, T.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Mohammadian, M.

Mortazavi, S. Z.

Moser, H.

W. Lukosz, C. Stamm, H. Moser, R. Ryf, and J. Dübendorfer, “Difference interferometer with new phase-measurement method as integrated-optical refractometer, humidity sensor and biosensor,” Sens. Actuat. B Chem. 39, 316–323 (1997).
[Crossref]

Mousavi Pour, M. R.

Mueller, C.

Y. Xiao, S. A. Mendez, M. Hofmann, M. Gauch, H. Ehlers, D. Ristau, C. Mueller, and H. Zappe, “Sensitivity enhancement of polymeric Mach-Zehnder interferometers by use of thin high-index films,” Sens. Actuat. A Phys. 265, 181–186 (2017).
[Crossref]

Myllylä, R.

Naiman, A.

Najjaran, H.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. Derosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications,” Sensors (Switzerland) 15, 30011–30031 (2015).
[Crossref]

Nielsen, F.

C. Zhou, M. Keshavarz Hedayati, X. Zhu, F. Nielsen, U. Levy, and A. Kristensen, “Optofluidic Sensor for Inline Hemolysis Detection on Whole Blood,” ACS Sensors 3, 784–791 (2018).
[Crossref] [PubMed]

Nielsen, L.

Nilius, N.

N. Nilius, T. M. Wallis, and W. Ho, “Influence of a Heterogeneous Al 2 O 3 Surface on the Electronic Properties of Single Pd Atoms,” Opt. Express 25, 2–5 (2003).

Oehse, K.

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides - a review,” Sensors 8, 711–738 (2008).
[Crossref] [PubMed]

Olmstrom, S. C. A. H.

Ozak, D. M. A. K.

Parvin, P.

Pearce, S.

Petäjä, J.

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Popplewell, J.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Puustinen, J.

Puyol, M.

V. J. Cadarso, A. Llobera, M. Puyol, and H. Schift, “Integrated photonic nanofences: Combining subwavelength waveguides with an enhanced evanescent field for sensing applications,” ACS Nano 10, 778–785 (2016).
[Crossref]

Qiu, M.

B. Jaskorzynska, Y. Song, and M. Qiu, “Tradeoff between mode confinement, loss, and cross-talk, for dielectric and metal slot waveguides,” Photon. Lett. Pol. 1, 172–174 (2009).

Rauss, T. H. F. K.

Riggs, G. R. J. T.

Ristau, D.

Y. Xiao, S. A. Mendez, M. Hofmann, M. Gauch, H. Ehlers, D. Ristau, C. Mueller, and H. Zappe, “Sensitivity enhancement of polymeric Mach-Zehnder interferometers by use of thin high-index films,” Sens. Actuat. A Phys. 265, 181–186 (2017).
[Crossref]

Ronan, G.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Roussey, M.

Rowe, D. J.

D. J. Rowe, D. Smith, and J. S. Wilkinson, “Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared,” Sci. Rep. 7, 1–9 (2017).
[Crossref]

Ruessner, M. A. W. P.

Russew, M.-M.

Ryf, R.

W. Lukosz, C. Stamm, H. Moser, R. Ryf, and J. Dübendorfer, “Difference interferometer with new phase-measurement method as integrated-optical refractometer, humidity sensor and biosensor,” Sens. Actuat. B Chem. 39, 316–323 (1997).
[Crossref]

Saarinen, J.

Säynätjoki, A.

Schift, H.

V. J. Cadarso, N. Chidambaram, L. Jacot-Descombes, and H. Schift, “High-aspect-ratio nanoimprint process chains,” Microsyst. Nanoeng. 3, 17017 (2017).
[Crossref]

V. J. Cadarso, A. Llobera, M. Puyol, and H. Schift, “Integrated photonic nanofences: Combining subwavelength waveguides with an enhanced evanescent field for sensing applications,” ACS Nano 10, 778–785 (2016).
[Crossref]

Schirmer, B.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

Schmidt, T.

Schmitt, K.

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides - a review,” Sensors 8, 711–738 (2008).
[Crossref] [PubMed]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

Schulz, S.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen. 9, 481–490 (2004).
[Crossref] [PubMed]

Sherman, S.

Siitonen, S.

Smith, C. L.

Smith, D.

D. J. Rowe, D. Smith, and J. S. Wilkinson, “Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared,” Sci. Rep. 7, 1–9 (2017).
[Crossref]

Sohlström, H.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Song, Y.

B. Jaskorzynska, Y. Song, and M. Qiu, “Tradeoff between mode confinement, loss, and cross-talk, for dielectric and metal slot waveguides,” Photon. Lett. Pol. 1, 172–174 (2009).

Sørensen, K.

Sørensen, K. T.

Stamm, C.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

C. Stamm, R. Dangel, and W. Lukosz, “Biosensing with the integrated-optical difference interferometer: dual-wavelength operation,” Opt. Commun. 153, 347–359 (1998).
[Crossref]

W. Lukosz, C. Stamm, H. Moser, R. Ryf, and J. Dübendorfer, “Difference interferometer with new phase-measurement method as integrated-optical refractometer, humidity sensor and biosensor,” Sens. Actuat. B Chem. 39, 316–323 (1997).
[Crossref]

Stemme, G.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Stenberg, P.

Stern, L.

Sulz, G.

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides - a review,” Sensors 8, 711–738 (2008).
[Crossref] [PubMed]

Tievater, T. O. D. D. H. S.

Uusitalo, S.

Vahimaa, P.

Van Der Wijngaart, W.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Vannahme, C.

Vans, G. A. J. O. E.

Vivien, L.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Wallis, T. M.

N. Nilius, T. M. Wallis, and W. Ho, “Influence of a Heterogeneous Al 2 O 3 Surface on the Electronic Properties of Single Pd Atoms,” Opt. Express 25, 2–5 (2003).

Wang, F.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen. 9, 481–490 (2004).
[Crossref] [PubMed]

Wang, M.

Wilkinson, J. S.

D. J. Rowe, D. Smith, and J. S. Wilkinson, “Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared,” Sci. Rep. 7, 1–9 (2017).
[Crossref]

Wolthers, K.

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. Derosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications,” Sensors (Switzerland) 15, 30011–30031 (2015).
[Crossref]

Xiao, Y.

Y. Xiao, S. A. Mendez, M. Hofmann, M. Gauch, H. Ehlers, D. Ristau, C. Mueller, and H. Zappe, “Sensitivity enhancement of polymeric Mach-Zehnder interferometers by use of thin high-index films,” Sens. Actuat. A Phys. 265, 181–186 (2017).
[Crossref]

M. Hofmann, Y. Xiao, S. Sherman, U. Gleissner, T. Schmidt, and H. Zappe, “Asymmetric Mach-Zehnder inter-ferometers without an interaction window in polymer foils for refractive index sensing,” Appl. Opt. 55, 1124 (2016).
[Crossref] [PubMed]

Yndall, N. A. T.

Yoo, S. M.

S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends Biotechnol. 34, 7–25 (2016).
[Crossref]

Yunus, W. M. b. M.

Zappe, H.

Y. Xiao, S. A. Mendez, M. Hofmann, M. Gauch, H. Ehlers, D. Ristau, C. Mueller, and H. Zappe, “Sensitivity enhancement of polymeric Mach-Zehnder interferometers by use of thin high-index films,” Sens. Actuat. A Phys. 265, 181–186 (2017).
[Crossref]

M. Hofmann, Y. Xiao, S. Sherman, U. Gleissner, T. Schmidt, and H. Zappe, “Asymmetric Mach-Zehnder inter-ferometers without an interaction window in polymer foils for refractive index sensing,” Appl. Opt. 55, 1124 (2016).
[Crossref] [PubMed]

Zhou, C.

C. Zhou, M. Keshavarz Hedayati, X. Zhu, F. Nielsen, U. Levy, and A. Kristensen, “Optofluidic Sensor for Inline Hemolysis Detection on Whole Blood,” ACS Sensors 3, 784–791 (2018).
[Crossref] [PubMed]

Zhu, X.

C. Zhou, M. Keshavarz Hedayati, X. Zhu, F. Nielsen, U. Levy, and A. Kristensen, “Optofluidic Sensor for Inline Hemolysis Detection on Whole Blood,” ACS Sensors 3, 784–791 (2018).
[Crossref] [PubMed]

ACS Nano (1)

V. J. Cadarso, A. Llobera, M. Puyol, and H. Schift, “Integrated photonic nanofences: Combining subwavelength waveguides with an enhanced evanescent field for sensing applications,” ACS Nano 10, 778–785 (2016).
[Crossref]

ACS Sensors (1)

C. Zhou, M. Keshavarz Hedayati, X. Zhu, F. Nielsen, U. Levy, and A. Kristensen, “Optofluidic Sensor for Inline Hemolysis Detection on Whole Blood,” ACS Sensors 3, 784–791 (2018).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

Biosens. Bioelectron. (2)

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[Crossref]

J. Biomol. Screen. (1)

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen. 9, 481–490 (2004).
[Crossref] [PubMed]

Lab Chip (1)

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. Van Der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref] [PubMed]

Microsyst. Nanoeng. (1)

V. J. Cadarso, N. Chidambaram, L. Jacot-Descombes, and H. Schift, “High-aspect-ratio nanoimprint process chains,” Microsyst. Nanoeng. 3, 17017 (2017).
[Crossref]

Opt. Commun. (1)

C. Stamm, R. Dangel, and W. Lukosz, “Biosensing with the integrated-optical difference interferometer: dual-wavelength operation,” Opt. Commun. 153, 347–359 (1998).
[Crossref]

Opt. Express (7)

N. Nilius, T. M. Wallis, and W. Ho, “Influence of a Heterogeneous Al 2 O 3 Surface on the Electronic Properties of Single Pd Atoms,” Opt. Express 25, 2–5 (2003).

L. Ahmadi, M. Hiltunen, P. Stenberg, J. Hiltunen, S. Aikio, M. Roussey, J. Saarinen, and S. Honkanen, “Hybrid layered polymer slot waveguide Young interferometer,” Opt. Express 24, 10275 (2016).
[Crossref] [PubMed]

P. G. Hermannsson, K. T. Sørensen, C. Vannahme, C. L. Smith, J. J. Klein, M.-M. Russew, G. Grützner, and A. Kristensen, “All-polymer photonic crystal slab sensor,” Opt. Express 23, 16529 (2015).
[Crossref] [PubMed]

S. Aikio, J. Hiltunen, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Karioja, “Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method,” Opt. Express 24, 2527 (2016).
[Crossref] [PubMed]

M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllylä, “Highly sensitive biosensor based on UV-imprinted layered polymeric-inorganic composite waveguides,” Opt. Express 20, 20309 (2012).
[Crossref] [PubMed]

M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, P. Vahimaa, and P. Karioja, “Polymeric slot waveguide interferometer for sensor applications,” Opt. Express 22, 7229 (2014).
[Crossref] [PubMed]

K. Sørensen, C. Ingvorsen, L. Nielsen, and A. Kristensen, “Effects of water-absorption and thermal drift on a polymeric photonic crystal slab sensor,” Opt. Express 26, 5416–5422 (2018).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (3)

Photon. Lett. Pol. (1)

B. Jaskorzynska, Y. Song, and M. Qiu, “Tradeoff between mode confinement, loss, and cross-talk, for dielectric and metal slot waveguides,” Photon. Lett. Pol. 1, 172–174 (2009).

Sci. Rep. (1)

D. J. Rowe, D. Smith, and J. S. Wilkinson, “Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared,” Sci. Rep. 7, 1–9 (2017).
[Crossref]

Sens. Actuat. A Phys. (1)

Y. Xiao, S. A. Mendez, M. Hofmann, M. Gauch, H. Ehlers, D. Ristau, C. Mueller, and H. Zappe, “Sensitivity enhancement of polymeric Mach-Zehnder interferometers by use of thin high-index films,” Sens. Actuat. A Phys. 265, 181–186 (2017).
[Crossref]

Sens. Actuat. B Chem. (1)

W. Lukosz, C. Stamm, H. Moser, R. Ryf, and J. Dübendorfer, “Difference interferometer with new phase-measurement method as integrated-optical refractometer, humidity sensor and biosensor,” Sens. Actuat. B Chem. 39, 316–323 (1997).
[Crossref]

Sensors (1)

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides - a review,” Sensors 8, 711–738 (2008).
[Crossref] [PubMed]

Sensors (Switzerland) (1)

G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. Derosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications,” Sensors (Switzerland) 15, 30011–30031 (2015).
[Crossref]

Sensors Actuat. B Chem. (1)

A. Brandenburg, “Differential refractometry by an integrated-optical Young interferometer,” Sensors Actuat. B Chem. 39, 266–271 (1997).
[Crossref]

Trends Biotechnol. (1)

S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends Biotechnol. 34, 7–25 (2016).
[Crossref]

Other (1)

D. R. Lide, CRC Handbook of Chemistry and Physics, eBook. p. 3485 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Illustration of the waveguide interferometer. A sensing and a reference waveguide is placed beside each other. A sensing window with nano-filters is exposed to the liquid, where the rest of the sensor is passivated by a thick layer of polymer. The light is coupled by the in-coupling gratings into the waveguides, while the guided light is out-coupled by the out-coupling gratings and generates an interference pattern on the line camera. Insets (a–b) in dashed windows show the cross section of the sensing and reference arm.
Fig. 2
Fig. 2 a) The interferograms captured by the line camera of water and an ethanol-water solution. b) The amplitude of the Fourier transformed interferogram. c) Illustration and the optical simulation of the TE mode of the waveguide. The mode is confined underneath the top of the filters to avoid interference from the bulk. d) SEM image of imprinted nano-filters (OrmoComp) on a Si substrate. Little imprint residue can be seen.
Fig. 3
Fig. 3 Fabrication process of the hybrid polymer interferometer device. a) Efiron polymer is imprinted on a glass substrate with a Si master stamp to define grating couplers. b) The Si master stamp is removed. c) OrmoClear is spin-coated onto Efiron cladding and cured with UV exposure. d) A thin layer of OrmoComp is spin-coated. e) A transparent stamp made of OrmoStamp on glass substrate is used to imprint the OrmoComp layer. f) The OrmoComp layer is UV-cured and nano-filters are defined. g) A thick layer of OrmoComp is spin-coated and UV lithography is carried out. h) The filter region is opened after removal of the uncured polymer.
Fig. 4
Fig. 4 a) and b) Time-resolved phase shifts recorded for applying ethanol-water solution with different weight concentration to water. The gray areas indicate the influx of ethanol-water solution. c) Plot of measured the phase shifts from different ethanol-water solution. The RI change is calculated and plotted on the x axis. The linear fit shows the linearity of the phase shift to the bulk RI change.
Fig. 5
Fig. 5 a) Interferogram of water and a dye solution. The overall intensity is decreased when the sensor is exposed to the tartrazine dye solution. b) Plot of the absorbance (left axis) and phase shift (right axis) measured with the interferometer sensor. Different tartrazine concentrations were mixed into water. The reference absorbance of the dye solutions at the same wavelength (450 nm) is also plotted. The phase shift is evaluated with the same interferogram, which gives the real part of the refractive index.
Fig. 6
Fig. 6 a) Amplitude of the Fourier-transformed interferogram with a peak which is caused by the waveguide interference. b) Low-pass filtered Fourier-transformed interferogram. The amplitude of the signal that is caused by the interference is set to zero, leaving only bias signal given by the total transmission. c) Interferogram with increased intensity for the sensing waveguide, generating elevated bias signal. d) Inverse Fourier-transformed signal after low-pass filtering. Fringes caused by the interference are eliminated, which can be used to evaluate the attenuation due to absorption.
Fig. 7
Fig. 7 Time-resolved phase shifts measured with contact to nano-beads suspensions. 100 and 500 nm polystyrene beads were used, where a strong reaction in phase shift is observed with 100 nm beads. The original medium is isolated by centrifugation and measured as well. Little difference is shown between the original medium and the 500 nm beads suspension due to the size exclusion function. The effect of size-exclusion is illustrated schematically on the right side of the graph.
Fig. 8
Fig. 8 Fluorescent excitation using waveguide interferometer. a) Illustration of the positions of the sensing and reference waveguide as well as the area of the nano-filters. b) The auto-fluorescence of the waveguide caused by the 450 nm laser excitation. The colorbar used is shown on the right. c–e) Three fluorescent beads (44nm, 100 nm, and 500 nm) are measured with the color bar scaled to the maximum intensity. The integration time remains the same for all measurements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = 2 π L Δ n ˜ eff λ = 2 π L Δ n eff , sen Δ n eff , r e f λ ,
k = λ a 4 π η d log 10 e ,

Metrics